Dependence in Probability and Statistics pp 373-390 | Cite as
Variograms for spatial max-stable random fields
Chapter
- 58 Citations
- 1.7k Downloads
Keywords
Covariance Function Generalize Pareto Distribution Bivariate Case Probability Weighted Moment Multivariate Extreme
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [BD91]Brockwell, P.J. and Davis, R.A. (1991). Times Series: Theory and Methods. Springer Verlag.Google Scholar
- [CD99]Chilès, J.-P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons Inc., New York. A Wiley-Interscience Publication.zbMATHGoogle Scholar
- [CC99]Coles, S. and Casson, E. A. (1999). Spatial regression for extremes. Extremes, 1:339–365.CrossRefGoogle Scholar
- [Col99]Coles, S. and Dixon, M. (1999). Likelihood-based inference for extreme value models. Extremes, 2:523.CrossRefGoogle Scholar
- [Col01]Coles, S. G. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer-Verlag London Ltd., London.zbMATHGoogle Scholar
- [Cre93]Cressie, N. A. C. (1993). Statistics for Spatial Data. John Wiley & Sons Inc., New York.zbMATHGoogle Scholar
- [DM04]Davis, R. and Mikosch, T. (2004). Extreme value theory for space-time processes with heavy-tailed distributions. Lecture notes from the MaPhySto Workshop on “Nonlinear Time Series Modeling”, Copenhagen, Denmark.Google Scholar
- [DR93]Davis, R. and Resnick, S. (1993). Prediction of stationary max-stable processes. Ann. of Applied Prob, 3:497–525.zbMATHMathSciNetGoogle Scholar
- [HP05]de Haan, L. and Pereira, T. (2005). Spatial extremes: the stationary case. submitted.Google Scholar
- [HR77]de Haan, L. and Resnick, S. (1977). Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheorie, 4:317–337.CrossRefGoogle Scholar
- [EKM97]Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance, volume 33 of Applications of Mathematics. Springer-Verlag, Berlin. For insurance and finance.zbMATHGoogle Scholar
- [Fou04]Fougères, A. (2004). Multivariate extremes. In B. Finkenstadt and H. Rootzen, editor, Extreme Values in Finance, Telecommunications and the Environment, pages 373–388. Chapman and Hall CRC Press, London.Google Scholar
- [GLMW79]Greenwood, J., Landwehr, J., Matalas, N., and Wallis, J. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15:1049–1054.CrossRefGoogle Scholar
- [HT04]Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme values. Journal of the Royal Statistical Society, Series B, 66.Google Scholar
- [HW87]Hoskings, J. and Wallis, J. (1987). Parameter and quantile estimation for the Generalized Pareto Distribution. Technometrics, 29:339–349.MathSciNetCrossRefGoogle Scholar
- [HWW85]Hoskings, J., Wallis, J., and Wood, E. (1985). Estimation of the generalized extreme-value distribution by the method of probability-weighted-moments. Technometrics, 27:251–261.MathSciNetCrossRefGoogle Scholar
- [KPN02]Katz, R., Parlange, M., and Naveau, P. (2002). Extremes in hydrology. Advances in Water Resources, 25:1287–1304.CrossRefGoogle Scholar
- [LMW79]Landwher, J., Matalas, N., and Wallis, J. (1979). Probability weighted moments compared with some traditionnal techniques in estimating Gumbel’s parameters and quantiles. Water Resources Research, 15:1055–1064.Google Scholar
- [LLR83]Leadbetter, M., Lindgren, G., and Rootzén, H. (1983). Extremes and related properties of random sequences and processes. Springer Verlag, New York.zbMATHGoogle Scholar
- [LT97]Ledford, A. and Tawn, J. (1997). Modelling dependence within joint tail regions. J. R. Statist. Soc., B:475–499.zbMATHMathSciNetCrossRefGoogle Scholar
- [Mat87]Matheron, G. (1987). Suffit-il, pour une covariance, d’être de type positif? Sciences de la Terre, série informatique géologique, 26:51–66.Google Scholar
- [NPC05]Naveau, P., Poncet, P., and Cooley, D. (2005). First-order variograms for extreme bivariate random vectors. Submitted.Google Scholar
- [Pon04]Poncet, P. (2004). Théorie des valeurs extrêmes: vers le krigeage et le downscaling par l’introduction du madogramme. Ecole nationale supérieure des Mines de Paris, Paris, France.Google Scholar
- [Res87]Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes. Springer-Verlag, New York.zbMATHGoogle Scholar
- [Sch02]Schlather, M. (2002). Models for stationary max-stable random fields. Extremes, 5(1):33–44.zbMATHMathSciNetCrossRefGoogle Scholar
- [Sch03]Schlather, M. and Tawn, J. (2003). A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika, 90:139–156.zbMATHMathSciNetCrossRefGoogle Scholar
- [Smi90]Smith, R. (1990). Max-stable processes and spatial extremes. Unpublished manusript.Google Scholar
- [Smi04]Smith, R. (2004). Statistics of extremes, with applications in environment, insurance and finance. In B. Finkenstadt and H. Rootzen, editor, Extreme Values in Finance, Telecommunications and the Environment, pages 1–78. Chapman and Hall CRC Press, London.Google Scholar
- [Ste99]Stein, M. L. (1999). Interpolation of Spatial Data. Springer-Verlag, New York. Some theory for Kriging.zbMATHGoogle Scholar
- [Wac03]Wackernagel, H. (2003). Multivariate Geostatistics. An Introduction with Applications. Springer, Heidelberg, third edition.zbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2006