The Role of Probiotics and Antibiotics in Regulating Mucosal Inflammation

  • Rainer Duchmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 579)


Antibiotic and probiotic agents have increasingly moved in the focus of basic and clinical research as well as clinical trials for IBD therapy. Both approaches modulate the intestinal flora, the former through eradication or reduction, the latter through establishment or increase of luminal bacteria. Although clinical trials provide proof of principle that both approaches can be therapeutically successfull, we just start to understand the mechanisms and may get a first feeling for the potential and limitations of these “microbial” therapies. As basic research sets out to dissect the field using extensive efforts and new technologies, a more detailed exploration of the genetic, immune and microbial factors that govern the life-long crosstalk between host and intestinal flora is already opening new insight into general aspects of human immunology, immune regulation, IBD pathogenesis and therapy.


Inflammatory Bowel Disease Intestinal Flora Mucosal Immune System Luminal Bacterium Saccharomyces Boulardii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fuller R. Probiotics in man and animals. J Appl Bacteriol 1989; 66(5):365–78.PubMedCrossRefGoogle Scholar
  2. 2.
    Gibson G, Roberfroid M. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotcs. J Nutr 1995; 125(6):1401–1412.PubMedGoogle Scholar
  3. 3.
    Collins MD, Gibson GR. Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 1999; 69(5):1052S–1057S.PubMedGoogle Scholar
  4. 4.
    Gibson GR, Fuller R. Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J Nutr 2000; 130(2S Suppl):391S–395S.PubMedGoogle Scholar
  5. 5.
    Hart AL, Stagg AJ, Frame M et al. The role of the gut flora in health and disease, and its modification as therapy. Aliment Pharmacol Ther 2002; 16(8):1383–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Hart AL, Stagg AJ, Kamm MA. Use of probiotics in the treatment of inflammatory bowel disease. J Clin Gastroenterol 2003; 36(2):111–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Schultz M, Sartor RB. Probiotics and inflammatory bowel diseases. Am J Gastroenterol 2000; 95(1 Suppl):S19–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Szajewska H, Kotowska M, Mrukowicz J et al. Efficacy of lactobacillus GG in prevention of nosocomial diarrhea in infants. J Pediatr 2001; 138(3):361–365.PubMedCrossRefGoogle Scholar
  9. 9.
    Isolauri E, Juntunen M, Rautanen T et al. A human lactobacillus strain promotes recovery from acute diarrhea in children. Pediatrics 1991; 88(1):90–97.PubMedGoogle Scholar
  10. 10.
    Kalliomaeki M, Salminen S, Arvilommi H et al. Probiotcs in primary prevention of atopic disease: A randomised placebo-controlled trail. Lancet 2001; 357:1076–1079.CrossRefGoogle Scholar
  11. 11.
    Fabia R, Ar’Rajab A, Johansson ML et al. The effect of exogenous administration of lactobacillus reuteri R2LC and oat fiber on acetic acid-induced colitis in the rat. Scand J Gastroenterol 1993; 28(2):155–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Mao Y, Nobaek S, Kasravi B et al. The effects of lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 1996; 111(2):334–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Madsen K, Doyle J, Jewell L et al. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 1999; 116(5):1107–1114.PubMedCrossRefGoogle Scholar
  14. 14.
    Malchow HA. Crohn’s disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn’s disease? J Clin Gastroenterol 1997; 25(4):653–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Kruis W, Schutz E, Fric P et al. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 1997; 11(5):853–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Rembacken BJ, Snelling AM, Hawkey PM et al. Nonpathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: A randomised trial. Lancet 1999; 354(9179):635–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Kruis W, Fric P, Stolte M. Maintenence of remission in ulcerative colitis is equally effective with Escherichia coli nissle 1917 and with standard mesalamine. Gastroenterology 2001; 120(5):A127.Google Scholar
  18. 18.
    Gionchetti P, Rizzello F, Venturi A et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double blind, placebo-conroled trial. Gastroenterology 2000; 119(2):305–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Plein K, Hotz J. Therapeutic effects of Saccharomyces boulardii on mild residual symptoms in a stable phase of Crohn’s disease with special respect to chronic diarrhea—a pilot study. Z Gastroenterol 1993; 31(2):129–34.PubMedGoogle Scholar
  20. 20.
    Guslandi M, Mezzi G, Sorghi M et al. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci 2000; 45(7):1462–4.PubMedCrossRefGoogle Scholar
  21. 21.
    McFarland LV, Surawicz CM, Greenberg RN et al. Prevention of beta-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo. Am J Gastroenterol 1995; 90(3):439–48.PubMedGoogle Scholar
  22. 22.
