Advertisement

Molecular AnalysiS Using Microparticle-Based Flow Cytometry

  • John P. Nolan
Part of the Reviews in Fluorescence book series (RFLU, volume 2006)

9.7. Summary and Future Directions

In this article, I have given an overview of the application of microparticle-based flow cytometry to high resolution molecular analysis. The applications described range from kinetic analysis of interaction mechanisms to highly sensitive and parallel screening assays. Some of these types of applications are now widely used, supported by commercial kits and reagents. Others are being integrated into high throughput screening environments for disease marker and drug discovery. Current research in new optical encoding schemes for microparticles, new detection schemes for fluorescence and other optical signals, and microparticle fabrication and surface chemistries promise to lead to even more flexible and robust assay systems for molecular analysis

Keywords

Flow Cytometry Enhanced Green Fluorescent Protein Cholera Toxin Yersinia Pestis Silica Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.9. References

  1. 1.
    Wilkerson, C.W., P.M. Goodwin, W.P. Ambrose, J.C. Martin, and R.A. Kller. 1993. Detection and Lifetime Measurement of Single Molecules in Flowing Sample Streams by Laser-Induced Fluorescence. Applied Physics Letters 62:2030–2032.CrossRefGoogle Scholar
  2. 2.
    Van Orden, A. and R.A. Keller. 1998. Fluorescence correlation spectroscopy for rapid multicomponent analysis in a capillary electrophoresis system. Analytical Chemistry 70:4463–4471.CrossRefGoogle Scholar
  3. 3.
    Goodwin, P.M., W.P. Ambrose, and R.A. Keller. 1996. Single-molecule detection in liquids by laser-induced fluorescence. Accounts of Chemical Research 29:607–613.CrossRefGoogle Scholar
  4. 4.
    Horan, P.K. and L.L. Wheeless, Jr. 1977. Quantitative single cell analysis and sorting. Science 198:149–157.PubMedCrossRefGoogle Scholar
  5. 5.
    McHugh, T.M., D.P. Stites, C.H. Casavant, and M.J. Fulwyler. 1986. Flow cytometric detection and quantitation of immune complexes using human C1q-coated microspheres. J.Immunol.Methods 95:57–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Fulwyler, M.J. and T.M. McHugh. 1990. Flow microsphere immunoassay for the quantitative and simultaneous detection of multiple soluble analytes. Methods Cell Biol. 33:613–629.PubMedGoogle Scholar
  7. 7.
    Nolan, J.P. and L.A. Sklar. 1998. The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions. Nature Biotechnology 16:633–638.PubMedCrossRefGoogle Scholar
  8. 8.
    Shaner, N.C., R.E. Campbell, P.A. Steinbach, B.N.G. Giepmans, A.E. Palmer, and R.Y. Tsien. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nature Biotechnology 22:1567–1572.PubMedCrossRefGoogle Scholar
  9. 9.
    Adams, S.R., R.E. Campbell, L.A. Gross, B.R. Martin, G.K. Walkup, Y. Yao, J. Llopis, and R.Y. Tsien. 2002. New biarsenical Ligands and tetracyteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications. Journal of the American Chemical Society 124:6063–6076.PubMedCrossRefGoogle Scholar
  10. 10.
    Fulton, R.J., R.L. McDade, P.L. Smith, L.J. Kienker, and J.R. Kettman, Jr. 1997. Advanced multiplexed analysis with the FlowMetrix system. Clin.Chem. 43:1749–1756.PubMedGoogle Scholar
  11. 11.
    Kettman, J.R., T. Davies, D. Chandler, K.G. Oliver, and R.J. Fulton. 1998. Classification and properties of 64 multiplexed microsphere sets. Cytometry 33:234–243.PubMedCrossRefGoogle Scholar
  12. 12.
    Yan, X., E.G. Schielke, K.M. Grace, C. Hassell, B.L. Marrone, and J.P. Nolan. 2004. Microsphere-based duplexed immunoassay for influenza virus typing by flow cytometry. J. Immunol. Methods 284:27–38.PubMedCrossRefGoogle Scholar
