Advertisement

CD137/CD137 Ligand in Tumor and Viral Immunotherapy

  • Ignacio Melero
  • Oihana Murillo
  • Iñigo Tirapu
  • Eduardo Huarte
  • Ainhoa Arina
  • Laura Arribillaga
  • Juan José Lasarte

Abstract

Current tumor immunotherapy includes a series of approaches that intend to destroy malignant tissue by means of the cell destructive armamentarium with which the immune system is endowed. Priming and enhancing the cellular immune response against cancer cells or critical components of the tumor stroma is a difficult endeavor, but recent advances have achieved complete regressions of established transplantable rodent malignancies. Among these experimentally successful approaches we can list: (i) vaccinations with dendritic cells pulsed with tumor antigens and other vaccine formulations (Banchereau and Palucka, 2005); (ii) adoptive transfer of in vitro-preactivated lymphocytes into a tumor bearing host in whom lymphopenia has been induced (Dudley et al., 2002); (iii) systemic or local treatment with cytokines, including gene therapy approaches, that augment the cellular immune response (Murphy et al., 1996, 2005); (iv) transfection of costimulatory molecules for T cells into cancer cells; (v) molecular interference with physiological mechanisms that negatively regulate the immune response. The latter is a particularly fertile field of investigation that encompasses: (a) interference with T cell co-inhibitory molecules such as PD-1 (Dong et al., 2002; Hirano et al., 2005) and CTLA-4 (Egen et al., 2002), (b) the depletion or inactivation of regulatory T cells (Sakaguchi, 2005), and (c) the inhibition of enzymes whose activity locally interferes with T cell activation (Muller et al., 2005).

