Advertisement

Variograms for spatial max-stable random fields

  • Dan Cooley
  • Philippe Naveau
  • Paul Poncet
Chapter
Part of the Lecture Notes in Statistics book series (LNS, volume 187)

Keywords

Covariance Function Generalize Pareto Distribution Bivariate Case Probability Weighted Moment Multivariate Extreme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BD91]
    Brockwell, P.J. and Davis, R.A. (1991). Times Series: Theory and Methods. Springer Verlag.Google Scholar
  2. [CD99]
    Chilès, J.-P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons Inc., New York. A Wiley-Interscience Publication.zbMATHGoogle Scholar
  3. [CC99]
    Coles, S. and Casson, E. A. (1999). Spatial regression for extremes. Extremes, 1:339–365.CrossRefGoogle Scholar
  4. [Col99]
    Coles, S. and Dixon, M. (1999). Likelihood-based inference for extreme value models. Extremes, 2:523.CrossRefGoogle Scholar
  5. [Col01]
    Coles, S. G. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer-Verlag London Ltd., London.zbMATHGoogle Scholar
  6. [Cre93]
    Cressie, N. A. C. (1993). Statistics for Spatial Data. John Wiley & Sons Inc., New York.zbMATHGoogle Scholar
  7. [DM04]
    Davis, R. and Mikosch, T. (2004). Extreme value theory for space-time processes with heavy-tailed distributions. Lecture notes from the MaPhySto Workshop on “Nonlinear Time Series Modeling”, Copenhagen, Denmark.Google Scholar
  8. [DR93]
    Davis, R. and Resnick, S. (1993). Prediction of stationary max-stable processes. Ann. of Applied Prob, 3:497–525.zbMATHMathSciNetGoogle Scholar
  9. [HP05]
    de Haan, L. and Pereira, T. (2005). Spatial extremes: the stationary case. submitted.Google Scholar
  10. [HR77]
    de Haan, L. and Resnick, S. (1977). Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheorie, 4:317–337.CrossRefGoogle Scholar
  11. [EKM97]
    Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance, volume 33 of Applications of Mathematics. Springer-Verlag, Berlin. For insurance and finance.zbMATHGoogle Scholar
  12. [Fou04]
    Fougères, A. (2004). Multivariate extremes. In B. Finkenstadt and H. Rootzen, editor, Extreme Values in Finance, Telecommunications and the Environment, pages 373–388. Chapman and Hall CRC Press, London.Google Scholar
  13. [GLMW79]
    Greenwood, J., Landwehr, J., Matalas, N., and Wallis, J. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15:1049–1054.CrossRefGoogle Scholar
  14. [HT04]
    Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme values. Journal of the Royal Statistical Society, Series B, 66.Google Scholar
  15. [HW87]
    Hoskings, J. and Wallis, J. (1987). Parameter and quantile estimation for the Generalized Pareto Distribution. Technometrics, 29:339–349.MathSciNetCrossRefGoogle Scholar
  16. [HWW85]
    Hoskings, J., Wallis, J., and Wood, E. (1985). Estimation of the generalized extreme-value distribution by the method of probability-weighted-moments. Technometrics, 27:251–261.MathSciNetCrossRefGoogle Scholar
  17. [KPN02]
    Katz, R., Parlange, M., and Naveau, P. (2002). Extremes in hydrology. Advances in Water Resources, 25:1287–1304.CrossRefGoogle Scholar
  18. [LMW79]
    Landwher, J., Matalas, N., and Wallis, J. (1979). Probability weighted moments compared with some traditionnal techniques in estimating Gumbel’s parameters and quantiles. Water Resources Research, 15:1055–1064.Google Scholar
  19. [LLR83]
    Leadbetter, M., Lindgren, G., and Rootzén, H. (1983). Extremes and related properties of random sequences and processes. Springer Verlag, New York.zbMATHGoogle Scholar
  20. [LT97]
    Ledford, A. and Tawn, J. (1997). Modelling dependence within joint tail regions. J. R. Statist. Soc., B:475–499.zbMATHMathSciNetCrossRefGoogle Scholar
  21. [Mat87]
    Matheron, G. (1987). Suffit-il, pour une covariance, d’être de type positif? Sciences de la Terre, série informatique géologique, 26:51–66.Google Scholar
  22. [NPC05]
    Naveau, P., Poncet, P., and Cooley, D. (2005). First-order variograms for extreme bivariate random vectors. Submitted.Google Scholar
  23. [Pon04]
    Poncet, P. (2004). Théorie des valeurs extrêmes: vers le krigeage et le downscaling par l’introduction du madogramme. Ecole nationale supérieure des Mines de Paris, Paris, France.Google Scholar
  24. [Res87]
    Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes. Springer-Verlag, New York.zbMATHGoogle Scholar
  25. [Sch02]
    Schlather, M. (2002). Models for stationary max-stable random fields. Extremes, 5(1):33–44.zbMATHMathSciNetCrossRefGoogle Scholar
  26. [Sch03]
    Schlather, M. and Tawn, J. (2003). A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika, 90:139–156.zbMATHMathSciNetCrossRefGoogle Scholar
  27. [Smi90]
    Smith, R. (1990). Max-stable processes and spatial extremes. Unpublished manusript.Google Scholar
  28. [Smi04]
    Smith, R. (2004). Statistics of extremes, with applications in environment, insurance and finance. In B. Finkenstadt and H. Rootzen, editor, Extreme Values in Finance, Telecommunications and the Environment, pages 1–78. Chapman and Hall CRC Press, London.Google Scholar
  29. [Ste99]
    Stein, M. L. (1999). Interpolation of Spatial Data. Springer-Verlag, New York. Some theory for Kriging.zbMATHGoogle Scholar
  30. [Wac03]
    Wackernagel, H. (2003). Multivariate Geostatistics. An Introduction with Applications. Springer, Heidelberg, third edition.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Dan Cooley
    • 1
  • Philippe Naveau
    • 1
    • 2
  • Paul Poncet
    • 3
  1. 1.Department of Applied MathematicsUniversity of Colorado at BoulderUSA
  2. 2.Laboratoire des Sciences du Climat et de l’EnvironnementIPSL-CNRSFrance
  3. 3.Ecole des Mines de ParisFrance

Personalised recommendations