    McFarland LV, Surawicz CM, Greenberg RN et al. A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. Jama 1994; 271(24):1913–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Flynn S, van Sinderen D, Thornton GM et al. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 2002; 148(Pt 4):973–84.PubMedGoogle Scholar
  24. 24.
    Madsen K, Cornish A, Soper P et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 2001; 121(3):580–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Cario E, Rosenberg IM, Brandwein SL et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 2000; 164(2):966–72.PubMedGoogle Scholar
  26. 26.
    Neutra M, Mantis N, Kraehenbuhl J. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol 2001; 2(11):1004–1009.PubMedCrossRefGoogle Scholar
  27. 27.
    Rescigno, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2(4):288–290.CrossRefGoogle Scholar
  28. 28.
    O’Boyle C, MacFie J, Mitchell C et al. Microbiology of bacterial translocation in humans. Gut 1998; 42(1):29–35.PubMedCrossRefGoogle Scholar
  29. 29.
    McCall R, Haskill J, Zimmermann E et al. Tissue interleukin-1 receptor antagonist expression in enterocolitis in resistant and susceptible rats. Gastroenterology 1994; 106:960–972.PubMedGoogle Scholar
  30. 30.
    Schwab J. Phlogisic properties of peptidoglycan-polysaccharide polymers from cell walls of pathogenic and normal-flora bacteria which colonize humans. Infect Immun 1993; 61:4535–4539.PubMedGoogle Scholar
  31. 31.
    Mowat A, Weiner H. Oral tolerance. Physiological Basis and Clinical Applications. Mucosal Immunology. 2nd ed. In: Orgra PL, Mestecky J, Lamm ME et al, eds. Academic Press, 1999:587–618.Google Scholar
  32. 32.
    Haller D, Bode C, Hammes WP et al. Nonpathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte cocultures. Gut 2000; 47(1):79–87.PubMedCrossRefGoogle Scholar
  33. 33.
    Khoo UY, Proctor IE, Macpherson AJ. CD4+ T cell down-regulation in human intestinal mucosa: Evidence for intestinal tolerance to luminal bacterial antigens. J Immunol 1997; 158(8):3626–34.PubMedGoogle Scholar
  34. 34.
    Kullberg MC, Jankovic D, Gorelick PL et al. Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticus-induced colitis. J Exp Med 2002; 196(4):505–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Neish A, Gewirtz A, Zeng H et al. Prokaryotic regulation of epithelial responses by inhibition of IkB-alpha ubiquitination. Science 2000; 289:1560–1563.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang G, Ghosh S. Toll-like receptor-mediated NF-kappaB activation: A phylogenetically conserved paradigm in innate immunity. J Clin Invest 2001; 107(1):13–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Girardin SE, Tournebize R, Mavris M et al. CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive shigella flexneri. EMBO Rep 2001; 2(8):736–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Medzhitov R, Janeway Jr C. Innate immunity. N Engl J Med 2000; 343(5):338–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Duchmann R, Neurath MF, Meyer zum Buschenfelde KH. Responses to self and nonself intestinal microflora in health and inflammatory bowel disease. Res Immunol 1997; 148(8–9):589–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Duchmann R, Kaiser I, Hermann E et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease. Clin Exp Immunol 1995; 102(3):448–455.PubMedCrossRefGoogle Scholar
  41. 41.
    Duchmann R, Schmitt E, Knolle P et al. Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur J Immunol 1996; 26:934–938.PubMedCrossRefGoogle Scholar
  42. 42.
    Videla S, Vilaseca J, Guarner F et al. Role of intestinal microflora in chronic inflammation and ulceration of the rat colon. Gut 1994; 35(8):1090–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Rath HC, Schultz M, Freitag R et al. Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. Infect Immun 2001; 69(4):2277–85.PubMedCrossRefGoogle Scholar
  44. 44.
    Madsen KL, Doyle JS, Tavernini MM et al. Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice. Gastroenterology 2000; 118(6):1094–105.PubMedCrossRefGoogle Scholar
  45. 45.
    Moss A, Carbone J, Kressel H. Radiologic and clinical assessment of broad-spectrum antibiotic therapy in Crohn’s disease. Am J Roentgenol 1978; 131(5):787–790.CrossRefGoogle Scholar
  46. 46.
    Sutherland L, Singleton J, Sessions J et al. Double blind, placebo controlled trial of metronidazole in Crohn’s disease. Gut 1991; 32(9):1071–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Ursing B, Alm T, Barany F et al. A comparative study of metronidazole and sulfasalazine for active Crohn’s disease: The cooperative Crohn’s disease study in Sweden. II. Result. Gastroenterology 1982; 83(3):550–62.PubMedGoogle Scholar
  48. 48.
    Sands BE. Therapy of inflammatory bowel disease. Gastroenterology 2000; 118(2 Suppl 1):S68–82.PubMedCrossRefGoogle Scholar
  49. 49.
    Zeitz M. Guidelines of the DGVS. Pouchitis. German Society of Digestive and Metabolic Diseases. Z Gastroenterol 2001; 39(1):59–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Roche Y, Gougerot-Pocidalo MA, Fay M et al. Comparative effects of quinolones on human mononuclear leucocyte functions. J Antimicrob Chemother 1987; 19(6):781–90.PubMedCrossRefGoogle Scholar
