Self, Non-Self, and Danger: A Complementary View

  • Jörg Köhl
Part of the Advances in Experimental Medicine and Biology book series (volume 586)


Adaptive Immune Response Complement System Complement Receptor Cleavage Fragment Complementary View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. 1.
    F. M. Burner, Immunological recognition of self, Science 133, 307–311 (1961).CrossRefGoogle Scholar
  2. 2.
    R. E. Billingham, L. Brent and P. B. Medawar, Activity acquired tolerance of foreign cells, Nature 172, 603–606 (1953).PubMedCrossRefGoogle Scholar
  3. 3.
    C. A. Janeway, Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb.Symp.Quant.Biol. 54, 1–13 (1989).PubMedGoogle Scholar
  4. 4.
    C. A. Janeway and R. Medzhitov, Innate immune recognition, Annu Rev Immunol 20, 197–216 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Matzinger, The danger model: a renewed sense of self, Science 296, 301–305 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Matzinger, Tolerance, danger, and the extended family, Annu Rev Immunol 12, 991–1045 (1994).PubMedGoogle Scholar
  7. 7.
    S. Y. Seong and P. Matzinger, Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses., Nat Rev Immunol 4, 469–478 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    M. J. Walport, Review articles: advances in immunology: complement (first of two parts), N Engl J Med 344, 1058–1066 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    A. P. Manderson, M. Botto and M. J. Walport, The role of complement in the development of systemic lupus erythematosus, Annu Rev Immunol 22, 431–456 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Köhl, Anaphylatoxins and infectious and non-infectious inflammatory diseases, Mol Immunol 38, 175–187 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    R. F. Guo and P. A. Ward, Role of c5a in inflammatory responses, Annu Rev Immunol 23, 821–852 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    M. C. Carroll, The complement system in regulation of adaptive immunity, Nat Immunol 5, 981–986 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Hawlisch and J. Köhl, Complement and Toll-like receptors: key regulators of adaptive immune responses, Mol Immunol 43, 13–21 (2006).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Nonaka and F. Yoshizaki, Primitive complement system of invertebrates, Immunol Rev 198, 203–215 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Fujita, M. Matsushita and Y. Endo, The lectin-complement pathway — its role in innate immunity and evolution, Immunol Rev 198, 185–202 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Sahu, T. R. Kozel and M. K. Pangburn, Specificity of the thioester-containing reactive site of human C3 and its significance to complement activation, Biochem J 302 (Pt 2), 429–436 (1994).PubMedGoogle Scholar
  17. 17.
    M. A. Klein, P. S. Kaeser, P. Schwarz, H. Weyd, I. Xenarios, R. M. Zinkernagel, M. C. Carroll, J. S. Verbeek, M. Botto, M. J. Walport, H. Molina, U. Kalinke, H. Acha-Orbea and A. Aguzzi, Complement facilitates early prion pathogenesis, Nat Med 7, 488–492 (2001).PubMedCrossRefGoogle Scholar
  18. 18.
    S. B. Storrs, W. P. Kolb and M. S. Olson, C1q binding and C1 activation by various isolated cellular membranes, J Immunol 131, 416–422 (1983).PubMedGoogle Scholar
  19. 19.
    M. C. Peitsch, J. Tschopp, A. Kress and H. Isliker, Antibody-independent activation of the complement system by mitochondria is mediated by cardiolipin, Biochem J 249, 495–500 (1988).PubMedGoogle Scholar
  20. 20.
    T. Kovacsovics, J. Tschopp, A. Kress and H. Isliker, Antibody-independent activation of C1, the first component of complement, by cardiolipin, J Immunol 35, 2695–2700 (1985).Google Scholar
  21. 21.
    B. Ghebrehiwet, B. P. Randazzo, J. T. Dunn, M. Silverberg and A. P. Kaplan, Mechanisms of activation of the classical pathway of complement by Hageman factor fragment, J Clin Invest 71, 1450–1456 (1983).PubMedGoogle Scholar
  22. 22.
    C. Garlanda, B. Bottazzi, A. Bastone and A. Mantovani, Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility, Annu Rev Immunol 23, 337–366 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    M. W. Turner, The role of mannose-binding lectin in health and disease, Mol Immunol 40, 423–429 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    C. A. Ogden, A. deCathelineau, P. R. Hoffmann, D. Bratton, B. Ghebrehiwet, V. A. Fadok and P. M. Henson, C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells, J Exp Med 194, 781–795 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    B. J. Janssen, E. G. Huizinga, H. C. Raaijmakers, A. Roos, M. R. Daha, K. Nilsson-Ekdahl, B. Nilsson and P. Gros, Structures of complement component C3 provide insights into the function and evolution of immunity, Nature 437, 505–511 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    O. Selberg, H. Hecker, M. Martin, A. Klos, W. Bautsch and J. Köhl, Discrimination of sepsis and systemic inflammatory response syndrome by determination of circulating plasma concentrations of procalcitonin, protein complement 3a, and interleukin-6, Crit Care Med 28, 2793–2798 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    M. K. Pangburn, R. D. Schreiber and H. J. Muller-Eberhard, Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3, J Exp Med 154, 856–867 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    B. Ghebrehiwet and E. I. Peerschke, cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection, Mol Immunol 41, 173–183 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    E. Guan, S. L. Robinson, E. B. Goodman and A. J. Tenner, Cell-surface protein identified on phagocytic cells modulates the C1q-mediated enhancement of phagocytosis, J Immunol 152, 4005–4016 (1994).PubMedGoogle Scholar
  30. 30.
    M. Botto, C. Dell’Agnola, A. E. Bygrave, E. M. Thompson, H. T. Cook, F. Petry, M. Loos, P. P. Pandolfi and M. J. Walport, Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies, Nat Genet 19, 56–59 (1998).PubMedCrossRefGoogle Scholar
  31. 31.
    M. J. Walport, K. A. Davies and M. Botto, C1q and systemic lupus erythematosus, Immunobiology 199, 265–285 (1998).PubMedGoogle Scholar
  32. 32.
    Z. Shariat-Madar, F. Mahdi and A. H. Schmaier, Assembly and activation of the plasma kallikrein/kinin system: a new interpretation, Int Immunopharmacol 2, 1841–1849 (2002).PubMedCrossRefGoogle Scholar
  33. 33.
    D. J. Kittlesen, K. A. Chianese-Bullock, Z. Q. Yao, T. J. Braciale and Y. S. Hahn, Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation, J Clin Invest 106, 1239–1249 (2000).PubMedGoogle Scholar
  34. 34.
    M. L. Reinagel and R. P. Taylor, Transfer of immune complexes from erythrocyte CR1 to mouse macrophages, J Immunol 164, 1977–1985 (2000).PubMedGoogle Scholar
  35. 35.
    D. J. Birmingham and L. A. Hebert, CR1 and CR1-like: the primate immune adherence receptors, Immunol Rev 180, 100–111 (2001).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Fallman, R. Andersson and T. Andersson, Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles, J Immunol 151, 330–338 (1993).PubMedGoogle Scholar
  37. 37.
    M. Krych-Goldberg and J. P. Atkinson, Structure-function relationships of complement receptor type 1, Immunol Rev 180, 112–122 (2001).PubMedCrossRefGoogle Scholar
  38. 38.
    J. A. Stoute, Complement-regulatory proteins in severe malaria: too little or too much of a good thing? Trends Parasitol 21, 218–223 (2005).PubMedCrossRefGoogle Scholar
  39. 39.
    E. Fischer, C. Delibrias and M. D. Kazatchkine, Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes, J Immunol 146, 865–869 (1991).PubMedGoogle Scholar
  40. 40.
    E. Levy, J. Ambrus, L. Kahl, H. Molina, K. Tung and V. M. Holers, T lymphocyte expression of complement receptor 2 (CR2/CD21): a role in adhesive cell-cell interactions and dysregulation in a patient with systemic lupus erythematosus (SLE), Clin Exp Immunol 90, 235–244 (1992).PubMedCrossRefGoogle Scholar
  41. 41.
    J. R. Pratt, S. A. Basheer and S. H. Sacks, Local synthesis of complement component C3 regulates acute renal transplant rejection, Nat Med 8, 582–587 (2002).PubMedCrossRefGoogle Scholar
  42. 42.
    P. W. Dempsey, M. E. Allison, S. Akkaraju, C. C. Goodnow and D. T. Fearon, C3d of complement as a molecular adjuvant: bridging innate and acquired immunity, Science 271, 348–350 (1996).PubMedCrossRefGoogle Scholar
  43. 43.
    J. M. Ahearn, M. B. Fischer, D. Croix, S. Goerg, M. Ma, J. Xia, X. Zhou, R. G. Howard, T. L. Rothstein and M. C. Carroll, Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen, Immunity 4, 251–262 (1996).PubMedCrossRefGoogle Scholar
  44. 44.
