Quantum Dots as Fluorescent Labels for Molecular and Cellular Imaging

  • Gang Ruan
  • Amit Agrawal
  • Andrew M. Smith
  • Xiaohu Gao
  • Shuming Nie
Chapter
Part of the Reviews in Fluorescence book series (RFLU, volume 2006)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.7. References

  1. 1.
    W. C. W. Chan, D. J. Maxwell, X. H. Gao, R. E. Bailey, M.Y. Han, and S. M. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Cur. Opin. Biotechnol. 13(1), 40–46 (2002).CrossRefGoogle Scholar
  2. 2.
    M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol. 19(7), 631–635 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    X. H. Gao and S. M. Nie, Doping mesoporous materials with multicolor quantum dots, J. Phys. Chem. B, 107(42), 11575–11578 (2003).CrossRefGoogle Scholar
  4. 4.
    X. H. Gao and S. M. Nie, Quantum dot-encoded mesoporous beads with high brightness and uniformity:Rapid readout using flow cytometry, Anal. Chem. 76(8), 2406–2410 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nat. Biotechnol. 21(1), 41–46 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking, Science 302(5644), 442–445 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    D. S. Lidke, P. Nagy, R. Heintzmann, D. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Quantum dot ligands provide new insights into erbB/HER receptormediated signal transduction, Nat. Biotechnol. 22(2), 198–203 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Xiao and P.E. Barker, Semiconductor nanocrystal probes for human metaphase chromosomes, Nucleic Acids Res. 32(3), e28 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    J. K. Jaiswal, J. K. Mattoussi, J. M. Mauro, and S. M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21(1), 47–51 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Medintz, A. R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, and J. M. Mauro, Self-assembled nanoscale biosensors based on quantum dot FRET donors Igor, Nat. Mater. 2(9), 630–638 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    I._L. Medintz, J. H. Konnert, A. R. Clapp, I. Stanish, M. E. Twigg, H. Mattoussi, J. M. Mauro, and J. R. Deschamps, A. fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly, Proc. Natl. Acad. Sci. USA. 101(26), 9612–9617 (2004).PubMedCrossRefGoogle Scholar
  12. 12.
    S._J. Rosenthal, I. Tomlinson, E. M. Adkins, S. Schroeter, S. Adams, L. Swafford, J. McBride, Y. Wang, L. J. DeFelice, and R. D. Blakely, Targeting cell surface receptors with ligand-conjugated nanocrystals, J. Am. Chem. Soc. 124(17), 4586–4594 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science. 271(5251), 933–937 (1996).CrossRefGoogle Scholar
  14. 14.
    A. P. Alivisatos, The use of nanocrystals in biological detection, Nat. Biotechnol. 22(1), 47–52 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals, Nat. Mater. 2(6), 382–385 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology, Nature. 430(6996), 190–195 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    K. A. Dick, K. Deppert, M. W. Larsson, T. Martensson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events, Nat. Mater. 3(6), 380–384 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    W. W. Yu, Y. A. Wang, and X. G. Peng, Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals, Chem. Mater. 15(22), 4300–4308 (2003).CrossRefGoogle Scholar
  19. 19.
    M. A. Hines and P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals, J. Phys. Chem. 100(2), 468–471 (1996).CrossRefGoogle Scholar
  20. 20.
    X. G. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility, J. Am. Chem. Soc. 119(30), 7019–7029 (1997).CrossRefGoogle Scholar
  21. 21.
    B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. 101(46), 9463–9475 (1997).Google Scholar
  22. 22.
    R. E. Bailey and S. M. Nie, Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size, J. Am. Chem. Soc. 125(23), 7100–7106 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    L. H. Qu and X. G. Peng, Control of photoluminescence properties of CdSe nanocrystals in growth, J. Am. Chem. Soc. 124(9), 2049–2055 (2002).PubMedCrossRefGoogle Scholar
  24. 24.
    B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science 298(5599), 1759–1762 (2002).PubMedCrossRefGoogle Scholar
  25. 25.
    X. H. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol. 22(8), 969–976 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Radler, G. Natile, and W. J. Parak, Hydrophobic nanocrystals coated with an amphiphilic polymer shell:A general route to water soluble nanocrystals, Nano Lett. 4(4), 703–707 (2004).CrossRefGoogle Scholar
  27. 27.
    E. Ron, T. Turek, and E. Mathiowitz, Controlled release of polypeptides from polyanhydrides, Proc. Natl. Acad. Sci. USA. 90(9), 4176–4180 (1993).PubMedCrossRefGoogle Scholar
  28. 28.
    K. S. Anseth, V. R. Shastri, and R. Langer, Photopolymerizable degradable polyanhydrides with osteocompatibility, Nat. Biotechnol. 17(2), 156–159 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc. 122(49), 12142–12150 (2000).CrossRefGoogle Scholar
  30. 30.
