Advertisement

X-RAY PHOTOELECTRON SPECTROSCOPY

  • Hsiao-Lu Lee
  • Nolan T. Flynn

Abstract

Hailed as the “NMR of the periodic table,” X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical analysis (ESCA), is one of the most powerful and common chemical analysis techniques. XPS is based on the photoelectric effect in which the binding energy (E B) of a corelevel electron is overcome by the energy (hν) of an impinging soft X-ray photon, and the core-level electron is excited and ejected from the analyte. The kinetic energies of the ejected photoelectrons, E K, are measured by an electron spectrometer whose work function is φ. Invoking conservation of energy, the following relationship is obtained:

Keywords

Ultraviolet Photoelectron Spectroscopy Binding Energy Scale Electron Energy Analyzer Orbital Angular Momentum Quantum Number Reflect Electron Energy Loss Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ratner, B.D. & Castner, D.G. (1997) Surface analysis: The principal techniques JC Vickerman (Chichester [England]; New York: John Wiley) p 43–98.Google Scholar
  2. [2]
    Einstein, A. (1905) Annalen der Physik 17, 132–148.CrossRefADSGoogle Scholar
  3. [3]
    Sokolowski, E., Nordling, C. & Siegbahn, K. (1958) Physical Review 110, 776.CrossRefADSGoogle Scholar
  4. [4]
    Hagstrom, S., Nordling, C. & Siegbahn, K. (1964) Physics Letters 9, 235–236.CrossRefADSGoogle Scholar
  5. [5]
    Nordling, C., Hagstrom, S. & Siegbahn, K. (1964) Zeitschrift fuer Physik 178, 433–438.CrossRefADSGoogle Scholar
  6. [6]
    Siegbahn, K., Hammond, D., Fellner-Feldegg, H. & Barnett, E.F. (1972) Science 176, 245–252.CrossRefADSGoogle Scholar
  7. [7]
    Siegbahn, K. (1982) Science 217, 111–121.CrossRefADSGoogle Scholar
  8. [8]
    Briggs, D. & Grant, J.T. (2003) In Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (pp. 1–30).Google Scholar
  9. [9]
    Barr, T.L. (1994) Modern ESCA The Principles and Practice of X-Ray Photoelectron Spectroscopy Boca Raton: CRC Press.Google Scholar
  10. [10]
    Watts, J.F. & Wolstenholme, J. (2003) An Introduction to Surface Analysis by XPS and AES (Chichester, West Sussex; New York, NY: J. Wiley) Vol. X.CrossRefGoogle Scholar
  11. [11]
    Moulder, J.F., Stickle, W.F. & Sobol, P.E. (1993) Handbook of X-Ray Photoelectron Spectroscopy (Eden Prairie, Minn.: Perkin-Elmer, Physical Electronics Division).Google Scholar
  12. [12]
    http://www.thermo.com/com/cda/product/detail/1, 15955,00.html.Google Scholar
  13. [14]
    Kinoshita, T. (2002) J. Electron Spectrosc. Relat. Phenom. 124, 175–194.CrossRefGoogle Scholar
  14. [15]
    Leckey, R. (2003) Springer Series in Surface Sciences 23, 337–345.Google Scholar
  15. [16]
    Oswald, S. & Baunack, S. (2003) Thin Solid Films 425, 9–19.CrossRefADSGoogle Scholar
  16. [13]
    Margaritondo, G. (2003) In Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy pp. 733–748.Google Scholar
  17. [17]
    Fulghum, J.E. (1999) Journal of Surface Analysis 6, 13–21.Google Scholar
  18. [18]
    Ertas, G., Korcan Demirok, U. & Suzer, S. (2005) Appl. Surf. Sci. 249, 12–15.CrossRefADSGoogle Scholar
  19. [19]
    Oyama, T., Nishizawa, S. & Yamamoto, H. (1997) Journal of Surface Analysis 3, 558–564.Google Scholar
  20. [20]
    Kelly, M.A. (2003) In Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. (pp. 191–210).Google Scholar
  21. [21]
    Turner, N.H. & Schreifels, J.A. (2000) Anal. Chem. 72, 99R–110R.CrossRefGoogle Scholar
  22. [22]
    Havercroft, N.J. & Sherwood, P.M.A. (1998) J. Vac. Sci. Technol., A 16, 1112–1116.CrossRefADSGoogle Scholar
  23. [23]