    D. T. Fearon and M. C. Carroll, Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex, Annu Rev Immunol 18, 393–422 (2000).PubMedCrossRefGoogle Scholar
  45. 45.
    V. M. Holers, Complement receptors and the shaping of the natural antibody repertoire, Springer Semin Immunopathol 26, 405–423 (2005).PubMedCrossRefGoogle Scholar
  46. 46.
    S. D. Fleming, T. Shea-Donohue, J. M. Guthridge, L. Kulik, T. J. Waldschmidt, M. G. Gipson, G. C. Tsokos and V. M. Holers, Mice deficient in complement receptors 1 and 2 lack a tissue injury-inducing subset of the natural antibody repertoire, J Immunol 169, 2126–2133 (2002).PubMedGoogle Scholar
  47. 47.
    S. D. Fleming, R. P. Egan, C. Chai, G. Girardi, V. M. Holers, J. Salmon, M. Monestier and G. C. Tsokos, Anti-phospholipid antibodies restore mesenteric ischemia/reperfusion-induced injury in complement receptor 2/complement receptor 1-deficient mice, J Immunol 173, 7055–7061 (2004).PubMedGoogle Scholar
  48. 48.
    M. C. Carroll, The complement system in B cell regulation, Mol Immunol 41, 141–146 (2004).PubMedCrossRefGoogle Scholar
  49. 49.
    M. K. Pangburn, Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complement, Immunopharmacology 49, 149–157 (2000).PubMedCrossRefGoogle Scholar
  50. 50.
    J. Agramonte-Hevia, A. Gonzalez-Arenas, D. Barrera and M. Velasco-Velazquez, Gram-negative bacteria and phagocytic cell interaction mediated by complement receptor 3, FEMS Immunol Med Microbiol 34, 255–266 (2002).PubMedCrossRefGoogle Scholar
  51. 51.
    S. L. Jones, U. G. Knaus, G. M. Bokoch and E. J. Brown, Two signaling mechanisms for activation of alphaM beta2 avidity in polymorphonuclear neutrophils, J Biol Chem 273, 10556–10566 (1998).PubMedCrossRefGoogle Scholar
  52. 52.
    A. M. Mastrangelo, T. M. Jeitner and J. W. Eaton, Oleic acid increases cell surface expression and activity of CD11b on human neutrophils, J Immunol 161, 4268–4275 (1998).PubMedGoogle Scholar
  53. 53.
    R. A. Newton and N. Hogg, The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils, J Immunol 160, 1427–1435 (1998).PubMedGoogle Scholar
  54. 54.
    T. Marth and B. L. Kelsall, Regulation of interleukin-12 by complement receptor 3 signaling, J Exp Med 185, 1987–1995 (1997).PubMedCrossRefGoogle Scholar
  55. 55.
    K. M. Murphy and S. L. Reiner, The lineage decisions of helper T cells, Nat Rev Immunol 2, 933–944 (2002).PubMedCrossRefGoogle Scholar
  56. 56.
    J. Jones and B. P. Morgan, Apoptosis is associated with reduced expression of complement regulatory molecules, adhesion molecules and other receptors on polymorphonuclear leucocytes: functional relevance and role in inflammation, Immunology 86, 651–660 (1995).PubMedGoogle Scholar
  57. 57.
    K. Elward, M. Griffiths, M. Mizuno, C. L. Harris, J. W. Neal, B. P. Morgan and P. Gasque, CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells, J Biol Chem 280, 36342–36354 (2005).PubMedCrossRefGoogle Scholar
  58. 58.
    C. L. Karp, M. Wysocka, L. M. Wahl, J. M. Ahearn, P. J. Cuomo, B. Sherry, G. Trinchieri and D. E. Griffin, Mechanism of suppression of cell-mediated immunity by measles virus, Science 273, 228–231 (1996).PubMedCrossRefGoogle Scholar
  59. 59.
    M. K. Liszewski, C. Kemper, J. D. Price and J. P. Atkinson, Emerging roles and new functions of CD46, Springer Semin Immunopathol 27, 345–358 (2005).PubMedCrossRefGoogle Scholar
  60. 60.
    C. Kemper, A. C. Chan, J. M. Green, K. A. Brett, K. M. Murphy and J. P. Atkinson, Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype, Nature 421, 388–392 (2003).PubMedCrossRefGoogle Scholar
  61. 61.
    U. E. Hopken, B. Lu, N. P. Gerard and C. Gerard, The C5a chemoattractant receptor mediates mucosal defence to infection, Nature 383, 86–89 (1996).PubMedCrossRefGoogle Scholar
  62. 62.
    P. A. Ward, The dark side of C5a in sepsis, Nat Rev Immunol 4, 133–142 (2004).PubMedCrossRefGoogle Scholar
  63. 63.
    Y. Wang, S. A. Rollins, J. A. Madri and L. A. Matis, Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease, Proc Natl Acad Sci USA 92, 8955–8959 (1995).PubMedCrossRefGoogle Scholar
  64. 64.
    H. Ji, K. Ohmura, U. Mahmood, D. M. Lee, F. M. Hofhuis, S. A. Boackle, K. Takahashi, V. M. Holers, M. Walport, C. Gerard, A. Ezekowitz, M. C. Carroll, M. Brenner, R. Weissleder, J. S. Verbeek, V. Duchatelle, C. Degott, C. Benoist and D. Mathis, Arthritis critically dependent on innate immune system players, Immunity 16, 157–168 (2002).PubMedCrossRefGoogle Scholar
  65. 65.
    L. Boos, I. L. Campbell, R. Ames, R. A. Wetsel and S. R. Barnum, Deletion of the complement anaphylatoxin C3a receptor attenuates, whereas ectopic expression of C3a in the brain exacerbates, experimental autoimmune encephalomyelitis, J Immunol 173, 4708–4714 (2004).PubMedGoogle Scholar
  66. 66.
    N. P. Gerard and C. Gerard, Complement in allergy and asthma, Curr Opin Immunol 14, 705–708 (2002).PubMedCrossRefGoogle Scholar
  67. 67.
    H. Hawlisch, M. Wills-Karp, C. L. Karp and J. Kohl, The anaphylatoxins bridge innate and adaptive immune responses in allergic asthma, Mol Immunol 41, 123–131 (2004).PubMedCrossRefGoogle Scholar
  68. 68.
    M. Wills-Karp and J. Köhl, New insights into the role of the complement pathway in allergy and asthma, Curr Allergy Asthma Rep 5, 362–369 (2005).PubMedGoogle Scholar
  69. 69.
    T. Crass, U. Raffetseder, U. Martin, M. Grove, A. Klos, J. Köhl and W. Bautsch, Expression cloning of the human C3a anaphylatoxin receptor (C3aR) from differentiated U-937 cells, Eur J Immunol 26, 1944–1950 (1996).PubMedGoogle Scholar
  70. 70.
    R. S. Ames, Y. Li, H. M. Sarau, P. Nuthulaganti, J. J. Foley, C. Ellis, Z. Zeng, K. Su, A. J. Jurewicz, R. P. Hertzberg, D. J. Bergsma and C. Kumar, Molecular cloning and characterization of the human anaphylatoxin C3a receptor, J Biol Chem 271, 20231–20234 (1996).PubMedCrossRefGoogle Scholar
  71. 71.
    N. P. Gerard and C. Gerard, The chemotactic receptor for human C5a anaphylatoxin, Nature 349, 614–617 (1991).PubMedCrossRefGoogle Scholar
  72. 72.
    F. Boulay, L. Mery, M. Tardif, L. Brouchon and P. Vignais, Expression cloning of a receptor for C5a anaphylatoxin on differentiated HL-60 cells, Biochemistry 30, 2993–2999 (1991).PubMedCrossRefGoogle Scholar
  73. 73.
    J. Norgauer, G. Dobos, E. Kownatzki, C. Dahinden, R. Burger, R. Kupper and P. Gierschik, Complement fragment C3a stimulates Ca2+ influx in neutrophils via a pertussis-toxin-sensitive G protein, Eur J Biochem 217, 289–294 (1993).PubMedCrossRefGoogle Scholar
  74. 74.
    J. Zwirner, O. Götze, A. Moser, A. Sieber, G. Begemann, A. Kapp, J. Elsner and T. Werfel, Blood-and skin-derived monocytes/macrophages respond to C3a but not to C3a(desArg) with a transient release of calcium via a pertussis toxin-sensitive signal transduction pathway, Eur J Immunol 27, 2317–2322 (1997).PubMedGoogle Scholar
  75. 75.
    A. M. Buhl, S. Osawa and G. L. Johnson, Mitogen-activated protein kinase activation requires two signal inputs from the human anaphylatoxin C5a receptor, J Biol Chem 270, 19828–19832 (1995).PubMedCrossRefGoogle Scholar
  76. 76.
    M. Vanek, L. D. Hawkins and F. Gusovsky, Coupling of the C5a receptor to Gi in U-937 cells and in cells transfected with C5a receptor cDNA, Mol Pharmacol 46, 832–839 (1994).PubMedGoogle Scholar
  77. 77.