    C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, On the absorption cross section of CdSe nanocrystal quantum dots, J. Phys. Chem. B. 106(31), 7619–7622 (2002).CrossRefGoogle Scholar
  31. 31.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science. 281(5385), 2016–2018 (1998).CrossRefGoogle Scholar
  32. 32.
    W. C. W. Chan and S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science. 281(5385), 2016–2018 (1998).PubMedCrossRefGoogle Scholar
  33. 33.
    S. Jakobs, V. Subramaniam, A. Schonle, T. M. Jovin, and S. W. Hell, EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy, FEBS Lett. 479(3), 131–135 (2000).PubMedCrossRefGoogle Scholar
  34. 34.
    R. Pepperkok, A. Squire, S. Geley, and P. I. H. Bastiaens, Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy, Cur. Bio. 9(5), 269–272 (1999).CrossRefGoogle Scholar
  35. 35.
    X. H. Gao and S. M. Nie, Molecular profiling of single cells and tissue specimens with quantum dots, Trends Biotechnol. 21(9), 371–373 (2003).PubMedCrossRefGoogle Scholar
  36. 36.
    K. Ogawara, M. Yoshida, K. Higaki, T. Kimura, K. Shiraishi, M. Nishikawa, Y. Takakura, and M. Hashida, Hepatic uptake of polystyrene microspheres in rats: Effect of particle size on intrahepatic distribution, J. Control. Release. 59(1),15–22 (1999).PubMedCrossRefGoogle Scholar
  37. 37.
    S. Flacke, S. Fischer, M. J. Scott, R. J. Fuhrhop, J. S. Allen, M. McLean, P. Winter, G. A. Sicard, P. J. Gaffney, S. A. Wickline, and G. M. Lanza, Novel MRI contrast agent for molecular imaging of fibrin implications for detecting vulnerable plaques, Circulation. 104(11), 1280–1285 (2001).PubMedGoogle Scholar
  38. 38.
    L. C. Katz, A. Burkhalter, and W. J. Dreyer, Fluorescent Latex Microspheres as a Retrograde Neuronal Marker For In Vivo and In Vitro Studies of Visual-Cortex, Nature. 310(5977), 498–500 (1984).PubMedCrossRefGoogle Scholar
  39. 39.
    G. L. Chien, C. G. Anselone, R. F. Davis, and D. M. Van Winkle, Fluorescent vs. radioactive microsphere measurement of regional myocardial blood flow, Cardiovasc. Res. 30(3), 405–412 (1995).PubMedCrossRefGoogle Scholar
  40. 40.
    R. Pasqualini and E. Ruoslahti, Organ targeting in vivo using phage display peptide libraries, Nature. 380(6572), 364–366 (1996).PubMedCrossRefGoogle Scholar
  41. 41.
    F. Chen and D. Gerion, Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells, Nano Lett. 4(10), 1827–1832 (2004).CrossRefGoogle Scholar
  42. 42.
    A. Hoshino, K. Fujioka, T. Oku, S. Nakamura, M. Suga, Y. Yamaguchi, K. Suzuki, M. Yasuhara, and K. Yamamoto, Quantum dots targeted to the assigned organelle in living cells, Microbiol. Immunol. 48(12), 985–994 (2004).PubMedGoogle Scholar
  43. 43.
    A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, Intracellular delivery of quantum dots for live cell labeling and organelle tracking, Adv. Mater. 16(12), 961–966 (2004).CrossRefGoogle Scholar
  44. 44.
    A. Joliot and A. Prochiantz, Transduction peptides: from technology to physiology, Nat. Cell Biol. 6(3), 189–196 (2004).PubMedCrossRefGoogle Scholar
  45. 45.
    M. C. Morris, J. Depollier, J. Mery, F. Heitz, and G. Divita, A peptide carrier for the delivery of biologically active proteins into mammalian cells, Nat. Biotechnol. 19(12), 1173–1176 (2001).PubMedCrossRefGoogle Scholar
  46. 46.
    N. Nitin, P. J. Santangelo, G. Kim, S. M. Nie, and G. Bao, Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells, Nucleic Acids Res. 32(6), e58 (2004).PubMedCrossRefGoogle Scholar
  47. 47.
    I. Walev, S. C. Bhakdi, F. Hofmann, N. Djonder, A. Valeva, K. Aktories, and S. Bhakdi, Delivery of proteins into living cells by reversible membrane permeabilization with Streptolysin-O, Proc. Natl. Acad. Sci. USA 98(6), 3185–3190 (2001).PubMedCrossRefGoogle Scholar
  48. 48.
    E. B. Voura, J. K. Jaiswal, H. Mattoussi, and S. M. Simon, Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy, Nat. Med. 10(9), 993–998 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Gang Ruan
    • 1
  • Amit Agrawal
    • 1
  • Andrew M. Smith
    • 1
  • Xiaohu Gao
    • 1
  • Shuming Nie
    • 1
  1. 1.Departments of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations