Microarray-Based Microbial Identification and Characterization

  • Terry J. Gentry
  • Jizhong Zhou


The development of molecular-based methodologies over the past two decades has dramatically improved our ability to detect microorganisms in clinical and environmental samples—enabling detection and identification within hours in many cases. However, most of these methods are only capable of monitoring individual or small groups of organisms at a time. Due to the extreme microbial diversity in many environments, such as the human intestine (Eckburg et al., 2005), it is necessary to monitor hundreds to thousands of different microbial populations simultaneously in order to detect all of the organisms of interest as a whole and understand these communities more comprehensively. Microarrays have the unprecedented potential to achieve this objective as specific, sensitive, quantitative, and high-throughput tools for microbial detection, identification, and characterization. Advances in printing technology have enabled the production of microarrays containing thousands to hundreds of thousands of probes. Although microarrays have been primarily developed and used for gene expression profiling of pure cultures of individual organisms, major advances have recently been made in their application to complex environmental samples. This chapter discusses the basis of different microarray formats and their application to issues of clinical interest. Several reviews on microarray technology have recently been published and may provide additional information of interest (Ye et al., 2001; Zhou and Thompson, 2002; Cook and Sayler, 2003; Zhou, 2003; Bodrossy and Sessitsch, 2004; Schadt and Zhou, 2005; Schadt et al., 2005).


Antibiotic Resistance Gene Human Intestinal Bacterium Microbial Detection Monitoring Gene Expression Microbial Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bodrossy, L., & Sessitsch, A. (2004). Oligonucleotide microarrays in microbial diagnostics. Curr Opin Microbiol, 7, 245–254. PubMedCrossRefGoogle Scholar
  2. Bodrossy, L., Stralis-Pavese, N., Murrell, J. C., Radajewski, S., Weilharter, A., & Sessitsch, A. (2003). Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol, 5, 566–582. PubMedCrossRefGoogle Scholar
  3. Botero, L. M., D’Imperio, S., Burr, M., McDermott, T. R., Young, M., & Hassett, D. J. (2005). Poly(A) polymerase modification and reverse transcriptase PCR amplification of environmental RNA. Appl Environ Microbiol, 71, 1267–1275. PubMedCrossRefGoogle Scholar
  4. Bozdech, Z., Zhu, J., Joachimiak, M. P., Cohen, F. E., Pulliam, B., & DeRisi, J. L. (2003). Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol, 4, R9. PubMedCrossRefGoogle Scholar
  5. Call, D. R., Bakko, M. K., Krug, M. J., & Roberts, M. C. (2003). Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob Agents Chemother, 47, 3290–3295. PubMedCrossRefGoogle Scholar
  6. Caro, S. D., Tao, H., Grillo, A., Franceschi, F., Elia, C., Zocco, M. A., Gasbarrini, G., Sepulveda, A. R., & Gasbarrini, A. (2005). Bacillus clausii effect on gene expression pattern in small bowel mucosa using DNA microarray analysis. Eur J Gastroenterol Hepatol, 17, 951–960. PubMedCrossRefGoogle Scholar
  7. Chandler, D. P., Newton, G. J., Small, J. A., & Daly, D. S. (2003). Sequence versus structure for the direct detection of 16S rRNAon planar oligonucleotide microarrays. Appl Environ Microbiol, 69, 2950–2958. PubMedCrossRefGoogle Scholar