    I. U. Schraufstatter, K. Trieu, L. Sikora, P. Sriramarao and R. DiScipio, Complement c3a and c5a induce different signal transduction cascades in endothelial cells, J Immunol 169, 2102–2110 (2002).PubMedGoogle Scholar
  78. 78.
    R. K. Lo, H. Cheung and Y. H. Wong, Constitutively active G(alpha)16 stimulates STAT3 via a c-Src/JAK-and ERK-dependent mechanism, J Biol Chem (2003).Google Scholar
  79. 79.
    C. W. Strey, M. Markiewski, D. Mastellos, R. Tudoran, L. A. Spruce, L. E. Greenbaum and J. D. Lambris, The proinflammatory mediators C3a and C5a are essential for liver regeneration, J Exp Med 198, 913–923 (2003).PubMedCrossRefGoogle Scholar
  80. 80.
    V. P. Krymskaya, M. J. Orsini, A. J. Eszterhas, K. C. Brodbeck, J. L. Benovic, R. A. Panettieri, Jr. and R. B. Penn, Mechanisms of proliferation synergy by receptor tyrosine kinase and G protein-coupled receptor activation in human airway smooth muscle, Am J Respir Cell Mol Biol 23, 546–554 (2000).PubMedGoogle Scholar
  81. 81.
    M. Ohno, T. Hirata, M. Enomoto, T. Araki, H. Ishimaru and T. A. Takahashi, A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells, Mol Immunol 37, 407–412 (2000).PubMedCrossRefGoogle Scholar
  82. 82.
    S. A. Cain and P. N. Monk, The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74), J Biol Chem 277, 7165–7169 (2002).PubMedCrossRefGoogle Scholar
  83. 83.
    S. Okinaga, D. Slattery, A. Humbles, Z. Zsengeller, O. Morteau, M. B. Kinrade, R. M. Brodbeck, J. E. Krause, H. R. Choe, N. P. Gerard and C. Gerard, C5L2, a nonsignaling C5A binding protein, Biochemistry 42, 9406–9415 (2003).PubMedCrossRefGoogle Scholar
  84. 84.
    N. P. Gerard, B. Lu, P. Liu, S. Craig, Y. Fujiwara, S. Okinaga and C. Gerard, An anti-inflammatory function for the complement anaphylatoxin C5a binding protein, C5L2, J Biol Chem 280, 39677–39680 (2005).PubMedCrossRefGoogle Scholar
  85. 85.
    T. A. Neff, R. F. Guo, S. B. Neff, J. V. Sarma, C. L. Speyer, H. Gao, K. D. Bernacki, M. Huber-Lang, S. McGuire, L. M. Hoesel, N. C. Riedemann, B. Beck-Schimmer, F. S. Zetoune and P. A. Ward, Relationship of acute lung inflammatory injury to Fas/FasL system, Am J Pathol 166, 685–694 (2005).PubMedGoogle Scholar
  86. 86.
    W. H. Fischer, M. A. Jagels and T. E. Hugli, Regulation of IL-6 synthesis in human peripheral blood mononuclear cells by C3a and C3a(desArg), J Immunol 162, 453–459 (1999).PubMedGoogle Scholar
  87. 87.
    W. H. Fischer and T. E. Hugli, Regulation of B cell functions by C3a and C3a(desArg): suppression of TNF-alpha, IL-6, and the polyclonal immune response, J Immunol 159, 4279–4286 (1997).PubMedGoogle Scholar
  88. 88.
    T. Takabayashi, E. Vannier, J. F. Burke, R. G. Tompkins, J. A. Gelfand and B. D. Clark, Both C3a and C3a(desArg) regulate interleukin-6 synthesis in human peripheral blood mononuclear cells, J Infect Dis 177, 1622–1628 (1998).PubMedCrossRefGoogle Scholar
  89. 89.
    K. Francis, B. M. Lewis, H. Akatsu, P. N. Monk, S. A. Cain, M. F. Scanlon, B. P. Morgan, J. Ham and P. Gasque, Complement C3a receptors in the pituitary gland: a novel pathway by which an innate immune molecule releases hormones involved in the control of inflammation, FASEB J 17, 2266–2268 (2003).PubMedGoogle Scholar
  90. 90.
    K. Cianflone, Acylation stimulating protein and the adipocyte, J Endocrinol 155, 203–206 (1997).PubMedCrossRefGoogle Scholar
  91. 91.
