Advertisement

Fuel Cells pp 27-92 | Cite as

ELECTRODE/ELECTROLYTE INTERFACES: STRUCTURE AND KINETICS OF CHARGE TRANSFER

  • S. Srinivasan

Abstract

When a metal is partly immersed in an electrolyte, a potential is set up across the two phases, i.e., at the electrode/electrolyte interface. The phases may be solids (metals or alloys, semiconductors, insulators), liquids (ionic liquids, molten salts, neutral solutions), or gases (polar or non polar). The more common terminology in electrochemistry is that a double layer is set up at the interface. There are several reasons for a potential difference being set up across the interface of two phases, the most common one being the charge transfer occurring across the interface. During this process, a charge separation will occur because of electron transfer across the interface. Other reasons for the occurrence of potential differences are due to surface-active groups in the ionizable media (liquid, solid, or gas) and orientation of permanent or induced dipoles. The double layer at the interface between two phases has electrical, compositional, and structural characteristics. The electrical and compositional characteristics deal with the excess charge densities on each phase and the structural one with the distribution of the constituents (ions, electrons, dipoles, and neutral molecules) in the two phases, including the interfacial region. For the purposes of understanding and analyzing the electrical, compositional, and structural aspects relevant to the electrochemical reactions that occur in fuel cells, a brief description of the evolution of the theoretical aspects of the structure of the double layer, as applied to electrode/electrolyte interfaces, across which chargetransfer reactions occur, is presented in this section.

Keywords

Fuel Cell Double Layer Electrochemical Reaction Charge Transfer Resistance Exchange Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Helmholtz and W. Abhandl, Physik. Tech. Reichsanst Alt. 1, 925 (1879).Google Scholar
  2. 2.
    A. Gouy, Ann, Chim. Phys. 29, 145 (1903); Compt. ReNd. 149, 654 (1909).Google Scholar
  3. 3.
    D. L. Chapman, Phil. Mag. 25, 475 (1913).Google Scholar
  4. 4.
    O. Stern, Z. Electrochem. 30, 508 (1924).Google Scholar
  5. 5.
    O. A. Esin and B. F. Markov, Zh. Fiz. Khim. 13, 318 (1939).Google Scholar
  6. 6.
    D. C. Grahame, J. Electrochem Soc. 98, 313 (1951).CrossRefGoogle Scholar
  7. 7.
    M. A. V. Devanathan, Trans. Faraday Soc., 50, 373 (1954).CrossRefGoogle Scholar
  8. 8.
    J. O’M Bockris, M. A. V Devanthan, and K. Mueller, Proc. Roy. Soc., Ser. A. 274, 55 (1963).CrossRefGoogle Scholar
  9. 9.
    I. Langmuir, J. Amer. Chem. Soc. 40, 1361 (1918).CrossRefGoogle Scholar
  10. 10.
    A. N. Frumkin, Z. Physik. 35, 792 (1926).CrossRefGoogle Scholar
  11. 11.
    M. I. Temkin, Zh. Fiz. Khim. 15, 296 (1941).Google Scholar
  12. 12.
    P. J. Flory, J. Chem. Phys. 10, 51 (1942).CrossRefGoogle Scholar
  13. 13.
    M. L. Huggins, Ann. NY Acad. Sci. 43, 6 (1942).CrossRefGoogle Scholar
  14. 14.
    J. O’M Bockris, M. Gamboa, and M. Szklarczyk, J. Electroanal. Chem. 339, 355 (1992).CrossRefGoogle Scholar
  15. 15.
    J. O’M Bockris. M. Green, and D. A. J. Swinkels, J. Electrochem. Soc. 11, 743 (1966).Google Scholar
  16. 16.
    J. O’M Bockris and K. T. Jeng, J. Electroanal. Chem. 330, 541 (1992).CrossRefGoogle Scholar
  17. 17.
    W. H. Brattain and C. G. B. Garrett, Ann. NY Acad. Sci. 58, 951 (1954).CrossRefGoogle Scholar
  18. 18.
    V. S. Bagotzky and Y. B. Vassilyev, Electrochim. Acta 12, 1323 (1967).CrossRefGoogle Scholar
  19. 19.
    J. Christiansen, Z. Physik. Chem. Ser. B 33 (1936) 145; 37, 374 (1937).Google Scholar
  20. 20.
    J. A. V. Butler, Proc. Roy. Soc. Ser. A 157, 423 (1936).CrossRefGoogle Scholar
  21. 21.
    R. W. Gurney, Proc. Roy. Soc. Ser. A 134, 137 (1931).CrossRefGoogle Scholar
  22. 22.
    W. Nernst and E. S. Merriam, Z. Physik. Chem. 53, 235 (1905).Google Scholar
  23. 23.
    A. A. Balandin, Z. Physik. Chem. B2, 28 (1929); B3, 167 (1929).Google Scholar
  24. 24.
    L. Pauling, Phys. Rev. 54, 899 (1938); Proc. Roy. Soc. Ser. A 196, 343 (1949).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • S. Srinivasan

There are no affiliations available

Personalised recommendations