Advertisement

Morpholinos and PNAs Compared

  • James E. Summerton
Part of the Medical Intelligence Unit book series (MIUN)

Keywords

Peptide Nucleic Acid Morpholino Oligos Probe Diagnostics Peptide Nucleic Acid Oligomer Antisense Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liam G, Nielsen PE. Progress in developing PNA as a gene-targeted drug. Antisense Nucleic Acid Drug Dev 1997; 7:431–437.Google Scholar
  2. 2.
    Nielsen P, Egholm M, eds. Peptide Nucleic Acids. Norfolk: Horizon Scientific Press, 1999.Google Scholar
  3. 3.
    Summerton J, Weller D. Morpholino antisense oligomers: design, preparation and properties. Antisense Nucleic Acid Drug Dev 1997; 7:187–195.PubMedGoogle Scholar
  4. 4.
    Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochemica et Biophysica Acta 1999; 1489:141–158.Google Scholar
  5. 5.
    Summerton J. Polynucleotide assay reagent and method. 1990; Canadian Patent; 1,268,404. Summerton J, Weller D. Uncharged Morpholino-based polymers having phosphorous containing chiral intersubunit linkages. 1993; US Patent 5,185,444. Website: www.gene-tools.com.Google Scholar
  6. 6.
    Knudsen H, Nielsen PE. Antisense properties of duplex and triplex forming PNA. Nucleic Acids Res 1996; 24:494–500.PubMedCrossRefGoogle Scholar
  7. 7.
    Milner N, Mir K, Southern E. Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nat Biotechnol 1997; 15:537–541.PubMedCrossRefGoogle Scholar
  8. 8.
    Ho S, Bao Y, Lesher T et al. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat Biotechnol 1998; 16:59.PubMedCrossRefGoogle Scholar
  9. 9.
    Ekker S. Morphants: a new systematic vertebrate functional genomics approach. Yeast 2000;17:302–306.PubMedCrossRefGoogle Scholar
  10. 10.
    Koch T. PNA oligomer synthesis by BOC chemistry. In: Neilsen P, Egholm M, eds. Peptide Nucleic Acids. Norfolk: Horizon Scientific Press, 1999:21–37.Google Scholar
  11. 11.
    Casale R, Jensen IS, Egholm M. Synthesis of PNA oligomers by Fmoc Chemistry. In: Neilsen P, Egholm M eds. Peptide Nucleic Acids. Norfolk: Horizon Scientific Press, 1999:39–50.Google Scholar
  12. 12.
    Uhlmann E, Greiner B, Breipohl G. PNA/DNA chimeras. In: Neilsen P, Egholm M, eds. Peptide Nucleic Acids. Norfolk: Horizon Scientific Press, 1999:51–70.Google Scholar
  13. 13.
    Stein CA, Cohen JS. Phosphorothioate oligodeoxynucleotide analogues. In: Cohen J, ed. Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression. Boca Raton: CRC Press, 1989:97–117.Google Scholar
  14. 14.
    Demidov V, Potaman VN, Frank-Kamenetskii MD et al. Stability of peptide nucleic acids in hu-man serum and cellular extracts. Biochem Pharmacol 1994;48:1309–1313.CrossRefGoogle Scholar
  15. 15.
    Hudziak RM, Barofsky E, Barofsky DF et al. Resistance of Morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev 1996; 6:267–272.PubMedGoogle Scholar
  16. 16.
    Nutt SL, Bronchain OJ, Hartley KO et al. Comparison of Morpholino based translational inhibition during the development of Xenopus laevis and Xenopus tropicalis. Genesis 2001; 30:110–113.PubMedCrossRefGoogle Scholar
  17. 17.
    Larsen HJ, Nielsen PE. Characterization of PNA-dsDNA strand displacement complexes. In: Neilsen P, Egholm M, eds. Peptide Nucleic Acids. Norfolk: Horizon Scientific Press, 1999:221–240.Google Scholar
  18. 18.
    Hanvey JC, Peffer NJ, Bisi JE et al. Antisense and antigene properties of peptide nucleic acids. Science 1992; 258:1481–1485.PubMedCrossRefGoogle Scholar
  19. 19.
    Selecting sequences for Morpholinos, targeting guidelines: http://www.gene-tools.com/Ordering/Ordering1/body_orderingl.HTML.Google Scholar
  20. 20.
    Selecting sequences for PNAs, targeting guidelines: http://www.appliedbiosystems.com/support/seqguide.cfm.Google Scholar
  21. 21.
    Miller P. Non-ionic antisense oligonucleotides: Oligonucleotide alkylphosphotriesters. In: Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression. Cohen J, ed. Boca Raton: CRC Press, 1989:82–85.Google Scholar
  22. 22.
    Miller P. Non-ionic antisense oligonucleotides: Oligonucleotide methylphosphonates. In: Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression. Cohen J, ed. Boca Raton: CRC Press, 1989:85–92.Google Scholar
  23. 23.
    Stirchak E, Summerton J, Weller D. Uncharged stereoregular nucleic acid analogues. 1. Synthesis of a cytosine-containing oligomer with carbamate internucleoside linkages. J Org Chem 1987;52:4202–4206.CrossRefGoogle Scholar
  24. 24.
    Stirchak E, Summerton J, Weller D. Uncharged stereoregular nucleic acid analogues. 2. Morpholino nucleoside oligomers with carbamate internucleoside linkages. Nucleic Acids Res 1989; 17:6129–6141.PubMedCrossRefGoogle Scholar
  25. 25.
    Gildea BD, Casey S, MacNeill J et al. PNA solubility enhancers. Tetrah Lett 1998; 39:7255–7258.CrossRefGoogle Scholar
  26. 26.
    Kang H, Chou P, Johnson C et al. Stacking interactions of ApA analogues with modified back-bones. Biopolymers 1992; 32:1351–1363.PubMedCrossRefGoogle Scholar
  27. 27.
    Genesis 2001; 30(3): Entire issue.Google Scholar
  28. 28.
    Summerton J, Stein D, Huang S et al. Morpholino and Phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev 1997; 7:63–70.PubMedGoogle Scholar
  29. 29.
    Venter JC et al. The sequence of the human genome. Science 2001; 291:1304–1351.PubMedCrossRefGoogle Scholar
  30. 30.
    Stein D, Foster E, Huang SB et al. A specificity comparison of four antisense types: Morpholino, 2′-O-methyl RNA, DNA, and Phosphorothioate DNA. Antisense Nucleic Acid Drug Dev 1997;7:151–157.PubMedGoogle Scholar
  31. 31.
    Summerton J, Stein D, Huang SB et al. Morpholino and Phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev 1997; 7:63–70.PubMedGoogle Scholar
  32. 32.
    Akhtar S, Basu S, Wickstrom E et al. Interaction of antisense DNA oligonucleotide analogs with phospholipid membranes (liposomes). Nucleic Acids Res 1991; 19:5551–5559.PubMedCrossRefGoogle Scholar
  33. 33.
    Akhtar S, Juliano R. Adsorption and efflux characteristics of modified oligodeoxynucleotides from liposomes. Proc Am Assoc Cancer Res 1991; 32:333.Google Scholar
  34. 34.
    Neckers L. Cellular internalization of oligodeoxynucleotides. In: Crooke S, Lebleu B, eds. Antisense Research and Applications. Boca Raton: CRC Press, 1993:451–460.Google Scholar
  35. 35.
    Simmons CG, Pitts AE, Mayfield LD et al. Synthesis and membrane permeability of PNA-peptide conjugates. Bioorg Med Chem Lett 1997; 7:3001.CrossRefGoogle Scholar
  36. 36.
    Pooga M, Soomets U, Hällbrink M et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nature Biotechnol 1998; 16:857–861.CrossRefGoogle Scholar
  37. 37.
    Tyler BM, McCormick DJ, Hoshall CV et al. Specific gene blockade shows that peptide nucleic acids readily enter neuronal cells in vivo. FEBS Lett 1998; 421:280–284.PubMedCrossRefGoogle Scholar
  38. 38.
    Pardridge WM, Boado RJ, Kang YS. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood-brain barrier in vivo. Proc Natl Acad Sci 1995; 92:5592–5596.PubMedCrossRefGoogle Scholar
  39. 39.
    Aldrain-Herrada G, Desarménien MG, Orcel H et al. A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Res 1998; 26:4910–4916.CrossRefGoogle Scholar
  40. 40.
    Basu S, Wickstrom E. Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake. Bioconj Chem 1997;8:481–488.CrossRefGoogle Scholar
  41. 41.
    Good L, Nielsen PE. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nature Biotechnol 1998; 16:355–358.CrossRefGoogle Scholar
  42. 42.
    Faruqi AF, Egholm M, Glazer PM. Peptide nucleic acid-targeted mutagenesis of a chromosomal gene in mouse cells. Proc Natl Acad Sci USA 1998; 95:1398–1403.PubMedCrossRefGoogle Scholar
  43. 43.
    Partridge M, Vincent A, Matthews P et al. A simple method for delivering Morpholino antisense oligos in to the cytoplasm of cells. Antisense Nucleic Acid Drug Dev 1996; 6:169–175.PubMedGoogle Scholar
  44. 44.
    Morcos PA. Gene switching: analyzing a broad range of mutations using steric block antisense oligonucleotides. Methods Enzymol 1999; 313:174–189.Google Scholar
  45. 45.
    Morcos PA. Achieving efficient delivery of Morpholino oligos in cultured cells. Genesis 2001;30:94–102.PubMedCrossRefGoogle Scholar
  46. 46.