    D. Kalant, S. A. Cain, M. Maslowska, A. D. Sniderman, K. Cianflone and P. N. Monk, The chemoattractant receptor-like protein C5L2 binds the C3a des-Arg77/acylation-stimulating protein, J Biol Chem 278, 11123–11129 (2003).PubMedCrossRefGoogle Scholar
  92. 92.
    S. Okinaga, D. M. Slattery, A. Humbles, Z. Zsengeller, O. Morteau, M. B. Kinrade, Brodbeck R. M, J. E. Krause, H. Choe, N. P. Gerard and C. Gerard, C5L2, a nonsignaling C5a binding protein, Biochemistry (2003).Google Scholar
  93. 93.
    E. A. Nordahl, V. Rydengard, P. Nyberg, D. P. Nitsche, M. Morgelin, M. Malmsten, L. Bjorck and A. Schmidtchen, Activation of the complement system generates antibacterial peptides, Proc Natl Acad Sci USA 101, 16879–16884 (2004).PubMedCrossRefGoogle Scholar
  94. 94.
    D. Yang, A. Biragyn, D. M. Hoover, J. Lubkowski and J. J. Oppenheim, Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense, Annu Rev Immunol 22, 181–215 (2004).PubMedCrossRefGoogle Scholar
  95. 95.
    T. Monsinjon, P. Gasque, P. Chan, A. Ischenko, J. J. Brady and M. C. Fontaine, Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells, FASEB J 17, 1003–1014 (2003).PubMedCrossRefGoogle Scholar
  96. 96.
    M. C. Braun, R. Y. Reins, T. B. Li, T. J. Hollmann, R. Dutta, W. A. Rick, B. B. Teng and B. Ke, Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells, J Immunol 173, 4190–4196 (2004).PubMedGoogle Scholar
  97. 97.
    I. J. Laudes, J. C. Chu, M. Huber-Lang, R. F. Guo, N. C. Riedemann, J. V. Sarma, F. Mahdi, H. S. Murphy, C. Speyer, K. T. Lu, J. D. Lambris, F. S. Zetoune and P. A. Ward, Expression and function of C5a receptor in mouse microvascular endothelial cells, J Immunol 169, 5962–5970 (2002).PubMedGoogle Scholar
  98. 98.
    S. M. Drouin, J. Kildsgaard, J. Haviland, J. Zabner, H. P. Jia, P. B. McCray, B. F. Tack and R. A. Wetsel, Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma, J Immunol 166, 2025–2032 (2001).PubMedGoogle Scholar
  99. 99.
    E. Addis-Lieser, J. Köhl and M. G. Chiaramonte, opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis, J Immunol 175, 1894–1902 (2005).PubMedGoogle Scholar
  100. 100.
    S. Hillebrandt, H. E. Wasmuth, R. Weiskirchen, C. Hellerbrand, H. Keppeler, A. Werth, R. Schirin-Sokhan, G. Wilkens, A. Geier, J. Lorenzen, J. Köhl, A. M. Gressner, S. Matern and F. Lammert, Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans, Nat Genet 37, 835–843 (2005).PubMedCrossRefGoogle Scholar
  101. 101.
    A. Fayyazi, O. Scheel, T. Werfel, S. Schweyer, M. Oppermann, O. Götze, H. J. Radzun and J. Zwirner, The C5a receptor is expressed in normal renal proximal tubular but not in normal pulmonary or hepatic epithelial cells, Immunology 99, 38–45 (2000).PubMedCrossRefGoogle Scholar
  102. 102.
    R. Zahedi, M. Braun, R. A. Wetsel, B. H. Ault, A. Khan, T. R. Welch, M. Frenzke and A. E. Davis, The C5a receptor is expressed by human renal proximal tubular epithelial cells, Clin Exp Immunol 121, 226–233 (2000).PubMedCrossRefGoogle Scholar
  103. 103.
    D. L. Haviland, R. L. McCoy, W. T. Whitehead, H. Akama, E. P. Molmenti, A. Brown, J. C. Haviland, W. C. Parks, D. H. Perlmutter and R. A. Wetsel, Cellular expression of the C5a anaphylatoxin receptor (C5aR): demonstration of C5aR on nonmyeloid cells of the liver and lung, J Immunol 154, 1861–1869 (1995).PubMedGoogle Scholar
  104. 104.
    S. A. O’Barr, J. Caguioa, D. Gruol, G. Perkins, J. A. Ember, T. Hugli and N. R. Cooper, Neuronal expression of a functional receptor for the C5a complement activation fragment, J Immunol 166, 4154–4162 (2001).PubMedGoogle Scholar
  105. 105.