  8. Cho, J. C., & Tiedje, J. M. (2002). Quantitative detection of microbial genes by using DNA microarrays. Appl Environ Microbiol, 68, 1425–1430. PubMedCrossRefGoogle Scholar
  9. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., Garrity, G. M., & Tiedje, J. M. (2005). The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res, 33(Database issue), D294–296. PubMedCrossRefGoogle Scholar
  10. Cook, K. L., & Sayler, G. S. (2003). Environmental application of array technology: promise, problems and practicalities. Curr Opin Biotechnol, 14, 311–318. PubMedCrossRefGoogle Scholar
  11. Crosby, L. D., & Criddle, C. S. (2003). Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. Biotechniques, 34, 790–798. PubMedGoogle Scholar
  12. Denef, V. J., Park, J., Rodrigues, J. L. M., Tsoi, T. V., Hashsham, S. A., & Tiedje, J. M. (2003). Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environ Microbiol, 5, 933–943. PubMedCrossRefGoogle Scholar
  13. Dennis, P., Edwards, E. A., Liss, S. N., & Fulthorpe, R. (2003). Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol, 69, 769–778. PubMedCrossRefGoogle Scholar
  14. Diaz, M. R., & Fell, J. W. (2005). Use of a suspension array for rapid identification of the varieties and genotypes of the Cryptococcus neoformans species complex. J Clin Microbiol, 43, 3662–3672. PubMedCrossRefGoogle Scholar
  15. Dudley, A. M., Aach, J., Steffen, M. A., & Church, G. M. (2002). Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc Natl Acad Sci U S A, 99, 7554–7559. PubMedCrossRefGoogle Scholar
  16. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E., & Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308, 1635–1638. PubMedCrossRefGoogle Scholar
  17. El Fantroussi, S., Urakawa, H., Bernhard, A. E.,Kelly, J. J., Noble, P. A., Smidt, H.,Yershov, G. M., & Stahl, D. A. (2003). Direct profiling of environmental microbial populations by thermal dissociation analysis of native rRNAs hybridized to oligonucleotide microarrays. Appl Environ Microbiol, 69, 2377–2382. PubMedCrossRefGoogle Scholar
  18. Emrich, S. J., Lowe, M., & Delcher, A. L. (2003). PROBEmer: A web-based software tool for selecting optimal DNA oligos. Nucleic Acids Res, 31, 3746–3750. PubMedCrossRefGoogle Scholar
  19. Farrelly, V., Rainey, F. A., & Stackebrandt, E. (1995). Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol, 61, 2798–2801. PubMedGoogle Scholar
  20. Galindo, C. L., Fadl, A. A., Sha, J., Pillai, L., Gutierrez, C., Jr., & Chopra, A. K. (2005). Microarray and proteomics analyses of human intestinal epithelial cells treated with the Aeromonas hydrophila cytotoxic enterotoxin. Infect Immun, 73, 2628–2643. PubMedCrossRefGoogle Scholar
  21. Greene, E. A., & Voordouw, G. (2003). Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Methods, 53, 211–219. PubMedCrossRefGoogle Scholar
  22. Grimm, V., Ezaki, S., Susa, M., Knabbe, C., Schmid, R. D., & Bachmann, T. T. (2004). Use of DNA microarrays for rapid genotyping of TEM beta-lactamases that confer resistance. J Clin Microbiol, 42, 3766–3774. PubMedCrossRefGoogle Scholar
  23. Guschin, D., Yershov, G., Zaslavsky, A., Gemmell, A., Shick, V., Proudnikov, D., Arenkov, P., & Mirzabekov, A. (1997). Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal Biochem, 250, 203–211. PubMedCrossRefGoogle Scholar
  24. He, Z., Wu, L., Fields, M. W., & Zhou, J. (2005). Use of microarrays with different probe sizes for monitoring gene expression. Appl Environ Microbiol, 71, 5154–5162. PubMedCrossRefGoogle Scholar
  25. Held, G. A., Grinstein, G., & Tu, Y. (2003). Modeling of DNA microarray data by using physical properties of hybridization. Proc Natl Acad Sci U S A, 100, 7575–7580. PubMedCrossRefGoogle Scholar
  26. Hughes, T. R., Mao, M., Jones, A. R., Burchard, J., Marton, M. J., Shannon, K. W., Lefkowitz, S. M., Ziman, M., Schelter, J. M., Meyer, M. R., Kobayashi, S., Davis, C., Dai, H., He, Y. D., Stephaniants, S. B., Cavet, G., Walker, W. L., West, A., Coffey, E., Shoemaker, D. D., Stoughton, R., Blanchard, A. P., Friend, S. H., & Linsley, P. S. (2001). Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol, 19, 342–347. PubMedCrossRefGoogle Scholar
  27. Kane, M. D., Jatkoe, T. A., Stumpf, C. R., Lu, J., Thomas, J. D., & Madore, S. J. (2000). Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res, 28, 4552–4557. PubMedCrossRefGoogle Scholar
  28. Korczak, B., Frey, J., Schrenzel, J., Pluschke, G., Pfister, R., Ehricht, R., & Kuhnert, P. (2005). Use of diagnostic microarrays for determination of virulence gene patterns of Escherichia coli K1, a major cause of neonatal meningitis. J Clin Microbiol, 43, 1024–1031. PubMedCrossRefGoogle Scholar
  29. Korimbocus, J., Scaramozzino, N., Lacroix, B., Crance, J. M., Garin, D., & Vernet, G. (2005). DNA probe array for the simultaneous identification of herpesviruses, enteroviruses, and flaviviruses. J Clin Microbiol, 43, 3779–3787. PubMedCrossRefGoogle Scholar
  30. Letowski, J., Brousseau, R., & Masson, L. (2004). Designing better probes: effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J Microbiol Methods, 57, 269–278. PubMedCrossRefGoogle Scholar
  31. Li, F., & Stormo, G. D. (2001). Selection of optimal DNA oligos for gene expression arrays. Bioinformatics, 17, 1067–1076. PubMedCrossRefGoogle Scholar
  32. Lin, Z. H., Shen, X. H., Jin, Z., Kim, Y., Lee, E., Kim, H., & Kim, I. (2005). Human papillomavirus genotyping by oligonucleotide microarray and p16 expression in uterine cervical intraepithelial neoplasm and in invasive carcinoma in Korean women. Pathol Int, 55, 491–496. PubMedCrossRefGoogle Scholar
  33. Liu, W. T., Mirzabekov, A. D., & Stahl, D. A. (2001). Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach. Environ Microbiol, 3, 619–629. PubMedCrossRefGoogle Scholar
  34. Nielsen, H. B., Wernersson, R., & Knudsen, S. (2003). Design of oligonucleotides for microarrays and perspectives for design of multi-transcriptome arrays. Nucleic Acids Res, 31, 3491–3496. PubMedCrossRefGoogle Scholar
  35. Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R., & Stahl, D. A. (1986). Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol, 40, 337–365. PubMedCrossRefGoogle Scholar
  36. Peplies, J., Glockner, F. O., & Amann, R. (2003). Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes. Appl Environ Microbiol, 69, 1397–1407. PubMedCrossRefGoogle Scholar
  37. Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., & Frey, J. (2005). Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J Clin Microbiol, 43, 2291–2302. PubMedCrossRefGoogle Scholar
  38. Reymond, N., Charles, H., Duret, L., Calevro, F., Beslon, G., & Fayard, J. M. (2004). ROSO: optimizing oligonucleotide probes for microarrays. Bioinformatics, 20, 271–273. PubMedCrossRefGoogle Scholar
  39. Reysenbach, A. L., Giver, L. J., Wickham, G. S., & Pace, N. R. (1992). Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol, 58, 3417–3418. PubMedGoogle Scholar