    Monia B, Johnston J, Geiger T et al. Antitumor activity of a Phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 1996; 2:668–675.PubMedCrossRefGoogle Scholar
  47. 47.
    Monia B, Sasmor H, Johnston J et al. Sequence-specific antitumor activity of a Phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports an antisense mechanism of action in vivo. Proc Natl Acad Sci USA 1996; 93:15481–15484.PubMedCrossRefGoogle Scholar
  48. 48.
    Baker BF, Monia BP. Novel mechanisms for antisense-mediated regulation of gene expression. Biochemica et Biophysica Acta 1999; 1489:3–18.Google Scholar
  49. 49.
    Quote from Stein C, Krieg A, Non-antisense effects of oligodeoxynucleotides. In: Lichtenstein C, Nellen W, eds. Antisense Technology. Oxford: IRL Press, 1997: 260. ‘... non-antisense effects of PS oligos are also pointed out by a close examination of the oligo ISIS 2922, an ‘antisense’ oligo with remarkably potent antiviral effects against cytomegalovirus (CMV). ISIS 2922 is reported to have encouraging in vivo efficacy in early clinical trials against CMV retinitis. The sequence of this oligo is quite interesting because it has two atypical CpG motifs: there is a GCG at both the extreme 5′ and 3′ ends (79). Although not fully recognized at the time, published studies on ISIS 2922 demonstrate that its antiviral effect cannot be due to ‘antisense’ since internal mismatch control oligos lost very little antiviral activity despite a severe drop in the Tm. On the other hand, deletion of a single base from one of the CpG motifs caused a 40% drop in antiviral efficacy, and deletion of a single base from both of the CpG motifs abolished antiviral effect despite little change in the Tm for hybridization to the supposed mRNA target (79)’.Google Scholar
  50. 50.
    Kipshidze N, Moses J, Shankar LR, Leon M. Perspectives on antisense therapy for the prevention of restenosis. Current Opinion in Molecular Therapeutics 2001; 3:265–277.PubMedGoogle Scholar
  51. 51.
    Kipshidze N, Keane E, Stein D et al. Local delivery of antisense phosphorodiamidate morpholino oligomer; Resten-NG inhibits myointimal hyperplasia following balloon angioplasty. In: Navarro-Lopez F, ed. XXIst Congress of the European Society of Cardiology. Italy: Monduzzi Editore, 1999:463–467.Google Scholar
  52. 52.
    Farrell C, Bready J, Saufman S et al. The uptake and distribution of Phosphorothioate oligonucleotides into vascular smooth muscle cells in vitro and in rabbit arteries. Antisense Res Dev 1995;5:175–183.PubMedGoogle Scholar
  53. 53.
    Kimmel CB, Law RD. Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. Dev Biol 1985; 108:78–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Kimmel CB, Law RD. Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer. Dev Biol 1985; 108:86–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Stein C, Krieg A. Non-antisense effects of oligodeoxynucleotides. In: Lichtenstein C, Nellen W, eds. Antisense Technology. Oxford: IRL Press, 1997:241–264.Google Scholar
  56. 56.
    Stein C. Does antisense exist? Nat Med 1995; 1:1119–1121.PubMedCrossRefGoogle Scholar
  57. 57.
    Norton JC, Piatyszek MA, Wright WE et al. Inhibition of human telomerase activity by peptide nucleic acids. Nature Biotechnol 1996; 14:615–619.CrossRefGoogle Scholar
  58. 58.
    Hamilton SE, Pitts AE, Katipally RR et al. Identification of determinants for inhibitor binding within the RNA active site of human telomerase using PNA scanning. Biochemistry 1997;36:11873–11880.PubMedCrossRefGoogle Scholar
  59. 59.
    Good L, Awasthi SK, Dryselius R et al. Bactericidal antisense effects of peptide-PNA conjugates. Nature Biotechnol 2001; 19:360–364.CrossRefGoogle Scholar
  60. 60.
    Tyler BM, McCormick DJ, Hoshall CV et al. Specific gene blockade shows that peptide nucleic acids readily enter neuronal cells in vivo. FEBS Lett 1998; 421:280–284.PubMedCrossRefGoogle Scholar
  61. 61.
    Rusckowski M, Qu T, Chang F et al. Pretargeting using peptide nucleic acid. Cancer 1997; 80(12 suppl):2699–2705.PubMedCrossRefGoogle Scholar
  62. 62.