Keywords

Costimulatory Molecule Antitumor Immunity CD137 Ligand Recombinant Adenovirus Agonistic Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arribillaga, L., Sarobe, P., Arina, A., Gorraiz, M., Borras-Cuesta, F., Ruiz, J., Prieto, J., Chen, L., Melero, I., and Lasarte, J.J. (2005). Enhancement of CD4 and CD8 immunity by anti-CD137 (4-1BB) monoclonal antibodies during hepatitis C vaccination with recombinant adenovirus. Vaccine 23, 3493–3499.PubMedCrossRefGoogle Scholar
  2. Banchereau, J., and Palucka, A.K. (2005). Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol., 5, 296–306.PubMedCrossRefGoogle Scholar
  3. Blazar, B.R., Kwon, B.S., Panoskaltsis-Mortari, A., Kwak, K.B., Peschon, J.J., and Taylor, P.A. (2001). Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J. Immunol., 166, 3174–3183.PubMedGoogle Scholar
  4. Bukczynski, J., Wen, T., Ellefsen, K., Gauldie, J., and Watts, T.H. (2004). Costimulatory ligand 4-1BBL (CD137L) as an efficient adjuvant for human antiviral cytotoxic T cell responses. Proc. Natl. Acad. Sci. USA, 101, 1291–1296 (Epub 2004 Jan 1226).PubMedCrossRefGoogle Scholar
  5. Colombo, M.P., and Trinchieri, G. (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine. Growth. Factor. Rev., 13, 155–168.PubMedCrossRefGoogle Scholar
  6. Croft, M. (2003). Co-stimulatory members of the TNFR family: Keys to effective T-cell immunity? Nat. Rev. Immunol., 3, 609–620.PubMedCrossRefGoogle Scholar
  7. Chen, L. (1998). Immunological ignorance of silent antigens as an explanation of tumor evasion. Immunol. Today, 19, 27–30.PubMedCrossRefGoogle Scholar
  8. Chen, L., Ashe, S., Brady, W.A., Hellstrom, I., Hellstrom, K.E., Ledbetter, J.A., McGowan, P., and Linsley, P.S. (1992). Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell, 71, 1093–1102.PubMedCrossRefGoogle Scholar
  9. Chen, L., McGowan, P., Ashe, S., Johnston, J., Li, Y., Hellstrom, I., and Hellstrom, K.E. (1994). Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J. Exp. Med., 179, 523–532.PubMedCrossRefGoogle Scholar
  10. Chen, S.H., Pham-Nguyen, K.B., Martinet, O., Huang, Y., Yang, W., Thung, S.N., Chen, L., Mittler, R., and Woo, S.L. (2000). Rejection of disseminated metastases of colon carcinoma by synergism of IL-12 gene therapy and 4-1BB costimulation [In Process Citation]. Mol. Ther., 2, 39–46.PubMedCrossRefGoogle Scholar
  11. Chen, W., Masterman, K.A., Basta, S., Haeryfar, S.M., Dimopoulos, N., Knowles, B., Bennink, J.R., and Yewdell, J.W. (2004). Cross-priming of CD8+ T cells by viral and tumor antigens is a robust phenomenon. Eur. J. Immunol., 34, 194–199.PubMedCrossRefGoogle Scholar
  12. Choi, B.K., Bae, J.S., Choi, E.M., Kang, W.J., Sakaguchi, S., Vinay, D.S., and Kwon, B.S. (2004). 4-1BB-dependent inhibition of immunosuppression by activated CD4+CD25+ T cells. J. Leukoc. Biol., 75, 785–791 (Epub 2003 Dec 2023).PubMedCrossRefGoogle Scholar
  13. Chu, N.R., De Benedette, M.A., Stiernholm, B.J., Barber, B.H., and Watts, T.H. (1997). Role of IL-12 and 4-1BB ligand in cytokine production by CD28+ and CD28− T cells. J. Immunol., 158, 3081–3089.PubMedGoogle Scholar
  14. Dawicki, W., Bertram, E.M., Sharpe, A.H., and Watts, T.H. (2004). 4-1BB and OX40 act independently to facilitate robust CD8 and CD4 recall responses. J. Immunol., 173, 5944–5951.PubMedGoogle Scholar
  15. DeBenedette, M.A., Wen, T., Bachmann, M.F., Ohashi, P.S., Barber, B.H., Stocking, K.L., Peschon, J.J., and Watts, T.H. (1999). Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J. Immunol., 163, 4833–4841.PubMedGoogle Scholar
  16. Dong, H., Strome, S.E., Salomao, D.R., Tamura, H., Hirano, F., Flies, D.B., Roche, P.C., Lu, J., Zhu, G., Tamada, K., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med., 8, 793–800.PubMedGoogle Scholar
  17. Dudley, M.E., Wunderlich, J.R., Robbins, P.F., Yang, J.C., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., Sherry, R., Restifo, N.P., Hubicki, A.M., et al. (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science, 298, 850–854.PubMedCrossRefGoogle Scholar
  18. Dudley, M.E., and Rosenberg, S.A. (2003). Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat. Rev. Cancer, 3, 666–675.PubMedCrossRefGoogle Scholar
  19. Egen, J.G., Kuhns, M.S., and Allison, J.P. (2002). CTLA-4: New insights into its biological function and use in tumor immunotherapy. Nat. Immunol., 3, 611–618.PubMedCrossRefGoogle Scholar
  20. French, R.R., Chan, H.T., Tutt, A.L., and Glennie, M.J. (1999). CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat. Med., 5, 548–553.PubMedCrossRefGoogle Scholar
  21. Goodwin, R.G., Din, W.S., Davis-Smith, T., Anderson, D.M., Gimpel, S.D., Sato, T.A., Maliszewski, C.R., Brannan, C.I., Copeland, N.G., Jenkins, N.A., et al. (1993). Molecular cloning of a ligand for the inducible T cell gene 4-1BB: A member of an emerging family of cytokines with homology to tumor necrosis factor. Eur. J. Immunol., 23, 2631–2641.PubMedCrossRefGoogle Scholar
  22. Guinn, B.A., De Benedette, M.A., Watts, T.H., and Berinstein, N.L. (1999). 4-1BBL cooperates with B7-1 and B7-2 in converting a B cell lymphoma cell line into a long-lasting antitumor vaccine. J. Immunol., 162, 5003–5010.PubMedGoogle Scholar
  23. Halstead, E.S., Mueller, Y.M., Altman, J.D., and Katsikis, P.D. (2002). In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses. Nat. Immunol., 3, 536–541.PubMedCrossRefGoogle Scholar
  24. Hirano, F., Kaneko, K., Tamura, H., Dong, H., Wang, S., Ichikawa, M., Rietz, C., Flies, D.B., Lau, J.S., Zhu, G., et al. (2005). Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res., 65, 1089–1096.PubMedGoogle Scholar