  40. Rhee, S. K., Liu, X., Wu, L., Chong, S. C., Wan, X., & Zhou, J. (2004). Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiology, 70, 4303–4317. CrossRefGoogle Scholar
  41. Rouillard, J. M., Herbert, C. J., & Zuker, M. (2002). OligoArray: genome-scale oligonucleotide design for microarrays. Bioinformatics, 18, 486–487. PubMedCrossRefGoogle Scholar
  42. Rouillard, J. M., Zuker, M., & Gulari, E. (2003). OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res, 31, 3057–3062. PubMedCrossRefGoogle Scholar
  43. Saleh-Lakha, S., Miller, M., Campbell, R. G., Schneider, K., Elahimanesh, P., Hart, M. M., & Trevors, J. T. (2005). Microbial gene expression in soil: methods, applications and challenges. J Microbiol Methods, 63, 1–19. PubMedCrossRefGoogle Scholar
  44. Schadt, C. W., & Zhou, J. (2005). Advances in Microarrays for Soil Microbial Community Analyses. In: Nannipieri, P., & Smalla, K., eds. Soil Biology: Nucleic Acids and Proteins in Soil. Springer-Verlag, New York. Google Scholar
  45. Schadt, C. W., Liebich, J., Chong, S. C., Gentry, T. J., He, Z., Pan, H., & Zhou, J. (2005). Design and use of functional gene microarrays (FGAs) for the characterization of microbial communities. In: Savidge, T., & Pothulakis, H., eds. Microbial Imaging, Vol. 34. Academic Press, London, pp. 331–368. Google Scholar
  46. Sebat, J. L., Colwell, F. S., & Crawford, R. L. (2003). Metagenomic profiling: Microarray analysis of an environmental genomic library. Appl Environ Microbiol, 69, 4927–4934. PubMedCrossRefGoogle Scholar
  47. Steward, G. F., Jenkins, B. D., Ward, B. B., & Zehr, J. P. (2004). Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Appl Environ Microbiol, 70, 1455–1465. PubMedCrossRefGoogle Scholar
  48. Stintzi, A., Marlow, D., Palyada, K., Naikare, H., Panciera, R., Whitworth, L., & Clarke, C. (2005). Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect Immun, 73, 1797–1810. PubMedCrossRefGoogle Scholar
  49. Straub, T. M., Daly, D. S., Wunshel, S., Rochelle, P. A., DeLeon, R., & Chandler, D. P. (2002). Genotyping Cryptosporidium parvum with an hsp70 single-nucleotide polymorphism microarray. Appl Environ Microbiol, 68, 1817–1826. PubMedCrossRefGoogle Scholar
  50. Taroncher-Oldenburg, G., Griner, E. M., Francis, C. A., & Ward, B. B. (2003). Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl Environ Microbiol, 69, 1159–1171. PubMedCrossRefGoogle Scholar
  51. Tiquia, S. M., Wu, L., Chong, S. C., Passovets, S., Xu, D., Xu, Y., & Zhou, J. (2004). Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. Biotechniques, 36, 664–675. PubMedGoogle Scholar
  52. Troesch, A., Nguyen, H., Miyada, C. G., Desvarenne, S., Gingeras, T. R., Kaplan, P. M., Cros, P., & Mabilat, C. (1999). Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J Clin Microbiol, 37, 49–55. PubMedGoogle Scholar
  53. Tsai, Y. L., Le, J. Y., & Olson, B. H. (2003). Magnetic bead hybridization to detect enterotoxigenic Escherichia coli strains associated with cattle in environmental water sources. Can J Microbiol, 49, 391–398. PubMedCrossRefGoogle Scholar
  54. Urakawa, H., El Fantroussi, S., Smidt, H., Smoot, J. C., Tribou, E. H., Kelly, J. J., Noble, P. A., & Stahl, D. A. (2003). Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays. Appl Environ Microbiol, 69, 2848–2856. PubMedCrossRefGoogle Scholar
  55. Vinje, J., & Koopmans, M. P. (2000). Simultaneous detection and genotyping of “Norwalklike viruses” by oligonucleotide array in a reverse line blot hybridization format. J Clin Microbiol, 38, 2595–2601. PubMedGoogle Scholar
  56. Wang, X., & Seed, B. (2003). Selection of oligonucleotide probes for protein coding sequences. Bioinformatics, 19, 796–802. PubMedCrossRefGoogle Scholar
  57. Wang, R. F., Beggs, M. L., Robertson, L. H., & Cerniglia, C. E. (2002). Design and evaluation of oligonucleotide-microarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol Lett, 213, 175–182. PubMedCrossRefGoogle Scholar
  58. Wang, R. F., Beggs, M. L., Erickson, B. D., & Cerniglia, C. E. (2004a). DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol Cell Probes, 18, 223–234. CrossRefGoogle Scholar
  59. Wang, R. F., Chen, H., Paine, D. D., & Cerniglia, C. E. (2004b). Microarray method to monitor 40 intestinal bacterial species in the study of azo dye reduction. Biosensors Bioelectron, 20, 699–705. CrossRefGoogle Scholar
  60. Willse, A., Straub, T. M., Wunschel, S. C., Small, J. A., Call, D. R., Daly, D. S., & Chandler, D. P. (2004). Quantitative oligonucleotide microarray fingerprinting of Salmonella enterica isolates. Nucleic Acids Res, 32, 1848–1856. PubMedCrossRefGoogle Scholar
  61. Wilson, K. H., Wilson, W. J., Radosevich, J. L., DeSantis, T. Z., Viswanathan, V. S., Kuczmarski, T. A., & Andersen, G. L. (2002a). High-density microarray of small-subunit ribosomal DNA probes. Appl Environ Microbiol, 68, 2535–2541. CrossRefGoogle Scholar
  62. Wilson, W. J., Strout, C. L., DeSantis, T. Z., Stilwell, J. L., Carrano, A. V., & Andersen, G. L. (2002b). Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes, 16, 119–127. CrossRefGoogle Scholar
  63. Wu, L. Y., Thompson, D. K., Li, G. S., Hurt, R. A., Tiedje, J. M., & Zhou, J. Z. (2001). Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol, 67, 5780–5790. PubMedCrossRefGoogle Scholar
  64. Wu, L.Y., Thompson, D. K., Liu, X. D., Fields, M. W., Bagwell, C. E., Tiedje, J. M., & Zhou, J. Z. (2004). Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Technol, 38, 6775–6782. PubMedCrossRefGoogle Scholar
  65. Wu, L., Liu, X., Schadt, C. W., & Zhou, J. (2006). Microarray-based analysis of subnanogram quantities of microbial community DNA using Whole Community Genome Amplification (WCGA). Proc Natl Acad Sci U S A, (in press). Google Scholar
  66. Xu, D., Li, G., Wu, L., Zhou, J., & Xu, Y. (2002). PRIMEGENS: robust and efficient design of gene-specific probes for microarray analysis. Bioinformatics, 18, 1432–1437. PubMedCrossRefGoogle Scholar
  67. Ye, R. W., Wang, T., Bedzyk, L., & Croker, K. M. (2001). Applications of DNA microarrays in microbial systems. J Microbiol Methods, 47, 257–272. PubMedCrossRefGoogle Scholar
  68. Zhou, J. (2003). Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol, 6, 288–294. PubMedCrossRefGoogle Scholar
  69. Zhou, J. Z., & Thompson, D. K. (2002). Challenges in applying microarrays to environmental studies. Curr Opin Biotechnol, 13, 204–207. PubMedCrossRefGoogle Scholar
  70. Zhou, X., & Zhou, J. (2004). Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Anal Chem, 76, 5302–5312. PubMedCrossRefGoogle Scholar
  71. Zhou, X., Wu, L., & Zhou, J. (2004). Fabrication of DNA microarrays on nanoengineered polymeric ultrathin film prepared by self-assembly of polyelectrolyte multilayers. Langmuir, 20, 8877–8885. PubMedCrossRefGoogle Scholar
  72. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 31, 3406–3415. PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Terry J. Gentry
  • Jizhong Zhou

There are no affiliations available

Personalised recommendations