One Hundred Years Since the Introduction of the Set Distance by Dimitrie Pompeiu

  • T. Birsan
  • D. Tiba
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 199)


This paper recalls the work of D. Pompeiu who introduced the notion of set distance in his thesis published one century ago. The notion was further studied by F. Hausdorff, C. Kuratowski who acknowledged in their books the contribution of Pompeiu and it is frequently called the Hausdorff distance.


Hausdorff distance Hausdorff-Pompeiu distance Pompeiu functions Pompeiu conjecture Schiffer conjecture 


  1. [1]
    G. Andonie. Istoria Matematicii in Romania. Ed. Ştiinţifică, Bucharest, 1965.Google Scholar
  2. [2]
    C.A. Bernstein. An inverse spectral theorem and its relation to the Pompeiu problem. J. d’Analyse Math. 37:128–144, 1980.Google Scholar
  3. [3]
    M. Fréchet. Sur quelques points du calcul fonctionnel (Thèse). Rend. Circ. Mat. Palermo. 22:1–74, 1906.zbMATHCrossRefGoogle Scholar
  4. [4]
    N. Garofalo, F. Segala. Univalent functions and the Pompeiu problem. Trans. A.M.S. 346:137–146, 1994.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    F. Hausdorff. Grundzuege der Mengenlehre. Viet, Leipzig, 1914.zbMATHGoogle Scholar
  6. [6]
    F. Hausdorff. Mengenlehre. Walter de Gruyter, Berlin, 1927.zbMATHGoogle Scholar
  7. [7]
    C. Kuratowski. Topologie I. Polish Math. Soc., Warsaw, 1952.zbMATHGoogle Scholar
  8. [8]
    S. Marcus. Funcţiile lui Pompeiu. Studii şi Cerc. Mat. 5:413–419, 1954.zbMATHGoogle Scholar
  9. [9]
    M. Mitrea, F. Şabac. Pompeiu’s integral representation formula. History and mathematics. Rev.Roum.Math.Pures Appl. 43:211–226, 1998.zbMATHGoogle Scholar
  10. [10]
    B.L. McAllister. Hyperspaces and multifunctions, the first halfcentury (1900–1950). Nieuw Arch. Wish. 26:309–329, 1978.zbMATHMathSciNetGoogle Scholar
  11. [11]
    P. Neittaanmaki, J. Sprekels, D. Tiba. Optimization of elliptic systems. Theory and applications. Springer Verlag, New York, 2005.Google Scholar
  12. [12]
    O. Onicescu. Pe drumurile vieţii. Ed. Şt. şi Enciclopedică, Bucharest, 1981.Google Scholar
  13. [13]
    P. Painlevé. Leçons sur la théorie analytique des équations differentielles, professées a Stockholm. Hermann, Paris, 1897.Google Scholar
  14. [14]
    D. Pompeiu. Sur la continuité des fonctions de variables complexes (Thèse). Gauthier-Villars, Paris, 1905; Toulouse 7:264–315, 1905.Google Scholar
  15. [15]
    D. Pompeiu. Opera Matematică. Ed.Acad.Române, Bucharest, 1959.zbMATHGoogle Scholar
  16. [16]
    D. Pompeiu. Sur les fonctions derivées. Math.Ann. 63:326–332, 1907.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    D. Pompeiu. Sur certains systemes d’equations linéires et sur une propriété intégrate des fonctions de plusieurs variables. C.R.Acad.Sc.Paris. 188:1138–1139, 1929.zbMATHGoogle Scholar
  18. [18]
    M. Vogelius. An inverse problem for the equation Δu = −cu − d. Annales de I’Institut Fourier. 44:1181–1209, 1994.zbMATHMathSciNetGoogle Scholar
  19. [19]
    S.A. Williams. A partial solution of the Pompeiu problem. Math. Ann. 223, 183–190, 1976.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • T. Birsan
    • 1
  • D. Tiba
    • 2
  1. 1.Department of Mathematics“Gh. Asachi” UniversityIasiRomania
  2. 2.Institute of MathematicsRomanian AcademyBucharestRomania

Personalised recommendations