  13. 13.
    Yan, X., A. Tang, E.G. Schielke, W. Hang, and J.P. Nolan. 2004. Development of a microsphere-based multiplexed immunoassay for influenza virus typing and sub-typing by flow cytometry. Proceedings Influenza V Conference: International Congress Series 1263:342–345.CrossRefGoogle Scholar
  14. 14.
    Dunbar, S.A., C.A. Vander Zee, K.G. Oliver, K.L. Karem, and J.W. Jacobson. 2003. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J. Microbiol. Methods 53:245–252.PubMedCrossRefGoogle Scholar
  15. 15.
    McBride, M.T., D. Masquelier, B.J. Hindson, A.J. Makarewicz, S. Brown, K. Burris, T. Metz, R.G. Langlois, K.W. Tsang, R. Bryan, D.A. Anderson, K.S. Venkateswaran, F.P. Milanovich, and B.W. Colston. 2003. Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis. Analytical Chemistry 75:5293–5299.PubMedCrossRefGoogle Scholar
  16. 16.
    Song, X.,J. Shi, J. Nolan, and B. Swanson. 2001. Detection of multivalent interactions through two-tiered energy transfer. Anal.Biochem. 291:133–141.PubMedCrossRefGoogle Scholar
  17. 17.
    Song, X., J.P. Nolan, and B.I. Swanson. 1998. An optical biosensor based on fluorescence self-quenching and energy transfer: Ultrasensitive and specific detection of protein toxins. Journal of the American Chemical Society 120:11514–11515.CrossRefGoogle Scholar
  18. 18.
    Song, X.D., J. Nolan, and B.I. Swanson. 1998. Optical signal transduction triggered by protein-ligand binding: Detection of toxins using multivalent binding. Journal of the American Chemical Society 120:4873–4874.CrossRefGoogle Scholar
  19. 19.
    Liu, Y., H.I. Kao, and R.A. Bambara. 2004. Flap endonuclease 1: A central component of DNA metabolism. Annual Review of Biochemistry 73:589–615.PubMedCrossRefGoogle Scholar
  20. 20.
    Nolan, J.P., B. Shen, M.S. Park, and L.A. Sklar. 1996. Kinetic analysis of human flap endonuclease-1 by flow cytometry. Biochemistry 35:11668–11676.PubMedCrossRefGoogle Scholar
  21. 21.
    Shen, B., J.P. Nolan, L.A. Sklar, and M.S. Park. 1996. Essential amino acids for substrate binding and catalysis of human flap endonuclease 1. J.Biol.Chem. 271:9173–9176.PubMedCrossRefGoogle Scholar
  22. 22.
    Shen, B., J.P. Nolan, L.A. Sklar, and M.S. Park. 1997. Functional analysis of point mutations in human flap endonuclease-1 active site. Nucleic Acids Res. 25:3332–3338.PubMedCrossRefGoogle Scholar
  23. 23.
    Frank, G., J. Qiu, M. Somsouk, Y. Weng, L. Somsouk, J.P. Nolan, and B. Shen. 1998. Partial functional deficiency of E160D flap endonuclease-1 mutant in vitro and in vivo is due to defective cleavage of DNA substrates. J.Biol.Chem. 273:33064–33072.PubMedCrossRefGoogle Scholar
  24. 24.
    Gary, R., M.S. Park, J.P. Nolan, H.L. Cornelius, O.G. Kozyreva, H.T. Tran, K.S. Lobachev, M.A. Resnick, and D.A. Gordenin. 1999. A novel role in DNA metabolism for the binding of Fen1/Rad27 to PCNA and implications for genetic risk. Mol.Cell Biol. 19:5373–5382.PubMedGoogle Scholar
  25. 25.
    Buranda, T., G.P. Lopez, P. Simons, A. Pastuszyn, and L.A. Sklar. 2001. Detection of epitopetagged proteins in flow cytometry: fluorescence resonance energy transfer-based assays on beads with femtomole resolution. Anal.Biochem. 298:151–162.PubMedCrossRefGoogle Scholar
  26. 26.
    Sklar, L.A., B.S. Edwards, S.W. Graves, J.P. Nolan, and E.R. Prossnitz. 2002. Flow cytometric analysis of ligand-receptor interactions and molecular assemblies. Annu.Rev.Biophys.Biomol.Struct. 31:97–119.PubMedCrossRefGoogle Scholar
  27. 27.
    Waller, A., P.C. Simons, S.M. Biggs, B.S. Edwards, E.R. Prossnitz, and L.A. Sklar. 2004. Techniques: GPCR assembly, pharmacology and screening by flow cytometry. Trends Pharmacol.Sci. 25:663–669.PubMedCrossRefGoogle Scholar