  51. 51.
    Grove DI, Mahmound AA, Warren KS. Suppression of cell-mediated immunity by metronidazole. Int Arch Allergy Appl Immunol 1977; 54(5):422–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Rath H, Ikeda J, Wilson K et al. Cecal bacterial loads influence colitis and gastritis in HLA B27 transgenic rats. Gastroenterology 1997; 112:A1068.Google Scholar
  53. 53.
    Rath HC, Herfarth HH, Ikeda JS et al. Normal luminal bacteria, especially bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 1996; 98(4):945–53.PubMedCrossRefGoogle Scholar
  54. 54.
    Darfeuille-Michaud A, Neut C, Barnich N et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 1998; 115(6):1405–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Masseret E, Boudeau J, Colombel JF et al. Genetically related Escherichia coli strains associated with Crohn’s disease. Gut 2001; 48(3):320–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Boudeau J, Glasser AL, Masseret E et al. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn’s disease. Infect Immun 1999; 67(9):4499–509.PubMedGoogle Scholar
  57. 57.
    Boudeau J, Barnich N, Darfeuille-Michaud A. Type 1 pili-mediated adherence of Escherichia coli strain LF82 isolated from Crohn’s disease is involved in bacterial invasion of intestinal epithelial cells. Mol Microbiol 2001; 39(5):1272–84.PubMedCrossRefGoogle Scholar
  58. 58.
    Glasser AL, Boudeau J, Barnich N et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun 2001; 69(9):5529–37.PubMedCrossRefGoogle Scholar
  59. 59.
    Swidsinski A, Ladhoff A, Pernthaler A et al. Mucosal flora in inflammatory bowel disease. Gastroenterology 2002; 122(1):44–54.PubMedCrossRefGoogle Scholar
  60. 60.
    Duchmann R, Marker-Hermann E, Meyer zum Buschenfelde KH. Bacteria-specific T-cell clones are selective in their reactivity towards different enterobacteria or H. pylori and increased in inflammatory bowel disease. Scand J Immunol 1996; 44(1):71–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Duchmann R, May E, Heike M et al. T cell specificity and cross reactivity towards enterobacteria, bacteroides, bifidobacterium, and antigens from resident intestinal flora in humans. Gut 1999; 44(6):812–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Duchmann R. The role of resident intestinal bacteria. Chronic inflammatory bowel diseases. Progress and Controversies. In: Holoman J, Glasa J, eds. Progress in Hepato-Pharmacology, 2000; 5:17–31.Google Scholar
  63. 63.
    Foo MC, Lee A. Antigenic cross-reaction between mouse intestine and a member of the autochthonous microflora. Infect Immun 1974; 9(6):1066–9.PubMedGoogle Scholar
  64. 64.
    Foo MC, Lee A. Immunological response of mice to members of the autochthonous intestinal microflora. Infect Immun 1972; 6(4):525–32.PubMedGoogle Scholar
  65. 65.
    Moore WE, Burmeister JA, Brooks CN et al. Investigation of the influences of puberty, genetics, and environment on the composition of subgingival periodontal floras. Infect Immun 1993; 61(7):2891–8.PubMedGoogle Scholar
  66. 66.
    Van de Merwe JP, Stegeman JH, Hazenberg MP. The resident faecal flora is determined by genetic characteristics of the host. Implications for Crohn’s disease? Antonie Van Leeuwenhoek 1983; 49(2):119–24.PubMedCrossRefGoogle Scholar
  67. 67.
    Wilson K, Blitchington R. Human colonic biota studied by ribosoal DNA sequence analysis. Appl Environ Microbiol 1996; 62(7):2273–227.PubMedGoogle Scholar
  68. 68.
    Hooper LV, Wong MH, Thelin A et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001; 291(5505):881–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Steidler L, Hans W, Schotte L et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000; 289(5483):1352–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Matsui K, Nagano K, Arai T et al. DNA sequencing of the gene encoding Salmonella typhimurium-derived T-cell inhibitor (STI) and characterization of the gene product, cloned STI. FEMS Immunol Med Microbiol 1998; 22(4):341–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Klapproth JM, Scaletsky IC, McNamara BP et al. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect Immun 2000; 68(4):2148–55.PubMedCrossRefGoogle Scholar
  72. 72.
    Darji A, Guzman CA, Gerstel B et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 1997; 91(6):765–75.PubMedCrossRefGoogle Scholar
  73. 73.
    Fennelly GJ, Khan SA, Abadi MA et al. Mucosal DNA vaccine immunization against measles with a highly attenuated Shigella flexneri vector. J Immunol 1999; 162(3):1603–10.PubMedGoogle Scholar
  74. 74.
    Paglia P, Medina E, Arioli I et al. Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 1998; 92(9):3172–6.PubMedGoogle Scholar

Copyright information

© and Springer Science+Business Media 2006

Authors and Affiliations

  • Rainer Duchmann
    • 1
  1. 1.Medizinische Klinik ICharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations