Regulation of Activation Induced Deaminase via Phosphorylation

  • Uttiya Basu
  • Jayanta Chaudhuri
  • Ryan T. Phan
  • Abhishek Datta
  • Frederick W. Alt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 596)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular Mechanism of Class Switch Recombination: Linkage with Somatic Hypermutation. Annu Rev Immunol 20, 165–96 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103. (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    Neuberger, M. S., Harris, R. S., Di Noia, J. & Petersen-Mahrt, S. K. Immunity through DNA deamination. Trends Biochem Sci 28, 305–12. (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274, 18470–6 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    Ramiro, A. R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M. C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 4, 452–6. (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–30. (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    Chaudhuri, J., Khuong, C. & Alt, F. W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–8 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A 100, 4102–7. (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    Bransteitter, R., Pham, P., Calabrese, P. & Goodman, M. F. Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. J Biol Chem 279, 51612–21 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    Dickerson, S. K., Market, E., Besmer, E. & Papavasiliou, F. N. AID Mediates Hypermutation by Deaminating Single Stranded DNA. J Exp Med 197, 1291–6. (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    Nambu, Y. et al. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302, 2137–40. (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    Neuberger, M. S., Harris, R. S., Di Noia, J. & Petersen-Mahrt, S. K. Immunity through DNA deamination. Trends Biochem Sci 28, 305–12 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    Neuberger, M. S. et al. Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation. Nat Rev Immunol 5, 171–8 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    Di Noia, J. & Neuberger, M. S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–8 (2002).PubMedCrossRefGoogle Scholar
  15. 15.
    Rada, C. et al. Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient Mice. Curr Biol 12, 1748–55. (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    Rada, C., Di Noia, J. M. & Neuberger, M. S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell 16, 163–71 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    Chaudhuri, J. & Alt, F. W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4, 541–52 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–63. (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    Zarrin, A. A., Tian, M., Wang, J., Borjeson, T. & Alt, F. W. Influence of switch region length on immunoglobulin class switch recombination. Proc Natl Acad Sci U S A 102, 2466–70 (2005).PubMedCrossRefGoogle Scholar
  20. 20.
    Stavnezer, J. Immunoglobulin class switching. Curr Opin Immunol 8, 199–205 (1996).PubMedCrossRefGoogle Scholar
  21. 21.
    Reaban, M. E. & Griffin, J. A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348,342–4. (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    Reaban, M. E., Lebowitz, J. & Griffin, J. A. Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin alpha switch region. J Biol Chem 269, 21850–7. (1994).PubMedGoogle Scholar
  23. 23.
    Tian, M. & Alt, F. W. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem 275, 24163–72 (2000).PubMedCrossRefGoogle Scholar
  24. 24.
    Daniels, G. A. & Lieber, M. R. Strand specificity in the transcriptional targeting of recombination at immunoglobulin switch sequences. Proc Natl Acad Sci U S A 92, 5625–9. (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4, 442–51. (2003).PubMedCrossRefGoogle Scholar
  26. 26.
    Huang, F. T., Yu, K., Hsieh, C. L. & Lieber, M. R. Downstream boundary of chromosomal R-loops at murine switch regions: implications for the mechanism of class switch recombination. Proc Natl Acad Sci U S A 103, 5030–5 (2006).PubMedCrossRefGoogle Scholar
  27. 27.
    Longerich, S., Basu, U., Alt, F. & Storb, U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 18, 164–74 (2006).PubMedCrossRefGoogle Scholar
  28. 28.
    Zarrin, A. A. et al. An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nat Immunol 5, 1275–81 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    Nagelhus, T. A. et al. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem 272, 6561–6. (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    Basu, U. et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 438, 508–11 (2005).PubMedCrossRefGoogle Scholar
  31. 31.
    Pasqualucci, L., Kitaura, Y., Gu, H. & Dalla-Favera, R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc Natl Acad Sci U S A 103, 395–400 (2006).PubMedCrossRefGoogle Scholar
  32. 32.
    McBride, K. M., Gazumyan, A. ,Woo, E.M. ,Barreto, V.M. ,Robbiani, D.F. ,Chait, B.T. ,Nussenzweig, M.C. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc Natl Acad Sci U S A 103, 8798–803 (2006).PubMedCrossRefGoogle Scholar
  33. 33.
    Wang, J. et al. Identification of a specific domain required for dimerization of activation-induced cytidine deaminase. J Biol Chem (2006).Google Scholar
  34. 34.
    Ramiro, A. R. et al. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440, 105–9 (2006).PubMedCrossRefGoogle Scholar
  35. 35.
    Schrader, C. E., Linehan, E. K., Mochegova, S. N., Woodland, R. T. & Stavnezer, J. Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J Exp Med 202, 561–8 (2005).PubMedCrossRefGoogle Scholar
  36. 36.
    McBride, K. M., Barreto, V., Ramiro, A. R., Stavropoulos, P. & Nussenzweig, M. C. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J Exp Med 199, 1235–44 (2004).PubMedCrossRefGoogle Scholar
  37. 37.
    Shinkura, R. et al. Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nat Immunol 5, 707–12 (2004).PubMedCrossRefGoogle Scholar
  38. 38.
    Brar, S. S., Watson, M. & Diaz, M. Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J Biol Chem 279, 26395–401 (2004).PubMedCrossRefGoogle Scholar
  39. 39.
    Muto, T. et al. Negative regulation of activation-induced cytidine deaminase in B cells. Proc Natl Acad Sci U S A 103, 2752–7 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Uttiya Basu
    • 1
  • Jayanta Chaudhuri
    • 2
  • Ryan T. Phan
    • 1
  • Abhishek Datta
    • 1
  • Frederick W. Alt
    • 1
  1. 1.The Howard Hughes Medical Institute, The Children’s Hospital, The CBR Institute for Biomedical Research, and Department of GeneticsHarvard Medical SchoolBoston
  2. 2.Immunology ProgramMemorial Sloan Kettering Cancer CenterNew York

Personalised recommendations