    Thisted M, Just T, Pluzek KJ et al. Application of peptide nucleic acid probes for in situ hybridization. In: Nielsen P, Egholm M, eds. Peptide Nucleic Acids: Protocols and Applications. Wymondham: Horizon Scientific Press, 1999:99–118.Google Scholar
  63. 63.
    Matysiak S, Würtz S, Hauser NC et al. PNA-arrays for nucleic acid detection. In: Nielsen P, Egholm M, eds. Peptide Nucleic Acids: Protocols and Applications. Wymondham: Horizon Scientific Press, 1999:119–128.Google Scholar
  64. 64.
    Fiandaca MJ, Hyldig-Nielsen JJ, Coull JM. PNA blocker probes enhance specificity in probe assays. In: Nielsen P, Egholm M, eds. Peptide Nucleic Acids: Protocols and Applications. Wymondham: Horizon Scientific Press, 1999:129–142.Google Scholar
  65. 65.
    Griffin TJ, Tang W, Smith LM. MALDI-TOF mass spectrometric detection of PNA hybrids for genetic analysis. In: Nielsen P, Egholm M, eds. Peptide Nucleic Acids: Protocols and Applications. Wymondham: Horizon Scientific Press, 1999:143–154.Google Scholar
  66. 66.
    Wang J. PNA biosensors for nucleic acid detection. In: Nielsen P, Egholm M, eds. Peptide Nucleic Acids: Protocols and Applications. Wymondham: Horizon Scientific Press, 1999:155–161.Google Scholar
  67. 67.
    Lacerra G, Sierakowska H, Carestia C et al. Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci USA 2000; 97:9591–9596.PubMedCrossRefGoogle Scholar
  68. 68.
    Deng J, Hua K, Lesser SS et al. Activation of signal transducer and activator of transcription-3 during proliferative phases of 3T3-L1 adipogenesis. Endocrinology 2000; 141:2370–2376.PubMedCrossRefGoogle Scholar
  69. 69.
    Lawn RM, Wade DP, Garvin MR et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 1999; 104:R25–R31.PubMedCrossRefGoogle Scholar
  70. 70.
    Giles RV, Spiller DG, Clark RE et al. Antisense morpholino oligonucleotide analog induces missplicing of c-myc mRNA. Antisense Nucleic Acid Drug Dev 1999; 9(2):213–20.PubMedGoogle Scholar
  71. 71.
    Heasman J, Kofron M, Wylie C. Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 2000; 222:124–134.PubMedCrossRefGoogle Scholar
  72. 72.
    Nasevicius A, Ekker SC. Effective targeted gene ‘knockdown’ in zebrafish. Nature Genetics 2000;26:216–220.PubMedCrossRefGoogle Scholar
  73. 73.
    Howard EW, Newman LA, Oleksyn DW et al. SpKrl: a direct target of (beta)-catenin regulation required for endoderm differentiation in sea urchin embryos. Development 2001; 128:365–375.PubMedGoogle Scholar
  74. 74.
    Kos R, Reedy MV, Johnson RL et al. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 2001; 128:1467–1479.PubMedGoogle Scholar
  75. 75.
    Draper BW, Morcos PA, Kimmel CB. Inhibition of zebrafish fgf8 pre-mRNA splicing with Morpholino oligos: a quantifiable method for gene knockdown. Genesis 2001; 30:154–156.PubMedCrossRefGoogle Scholar
  76. 76.
    Elbeik T et al. Quantitative and cost comparison of ultrasensitive human immunodeficiency virus type 1 RNA viral load assays. J Clin Micro 2000; 39:1113–1120.Google Scholar
  77. 77.
    Summerton JE, Weller DD, Wages JM. Reagent and method for isolation and detection of selected nucleic acid sequences. 2000;Patent; 6,060,246.Google Scholar
  78. 78.
    Tyler BM, McCormick DJ, Hoshall CV et al. Specific gene blockade shows that peptide nucleic acids readily enter neuronal cells in vivo. FEBS Lett 1998; 421:280–284.PubMedCrossRefGoogle Scholar
  79. 79.
    Arora V, Iversen P. Redirection of drug metabolism using antisense technology. Curr Opin Mol Ther 2001; 3:249–257.PubMedGoogle Scholar
  80. 80.
    Brand RM, Iversen PL. Transdermal delivery of antisense compounds. Adv Drug Devel Rev 2000;44:51–58.CrossRefGoogle Scholar
  81. 81.
    Aurora V, Iversen PL. Antisense oligonucleotides targeted to the p53 gene modulate rat liver regeneration. Drug Metab And Disp 2000; 28:131–138.Google Scholar
  82. 82.
    Qin G, Taylor M, Ning YY et al. In vivo evaluation of a morpholino antisense oligomer directed against TNF. Antisense Nucl Acid Drug Devel 2000; 10:11–16.Google Scholar

Copyright information

© Eurekah.com and Kluwer Academic / Plenum Publishers 2006

Authors and Affiliations

  • James E. Summerton
    • 1
  1. 1.Gene Tools, LLCPhilomathUSA

Personalised recommendations