  28. 28.
    Waller, A., P. Simons, E.R. Prossnitz, B.S. Edwards, and L.A. Sklar. 2003. High throughput screening of G-protein coupled receptors via flow cytometry. Comb.Chem.High Throughput.Screen. 6:389–397.PubMedGoogle Scholar
  29. 29.
    Simons, P.C., M. Shi, T. Foutz, D.F. Cimino, J. Lewis, T. Buranda, W.K. Lim, R.R. Neubig, W.E. McIntire, J. Garrison, E. Prossnitz, and L.A. Sklar. 2003. Ligand-receptor-G-protein molecular assemblies on beads for mechanistic studies and screening by flow cytometry. Mol.Pharmacol. 64:1227–1238.PubMedCrossRefGoogle Scholar
  30. 30.
    Bennett, T.A., T.A. Key, V.V. Gurevich, R. Neubig, E.R. Prossnitz, and L.A. Sklar. 2001. Real-time analysis of G protein-coupled receptor reconstitution in a solubilized system. J.Biol.Chem. 276:22453–22460.PubMedCrossRefGoogle Scholar
  31. 31.
    Simons, P.C., S.M. Biggs, A. Waller, T. Foutz, D.F. Cimino, Q. Guo, R.R. Neubig, W.J. Tang, E.R. Prossnitz, and L.A. Sklar. 2004. Real-time analysis of ternary complex on particles: direct evidence for partial agonism at the agonist-receptor-G protein complex assembly step of signal transduction. J.Biol.Chem. 279:13514–13521.PubMedCrossRefGoogle Scholar
  32. 32.
    Sarvazyan, N.A., A.E. Remmers, and R.R. Neubig. 1998. Determinants of gilalpha and beta gamma binding. Measuring high affinity interactions in a lipid environment using flow cytometry. J.Biol.Chem. 273:7934–7940.PubMedCrossRefGoogle Scholar
  33. 33.
    Sarvazyan, N.A., W.K. Lim, and R.R. Neubig. 2002. Fluorescence analysis of receptor-G protein interactions in cell membranes. Biochemistry 41:12858–12867.PubMedCrossRefGoogle Scholar
  34. 34.
    Lan, K.L., N.A. Sarvazyan, R. Tussig, R.G. Mackenzie, P.R. DiBello, H.G. Dohlman, and R.R. Neubig. 1998. A point mutation in Galphao and Galphail blocks interaction with regulator of G protein signaling proteins. J.Biol.Chem. 273:12794–12797.PubMedCrossRefGoogle Scholar
  35. 35.
    Lauer, S., B. Goldstein, R.L. Nolan, and J.P. Nolan. 2002. Analysis of cholera toxinganglioside interactions by flow cytometry. Biochemistry 41:1742–1751.PubMedCrossRefGoogle Scholar
  36. 36.
    Lauer, S.A. and J.P. Nolan. 2002. Development and characterization of Ni-NTA-bearing microspheres. Cytometry 48:136–145.PubMedCrossRefGoogle Scholar
  37. 37.
    Brookes, A.J. 1999. The essence of SNPs. Gene 234:177–186.PubMedCrossRefGoogle Scholar
  38. 38.
    Milos, P.M. and A.B. Seymour. 2004. Emerging strategies and applications of pharmacogenomics. Hum.Genomics 1:444–455.PubMedGoogle Scholar
  39. 39.
    Chen, X. and P.F. Sullivan. 2003. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics.J. 3:77–96.PubMedCrossRefGoogle Scholar
  40. 40.
    D’Yachkov, A.G., P.L. Erdos, A.J. Macula, V.V. Rykov, D.C. Torney, C.S. Tung, P.A. Vilenkin, and P.S. White. 2003. Exordium for DNA codes. Journal of Combinatorial Optimization 7:369–379.CrossRefGoogle Scholar
  41. 41.
    Kaderali, L., A. Deshpande, J.P. Nolan, and P.S. White. 2003. Primer-design for multiplexed genotyping. Nucleic Acids Res. 31:1796–1802.PubMedCrossRefGoogle Scholar
  42. 42.
    Cleland, C.A., P.S. White, A. Deshpande, M. Wolinsky, J. Song, and J.P. Nolan. 2004. Development of rationally designed nucleic acid signatures for microbial pathogens. Expert Rev.Mol.Diagn. 4:303–315.PubMedCrossRefGoogle Scholar
  43. 43.
    Deshpande, A., J.P. Nolan, P.S. White, Y.E. Valdez, W.C. Hunt, C.L. Peyton, and C.M. Wheeler. 2005. TNF-alpha Promoter Polymorphisms and Susceptibility to Human Papillomavirus 16-Associated Cervical Cancer. J.Infect.Dis. 191:969–976.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • John P. Nolan
    • 1
  1. 1.La Jolla Bioengineering InstituteLa Jolla

Personalised recommendations