    Fiedor, J.N., Proctor, A., Houalla, M., Sherwood, P.M.A., Mulcahy, F.M. & Hercules, D.M. (1992) J. Phys. Chem. 96, 10967–10970.CrossRefGoogle Scholar
  24. [24]
    Flamia, R., Lanza, G., Salvi, A.M., Castle, J.E. & Tamburro, A.M. (2005) Biomacromolecules 6, 1299–1309.CrossRefGoogle Scholar
  25. [25]
    Scrocco, M. (1979) Chem. Phys. Lett. 63, 52–56.CrossRefADSGoogle Scholar
  26. [26]
    Seah, M.P. (2001) Surf. Sci. 471, 185–202.CrossRefADSGoogle Scholar
  27. [27]
    http://srdata.nist.gov/xps/.Google Scholar
  28. [28]
    Kover, L. (2003) In Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (pp. 421–464).Google Scholar
  29. [29]
    Scholl, A., Zou, Y., Jung, M., Schmidt, T., Fink, R. & Umbach, E. (2004) J. Chem. Phys. 121, 10260–10267.CrossRefADSGoogle Scholar
  30. [30]
    Vohrer, U., Blomfield, C., Page, S. & Roberts, A. (2005) Appl. Surf. Sci. 252, 61–65.CrossRefADSGoogle Scholar
  31. [31]
    Reniers, F. & Tewell, C. (2005) J. Electron Spectrosc. Relat. Phenom. 142, 1–25.CrossRefGoogle Scholar
  32. [32]
    Escher, M. et al. (2005) J. Electron Spectrosc. Relat. Phenom. 144–147, 1179–1182.CrossRefGoogle Scholar
  33. [33]
    Blomfield, C.J. (2005) J. Electron Spectrosc. Relat. Phenom. 143, 241–249.CrossRefGoogle Scholar
  34. [34]
    Balss, K.M., Coleman, B.D., Lansford, C.H., Haasch, R.T. & Bohn, P.W. (2001) J. Phys. Chem. B 105, 8970–8978.CrossRefGoogle Scholar
  35. [35]
    Ghosh, P.K. (1983) Introduction to Photoelectron Spectroscopy (New York: Wiley) Vol. X.Google Scholar
  36. [36]
    Baunach, T., Ivanova, V., Kolb, D.M., Boyen, H.-G., Ziemann, P., Buettner, M. & Oelhafen, P. (2004) Adv. Mater. 16, 2024–2028.CrossRefGoogle Scholar
  37. [37]
    Ye, S., Li, G., Noda, H., Uosaki, K. & Osawa, M. (2003) Surf. Sci. 529, 163–170.CrossRefADSGoogle Scholar
  38. [38]
    Doron-Mor, I., Hatzor, A., Vaskevich, A., Van Der Boom-Moavt, T., Shanzer, A., Rubinstein, I. & Cohen, H. (2000) Nature 406, 382–385.CrossRefADSGoogle Scholar
  39. [39]
    Paolucci, G. (2001) J. Phys.: Condens. Matter 13, 11293–11303.CrossRefADSGoogle Scholar
  40. [40]
    Baraldi, A., Comelli, G., Lizzit, S., Kiskinova, M. & Paolucci, G. (2003) Surf. Sci. Rep. 49, 169–224.CrossRefGoogle Scholar
  41. [41]
    Lee, A.F., Wilson, K., Middleton, R.L., Baraldi, A., Goldoni, A., Paolucci, G. & Lambert, R.M. (1999) J. Am. Chem. Soc. 121, 7969–7970.CrossRefGoogle Scholar
  42. [42]
    Cropley, R.L., Williams, F.J., Urquharta, A.J., Vaughan, O.P.H., Tikhov, M.S. & Lambert, R.M. (2005) J. Am. Chem. Soc. 127, 6069–6076.CrossRefGoogle Scholar
  43. [43]
    Demirok, U.K., Ertas, G. & Suzer, S. (2004) J. Phys. Chem. B 108, 5179–5181.CrossRefGoogle Scholar
  44. [44]
    Siegbahn, H., Asplund, L., Kelfve, P. & Siegbahn, K. (1975) J. Electron Spectrosc. Relat. Phenom. 7, 411–419.CrossRefGoogle Scholar
  45. [45]
    Fellner-Feldegg, H., Siegbahn, H., Asplund, L., Kelfve, P. & Siegbahn, K. (1975) J. Electron Spectrosc. Relat. Phenom. 7 421–428.CrossRefGoogle Scholar
  46. [46]
    Siegbahn, H. & Siegbahn, K. (1973) J. Electron Spectrosc. Relat. Phenom. 2, 319–325.CrossRefGoogle Scholar
  47. [47]
    Ogletree, D.F., Bluhm, H., Lebedev, G., Fadley, C.S., Hussain, Z. & Salmeron, M. (2002) Rev. Sci. Instrum. 73, 3872–3877.CrossRefADSGoogle Scholar
  48. [48]
    Ghosal, S., Hemminger, J.C., Bluhm, H., Mun, B.S., Hebenstreit, E.L.D, Ketteler, G., Ogletree, D.F., Requejo, F.G. & Salmeron, M. (2005) Science 307, 563–566.CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Hsiao-Lu Lee
    • 1
  • Nolan T. Flynn
    • 2
  1. 1.Department of ChemistryStanford UniversityStanford
  2. 2.Department of ChemistryWellesley CollegeWellesley

Personalised recommendations