    H. Osaka, A. McGinty, U. E. Hoepken, B. Lu, C. Gerard and G. M. Pasinetti, Expression of C5a receptor in mouse brain: role in signal transduction and neurodegeneration, Neuroscience 88, 1073–1082 (1999).PubMedCrossRefGoogle Scholar
  106. 106.
    M. M. Markiewski, R. A. Deangelis and J. D. Lambris, Liver inflammation and regeneration: Two distinct biological phenomena or parallel pathophysiologic processes? Mol Immunol 43, 45–56 (2006).PubMedCrossRefGoogle Scholar
  107. 107.
    A. S. McWilliam, S. Napoli, A. M. Marsh, F. L. Pemper, D. J. Nelson, C. L. Pimm, P. A. Stumbles, T. N. Wells and P. G. Holt, Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli, J Exp Med 184, 2429–2432 (1996).PubMedCrossRefGoogle Scholar
  108. 108.
    A. Morelli, A. Larregina, E. Chuluyan, E. Kolkowski and L. Fainboim, Functional expression and modulation of C5a receptor (CD88) on skin dendritic cells, Adv Exp Med Biol 417, 133–138 (1997).PubMedGoogle Scholar
  109. 109.
    A. Morelli, A. Larregina, I. Chuluyan, E. Kolkowski and L. Fainboim, Expression and modulation of C5a receptor (CD88) on skin dendritic cells. Chemotactic effect of C5a on skin migratory dendritic cells, Immunology 89, 126–134 (1996).PubMedCrossRefGoogle Scholar
  110. 110.
    K. Kirchhoff, O. Weinmann, J. Zwirner, G. Begemann, O. Gotze, A. Kapp and T. Werfel, Detection of anaphylatoxin receptors on CD83+ dendritic cells derived from human skin, Immunology 103, 210–217 (2001).PubMedCrossRefGoogle Scholar
  111. 111.
    D. Yang, Q. Chen, S. Stoll, X. Chen, O. M. Howard and J. J. Oppenheim, Differential regulation of responsiveness to fMLP and C5a upon dendritic cell maturation: correlation with receptor expression, J Immunol 165, 2694–2702 (2000).PubMedGoogle Scholar
  112. 112.
    B. N. Lambrecht and H. Hammad, Taking our breath away: dendritic cells in the pathogenesis of asthma, Nat Rev Immunol 3, 994–1003 (2003).PubMedCrossRefGoogle Scholar
  113. 113.
    A. A. Humbles, B. Lu, C. A. Nilsson, C. Lilly, E. Israel, Y. Fujiwara, N. P. Gerard and C. Gerard, A role for the C3a anaphylatoxin receptor in the effector phase of asthma, Nature 406, 998–1001 (2000).PubMedCrossRefGoogle Scholar
  114. 114.
    N. Krug, T. Tschernig, V. J. Erpenbeck, J. M. Hohlfeld and J. Köhl, Complement factors c3a and c5a are increased in bronchoalveolar lavage fluid after segmental allergen provocation in subjects with asthma, Am J Respir Crit Care Med 164, 1841–1843 (2001).PubMedGoogle Scholar
  115. 115.
    Köhl, J, Baelder, R., Lewkowich, I. P., Pandey, M. P., Hawlisch, H., Wang, L., Best, J., Herman, N. S., Sproles, A, Zwirner, J., Whitsett, J. A., Gerard, C., Sfyroera, G., Lambris, J. D., and Wills-Karp, M. A regulatory role for the C5a anaphylatoxin on type 2 immunity in asthma. J Clin Invest. In press (2006).Google Scholar
  116. 116.
    M. Colonna, G. Trinchieri and Y. J. Liu, Plasmacytoid dendritic cells in immunity, Nat Immunol 5, 1219–1226 (2004).PubMedCrossRefGoogle Scholar
  117. 117.
    B. N. Lambrecht, M. De Veerman, A. J. Coyle, J. C. Gutierrez-Ramos, K. Thielemans and R. A. Pauwels, Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation, J Clin Invest 106, 551–559 (2000).PubMedCrossRefGoogle Scholar
  118. 118.
    H. J. De Heer, H. Hammad, T. Soullie, D. Hijdra, N. Vos, M. A. Willart, H. C. Hoogsteden and B. N. Lambrecht, Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen, J Exp Med 200, 89–98 (2004).PubMedCrossRefGoogle Scholar
  119. 119.
