Scaling Laws in the Functional Content of Genomes

Fundamental Constants of Evolution?
  • Erik van Nimwegen
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Genome Size Bacterial Genome Transcription Regulatory Gene Genome Biology Deletion Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huynen M, van Nimwegen E. The frequency distribution of gene family sizes in complete genomes. Mol Biol Evol 1998; 15:583–589.Google Scholar
  2. 2.
    Gerstein M. A structural census of genomes: Comparing bacterial, eukaryotic, and archael genomes in terms of protein structure. J Mol Biol 1997; 274:562–576.CrossRefGoogle Scholar
  3. 3.
    Luscombe NM, Qian J, Zhang Z et al. The dominance of the population by a selected few: Power-law behavior applies to a wide variety of genomic properties. Genome Biol 2002; 3(8).Google Scholar
  4. 4.
    Koonin EV, Wolf YI, Karev GP. The structure of the protein universe and genome evolution. Nature 2002; 420:218–222.CrossRefADSGoogle Scholar
  5. 5.
    Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 2000; 403:623–627.CrossRefADSGoogle Scholar
  6. 6.
    Ito T, Chiba T, Ozawa R et al. A comprehensive two-hybrid analysis to explore the yeast protein interactions. PNAS USA 2001; 98:4569–4574.CrossRefADSGoogle Scholar
  7. 7.
    Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science 2002; 296:910–913.CrossRefADSGoogle Scholar
  8. 8.
    Stuart JM, Segal E, Koller D et al. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003; 302:249–255.CrossRefADSGoogle Scholar
  9. 9.
    Guelzim N, Bottani S, Bourgine P et al. Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 2002; 31:60–63.CrossRefGoogle Scholar
  10. 10.
    Milo R, Shen-Orr S, Itzkovitz S et al. Network motifs: Simple building blocks of complex networks. Science 2002; 298:824–827.CrossRefADSGoogle Scholar
  11. 11.
    Jeong H, Tombor B, Albert R et al. The large-scale organization of metabolic networks. Nature 2000; 407:651–654.CrossRefADSGoogle Scholar
  12. 12.
    Wagner A, Fell D. The small world inside large metabolic networks. Proc Roy Soc London Series B 2001; 268:1803–1810.CrossRefGoogle Scholar
  13. 13.
    van Nimwegen E. Scaling laws in the functional content of genomes. Trends in Genet. 2003; 19:479–484.CrossRefGoogle Scholar
  14. 14.
    The gene ontology consortium. Gene ontology: Tool for the unification of biology. Nat Genet 2000; 25:25–29.CrossRefGoogle Scholar
  15. 15.
    Croft LJ, Lercher MJ, Gagen MJ et al. Is prokaryotic complexity limited by accelerated growth in regulatory overhead. Genome Biology 2003; 5:P2.CrossRefGoogle Scholar
  16. 16.
    Cherry JL. Genome size and operon content. J theor Biol 2003; 221:401–410.CrossRefGoogle Scholar
  17. 17.
    Joliffe IT. Principle component analysis. New York: Springer-Verlag, 1986.Google Scholar
  18. 18.
    Apweiler R, Attwood TK, Bairoch A et al. The interpro database, an integrated documentation resource for protein families, domains and functional sites. Nucl Acids Res 2001; 29:37–40.CrossRefGoogle Scholar
  19. 19.
    Apweiler R, Biswas M, Fleischmann W et al. Proteome analysis database: Online application of interpro and clustr for the functional classification of proteins in whole genomes. Nucl Acids Res 2001; 29:44–48.CrossRefGoogle Scholar

Copyright information

© and Springer Science+Business Media 2006

Authors and Affiliations

  • Erik van Nimwegen
    • 1
  1. 1.Division of Bioinformatics, BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations