Advertisement

Bead-Based Flow Cytometric Assays: A Multiplex Assay Platform with Applications in Diagnostic Microbiology

  • David Ernst
  • George Bolton
  • Diether Recktenwald
  • Mark J. Cameron
  • Ali Danesh
  • Desmond Persad
  • David J. Kelvin
  • Amitabh Gaur
Chapter

Abstract

Researchers have focused on developing specific assays for conclusively identifying and measuring the levels of bacteria, fungi, protozoa, viruses (microbes), and their associated products (biomarkers) that cause disease in humans and animals (Murray et al., 2003). Traditional methods using microscopy and chemical or immunological stains, test cultures with selective media or target cells, or serological assays have been used effectively to identify infectious agents in biological specimens or environmental samples. However, due to increasing veterinary, medical, and public health concerns, faster and more accurate diagnostic tools have been sought. Multiplex array-based assays allow for a range of biomarkers to be rapidly and simultaneously measured within specimens (Robertson and Nicholson, 2005). Recently, multiplex bead-based flow cytometric immunoassays have been developed and applied that show great promise for improving the study, diagnosis, and therapeutic management of infectious diseases (Alvarez-Barrientos et al., 2000; Jani et al., 2002).

Keywords

Severe Acute Respiratory Syndrome Severe Acute Respiratory Syndrome Cytometric Bead Array Severe Acute Respiratory Syndrome Patient Severe Acute Respiratory Syndrome Outbreak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alvarez-Barrientos, A., Arroyo, J., Canton, R., Nombela, C., & Sanchez-Perez, M. (2000). Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev, 13, 167–195. PubMedCrossRefGoogle Scholar
  2. Alsharif, R., & Godfrey, W. (2001). Bacterial detection and live/dead discrimination by flow cytometry. BD Biosciences Application Note, 1–6. Google Scholar
  3. Andreotti, P. E., Ludwig, G. V., Peruski, A. H., Tuite, J. J., Morse, S. S., & Peruski, L. F., Jr. (2003). Immunoassay of infectious agents. Biotechniques, 35, 850–859. PubMedGoogle Scholar
  4. Best, L. M., Veldhuyzen van Zanten, S. J., Bezanson, G. S., Haldane, D. J., & Malatjalian, D. A. (1992). Serological detection of Helicobacter pylori by a flow microsphere immunofluorescence assay. J Clin Microbiol, 30, 2311–2317. PubMedGoogle Scholar
  5. Biagini, R. E., Schlottmann, S. A., Sammons, D. L., Smith, J. P., Snawder, J. C., Striley, C. A.,MacKenzie, B. A., & Weissman, D. N. (2003). Method for simultaneous measurement of antibodies to 23 pneumococcal capsular polysaccharides. Clin Diagn Lab Immunol, 10, 744–750. PubMedCrossRefGoogle Scholar
  6. Bishop, J. E., & Davis, K. A. (1997). A flow cytometric immunoassay for beta2- microglobulin in whole blood. J Immunol Methods, 210, 79–87. PubMedCrossRefGoogle Scholar
  7. Bolton, G., Tapia, M., Vegh, F., Alsharif, R., Godfrey, W., & Recktenwald, D. (2002). Multiplexed flow cytometry assay for quantifying bacteria and soluble proteins. Abstract #57827, ISAC Meeting, San Diego, CA. Google Scholar
  8. Camilla, C., Defoort, J. P., Delaage, M., Auer, R., Quintana, J., Lary, T., Hamelik, R., Prato, S., Casano, B., Martin, M., & Fert, V. (1998). A new flow cytometry-based multi-assay system. 1. Application to cytokine immunoassays. Cytometry Suppl, 8, 132. Google Scholar
  9. Carson, R. T., & Vignali, D. A. (1999). Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J Immunol Methods, 227, 41–52. PubMedCrossRefGoogle Scholar
  10. Centers for Disease Control and Prevention. (2003). Update: severe acute respiratory syndrome-worldwide and United States, 2003. Morb Mortal Weekly Rep, 52, 664–665. Google Scholar
  11. Chen, R., Lowe, L., Wilson, J. D., Crowther, E., Tzeggai, K., Bishop, J. E., & Varro, R. (1999). Simultaneous quantification of six human cytokines in a single sample using microparticle-based flow cytometric technology. Clin Chem, 45, 1693–1694. PubMedGoogle Scholar
  12. Defoort, J. P., Martin, M., Casano, B., Prato, S., Camilla, C., & Fert,V. (2000). Simultaneous detection of multiplex-amplified human immunodeficiency virus type 1 RNA, hepatitis C virus RNA, and hepatitis B virus DNA using a flow cytometer microsphere-based hybridization assay. J Clin Microbiol, 38, 1066–1071. PubMedGoogle Scholar
  13. Frengen, J., Schmid, R., Kierulf, B., Nustad, K., Paus, E., Berge, A., & Lindmo, T. (1993). Homogeneous immunofluorometric assays of alpha-fetoprotein with macroporous, monosized particles and flow cytometry. Clin Chem, 39, 2174–2181. PubMedGoogle Scholar
  14. Fulwyler, M. J., McHugh, T. M., Schwadron, R., Scillian, J. J., Lau, D., Busch, M. P., Roy S., & Vyas, G. N. (1988). Immunoreactive bead (IRB) assay for the quantitative and simultaneous flow cytometric detection of multiple soluble analytes. Cytometry Suppl, 2, 19. Google Scholar
  15. Hodge, G., Hodge, S., Haslam, R., McPhee, A., Sepulveda, H., Morgan, E., Nicholson, I., & Zola, H. (2004). Rapid simultaneous measurement of multiple cytokines using 100 microliter sample volumes-association with neonatal sepsis. Clin Exp Immunol, 137, 402–407. PubMedCrossRefGoogle Scholar
  16. Horan, P. K., & Wheeless, L. L. Jr. (1977). Quantitative single cell analysis and sorting. Science, 198, 149–157. PubMedCrossRefGoogle Scholar
  17. Huang, K. J., Su, I. J., Theron, M., Wu, Y. C., Lai, S. K., Liu, C. C., & Lei, H. Y. (2005). An interferon-gamma-related cytokine storm in SARS patients. J Med Virol, 75, 185–194. PubMedCrossRefGoogle Scholar
  18. Jani, I. V., Janossy, G., Brown, D. W., & Mandy, F. (2002). Multiplexed immunoassays by flow cytometry for diagnosis and surveillance of infectious diseases in resource-poor settings. Lancet Infect Dis, 2, 243–250. PubMedCrossRefGoogle Scholar
  19. Lal, G., Balmer, P., Joseph, H., Dawson, M., & Borrow, R. (2004). Development and evaluation of a tetraplex flow cytometric assay for quantitation of serum antibodies to Neisseria meningitidis serogroups A, C, Y, and W-135. Clin Diagn Lab Immunol, 11, 272–279. PubMedCrossRefGoogle Scholar
  20. Liu, M. T., Chen, B. P., Oertel, P., Buchmeier, M. J., Hamilton, T. A., Armstrong, D. A., & Lane, T. E. (2001a). The CXC chemokines IP-10 and Mig are essential in host defense following infection with a neurotropic coronavirus. Adv Exp Med Biol, 494, 323–327. Google Scholar
  21. Liu, M.T., Keirstead, H. S., & Lane,T. E. (2001b). Neutralization of the chemokineCXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J Immunol, 167, 4091–4097. Google Scholar
  22. Luster, A. D. (1998). Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med, 338, 436–445. PubMedCrossRefGoogle Scholar
  23. McHugh TM. (1994). Flowmicrosphere immunoassay for the quantitative and simultaneous detection of multiple soluble analytes. Methods Cell Biol, 42, 575–595 PubMedCrossRefGoogle Scholar
  24. McHugh, T. M., Viele, M. K., Chase, E. S., & Recktenwald, D. J. (1997). The sensitive detection and quantitation of antibody to HCV by using a microsphere-based immunoassay and flow cytometry. Cytometry, 29, 106–12. CrossRefGoogle Scholar
  25. Mehrpouyan, M., Bishop, J. E., Ostrerova, N., Van Cleve, M., & Lohman, K. L. (1997). A rapid and sensitive method for non-isotopic quantitation of HIV-1 RNA using thermophilic SDA and flow cytometry. Mol Cell Probes, 11, 337–347. PubMedCrossRefGoogle Scholar
  26. Millard, P. J., Roth. B. L., & Kim, C. H. (1997). Fluorescence-based methods for microbiological characterization of viability assessment. Biothehnol Int, 1, 291–305. Google Scholar
  27. Morgan, E., Varro, R., Sepulveda, H., Ember, J. A., Apgar, J., Wilson, J., Lowe, L., Chen, R., Shivraj, L., Agadir, A., Campos, R., Ernst, D., & Gaur, A. (2004). Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol, 110, 252–266. PubMedCrossRefGoogle Scholar
  28. Murray, P. R., & Baron, E. J. (2003). In Murray, P. R., Baron, E. J., et al., eds. Manual of Clinical Microbiol, 8th ed. ASM Press, Washington, DC. Google Scholar
  29. Oliver, K. G., Kettman, J. R., & Fulton, R. J. (1998). Multiplexed analysis of human cytokines by use of the FlowMetrix system. Clin Chem, 44, 2057–2060. PubMedGoogle Scholar
  30. Park, M. K., Briles, D. E., & Nahm, M. H. (2000). A latex bead-based flow cytometric immunoassay capable of simultaneous typing of multiple pneumococcal serotypes (Multibead assay). Clin Diagn Lab Immunol, 7, 486–489. PubMedCrossRefGoogle Scholar
  31. Peiris, J. S., Guan, Y., & Yuen, K. Y. (2004). Severe acute respiratory syndrome. Nat Med, 10, S88–S97. PubMedCrossRefGoogle Scholar
  32. Pickering, J. W., Martins, T. B., Schroder, M. C., & Hill, H. R. (2002). Comparison of a multiplex flow cytometric assay with enzyme-linked immunosorbent assay for auantitation of antibodies to tetanus, diphtheria, and Haemophilus influenzae Type b. Clin Diagn Lab Immunol, 9, 872–876. PubMedCrossRefGoogle Scholar
  33. Robertson, B. H., & Nicholson, J. K. A. (2005). New microbiology tools for public health and their implications. Annu Rev Public Health, 26, 281–302. PubMedCrossRefGoogle Scholar
  34. Rossi, D., & Zlotnik, A. (2000). The biology of chemokines and their receptors. Annu Rev Immunol, 18, 217–242. PubMedCrossRefGoogle Scholar
  35. Skowronski, D. M., Astell, C., Brunham, R. C., Low, D. E., Petric, M., Roper, R. L., Talbot, P. J., Tam, T., & Babiuk, L. (2005). Severe acute respiratory syndrome (SARS): a year in review. Annu Rev Med, 56, 357–381. PubMedCrossRefGoogle Scholar
  36. Tarnok, A., Hambsch, J., Chen, R., & Varro, R. (2003). Cytometric bead array to measure six cytokines in twenty-five microliters of serum. Clin Chem, 49, 1000–1002. PubMedCrossRefGoogle Scholar
  37. Wild, D., ed. (1994). The Immunoassay Handbook. Stockton Press, New York, pp. 906. Google Scholar
  38. Van Cleve, M., Ostrerova, N., Tietgen, K., Cao, W., Chang, C., Collins, M. L., Kolberg, J., Urdea, M., & Lohman, K. (1998). Direct quantitation of HIV by flow cytometry using branched DNA signal amplification. Mol Cell Probes, 12, 243–247. PubMedCrossRefGoogle Scholar
  39. Vignali, D. A. (2000). Multiplexed particle-based flow cytometric assays. J Immunol Methods, 243, 243–255. PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • David Ernst
  • George Bolton
  • Diether Recktenwald
  • Mark J. Cameron
  • Ali Danesh
  • Desmond Persad
  • David J. Kelvin
  • Amitabh Gaur

There are no affiliations available

Personalised recommendations