    T. B. Oriss, M. Ostroukhova, C. Seguin-Devaux, B. Dixon-McCarthy, D. B. Stolz, S. C. Watkins, B. Pillemer, P. Ray and A. Ray, Dynamics of dendritic cell phenotype and interactions with CD4+ T cells in airway inflammation and tolerance, J Immunol 174, 854–863 (2005).PubMedGoogle Scholar
  120. 120.
    M. M. Hagendorens, D. G. Ebo, A. J. Schuerwegh, A. Huybrechs, H. P. Van Bever, C. H. Bridts, L. S. De Clerck and W. J. Stevens, Differences in circulating dendritic cell subtypes in cord blood and peripheral blood of healthy and allergic children, Clin Exp Allergy 33, 633–639 (2003).PubMedCrossRefGoogle Scholar
  121. 121.
    M. Wittmann, J. Zwirner, V. A. Larsson, K. Kirchhoff, G. Begemann, A. Kapp, O. Götze and T. Werfel, C5a suppresses the production of IL-12 by IFN-gammaprimed and lipopolysaccharide-challenged human monocytes, J Immunol 162, 6763–6769 (1999).PubMedGoogle Scholar
  122. 122.
    M. C. Braun, E. Lahey and B. L. Kelsall, Selective suppression of IL-12 production by chemoattractants, J Immunol 164, 3009–3017 (2000).PubMedGoogle Scholar
  123. 123.
    C. L. Karp, A. Grupe, E. Schadt, S. L. Ewart, M. Keane-Moore, P. J. Cuomo, J. Köhl, L. Wahl, D. Kuperman, S. Germer, D. Aud, G. Peltz and M. Wills-Karp, Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma, Nat Immunol 1, 221–226 (2000).PubMedCrossRefGoogle Scholar
  124. 124.
    H. Hawlisch, Y. Belkaid, R. Baelder, D. Hildeman, C. Gerard and J. Köhl, C5a negatively regulates Toll-like receptor 4-induced immune responses., Immunity 22, 415–426 (2005).PubMedCrossRefGoogle Scholar
  125. 125.
    Y. Wang, Q. Hu, J. A. Madri, S. A. Rollins, A. Chodera and L. A. Matis, Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5, Proc Natl Acad Sci USA 93, 8563–8568 (1996).PubMedCrossRefGoogle Scholar
  126. 126.
    R. F. Tsuji, I. Kawikova, R. Ramabhadran, M. Akahira-Azuma, D. Taub, T. E. Hugli, C. Gerard and P. W. Askenase, Early local generation of C5a initiates the elicitation of contact sensitivity by leading to early T cell recruitment, J Immunol 165, 1588–1598 (2000).PubMedGoogle Scholar
  127. 127.
    F. Gervais, C. Desforges and E. Skamene, The C5-sufficient A/J congenic mouse strain. Inflammatory response and resistance to Listeria monocytogenes, J Immunol 142, 2057–2060 (1989).PubMedGoogle Scholar
  128. 128.
    H. Sam and M. M. Stevenson, Early IL-12 p70, but not p40, production by splenic macrophages correlates with host resistance to blood-stage Plasmodium chabaudi AS malaria, Clin Exp Immunol 117, 343–349 (1999).PubMedCrossRefGoogle Scholar
  129. 129.
    C. M. Blatteis, S. Li, Z. Li, V. Perlik and C. Feleder, Signaling the brain in systemic inflammation: the role of complement, Front Biosci 9, 915–931 (2004).PubMedGoogle Scholar
  130. 130.
    N. Shushakova, J. Skokowa, J. Schulman, U. Baumann, J. Zwirner, R. E. Schmidt and J. E. Gessner, C5a anaphylatoxin is a major regulator of activating versus inhibitory FcgammaRs in immune complex-induced lung disease, J Clin Invest 110, 1823–1830 (2002).PubMedCrossRefGoogle Scholar
  131. 131.
    J. Godau, T. Heller, H. Hawlisch, M. Trappe, E. Howells, J. Best, J. Zwirner, J. S. Verbeek, P. M. Hogarth, C. Gerard, N. Van Rooijen, A. Klos, J. E. Gessner and J. Köhl, C5a initiates the inflammatory cascade in immune complex peritonitis, J Immunol 173, 3437–3445 (2004).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Jörg Köhl
    • 1
  1. 1.Division of Molecular ImmunologyCincinnati Children’s Hospital Research Foundation, MLC 7021CincinnatiUSA

Personalised recommendations