  25. Hodi, F.S., Mihm, M.C., Soiffer, R.J., Haluska, F.G., Butler, M., Seiden, M.V., Davis, T., Henry-Spires, R., MacRae, S., Willman, A., et al. (2003). Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl. Acad. Sci. USA, 100, 4712–4717.PubMedCrossRefGoogle Scholar
  26. Hong, H.J., Lee, J.W., Park, S.S., Kang, Y.J., Chang, S.Y., Kim, K.M., Kim, J.O., Murthy, K.K., Payne, J.S., Yoon, S.K., et al. (2000). A humanized anti-4-1BB monoclonal antibody suppresses antigen-induced humoral immune response in nonhuman primates. J. Immunother., 23, 613–621.PubMedCrossRefGoogle Scholar
  27. Hurwitz, A.A., Yu, T.F., Leach, D.R., and Allison, J.P. (1998). CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl. Acad. Sci. USA, 95, 10067–10071.PubMedCrossRefGoogle Scholar
  28. Ito, F., Li, Q., Shreiner, A.B., Okuyama, R., Jure-Kunkel, M.N., Teitz-Tennenbaum, S., and Chang, A.E. (2004). Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res., 64, 8411–8419.PubMedCrossRefGoogle Scholar
  29. Kim, J.A., Averbook, B.J., Chambers, K., Rothchild, K., Kjaergaard, J., Papay, R., and Shu, S. (2001). Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res., 61, 2031–2037.PubMedGoogle Scholar
  30. Kim, J., Choi, W.S., La, S., Suh, J.H., Kim, B.S., Cho, H.R., Kwon, B.S., and Kwon, B. (2005). Stimulation with 4-1BB (CD137) inhibits chronic graft-versus-host disease by inducing activation-induced cell death of donor CD4+ T cells. Blood, 105, 2206–2213 (Epub 2004 Nov 2202).PubMedCrossRefGoogle Scholar
  31. Klebanoff, C.A., Khong, H.T., Antony, P.A., Palmer, D.C., and Restifo, N.P. (2005). Sinks, suppressors and antigen presenters: How lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol., 26, 111–117.PubMedCrossRefGoogle Scholar
  32. Kocak, E., Lute, K., Chang, X., May, K.F. Jr, Exten, K.R., Zhang, H., Abdessalam, S.F., Lehman, A.M., Jarjoura, D., Zheng, P., and Liu, Y. (2006). Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity. Cancer Res., 66, 7276–7284.PubMedCrossRefGoogle Scholar
  33. Kwon, B.S., Hurtado, J.C., Lee, Z.H., Kwack, K.B., Seo, S.K., Choi, B.K., Koller, B.H., Wolisi, G., Broxmeyer, H.E., and Vinay, D.S. (2002). Immune responses in 4-1BB (CD137)-deficient mice. J. Immunol., 168, 5483–5490.PubMedGoogle Scholar
  34. Lanzavecchia, A. (1998). Immunology. Licence to kill [news; comment]. Nature, 393, 413–414.PubMedCrossRefGoogle Scholar
  35. Leach, D.R., Krummel, M.F., and Allison, J.P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271, 1734–1736.PubMedCrossRefGoogle Scholar
  36. Lee, S.J., Myers, L., Muralimohan, G., Dai, J., Qiao, Y., Li, Z., Mittler, R.S., and Vella, A.T. (2004). 4-1BB and OX40 dual costimulation synergistically stimulate primary specific CD8 T cells for robust effector function. J. Immunol., 173, 3002–3012.PubMedGoogle Scholar
  37. Martinet, O., Ermekova, V., Qiao, J.Q., Sauter, B., Mandeli, J., Chen, L., and Chen, S.H. (2000). Immunomodulatory gene therapy with interleukin 12 and 4-1BB ligand: Long-term remission of liver metastases in a mouse model. J. Natl. Cancer Inst., 92, 931–936.PubMedCrossRefGoogle Scholar
  38. Martinet, O., Divino, C.M., Zang, Y., Gan, Y., Mandeli, J., Thung, S., Pan, P.Y., and Chen, S.H. (2002). T cell activation with systemic agonistic antibody versus local 4-1BB ligand gene delivery combined with interleukin-12 eradicate liver metastases of breast cancer. Gene Ther., 9, 786–792.PubMedCrossRefGoogle Scholar
  39. Maus, M.V., Thomas, A.K., Leonard, D.G., Allman, D., Addya, K., Schlienger, K., Riley, J.L., and June, C.H. (2002). Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat. Biotechnol., 20, 143–148.PubMedCrossRefGoogle Scholar
  40. May, K.F., Jr., Chen, L., Zheng, P., and Liu, Y. (2002). Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res., 62, 3459–3465.PubMedGoogle Scholar
  41. Mazzolini, G., Alfaro, C., Sangro, B., Feijoo, E., Ruiz, J., Benito, A., Tirapu, I., Arina, A., Sola, J., Herraiz, M., et al. (2005). Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J. Clin. Oncol., 23, 999–1010 (Epub 2004 Dec 1014).PubMedCrossRefGoogle Scholar
  42. Melero, I., Shuford, W.W., Newby, S.A., Aruffo, A., Ledbetter, J.A., Hellstrom, K.E., Mittler, R.S., and Chen, L. (1997a). Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat. Med., 3, 682–685.CrossRefGoogle Scholar
  43. Melero, I., Singhal, M.C., McGowan, P., Haugen, H.S., Blake, J., Hellstrom, K.E., Yang, G., Clegg, C.H., and Chen, L. (1997b). Immunological ignorance of an E7-encoded cytolytic T-lymphocyte epitope in transgenic mice expressing the E7 and E6 oncogenes of human papillomavirus type 16. J. Virol., 71, 3998–4004.Google Scholar
  44. Melero, I., Bach, N., Hellstrom, K.E., Aruffo, A., Mittler, R.S., and Chen, L. (1998a). Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: Synergy with the CD28 co-stimulatory pathway. Eur. J. Immunol., 28, 1116–1121.CrossRefGoogle Scholar
  45. Melero, I., Johnston, J.V., Shufford, W.W., Mittler, R.S., and Chen, L. (1998b). NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell Immunol., 190, 167–172.CrossRefGoogle Scholar
  46. Miller, R.E., Jones, J., Le, T., Whitmore, J., Boiani, N., Gliniak, B., and Lynch, D.H. (2002). 4-1BB-specific monoclonal antibody promotes the generation of tumor-specific immune responses by direct activation of CD8 T cells in a CD40-dependent manner. J. Immunol., 169, 1792–1800.PubMedGoogle Scholar
  47. Miller, J.S., Soignier, Y., Panoskaltsis-Mortari, A., McNearney, S.A., Yun, G.H., Fautsch, S.K., McKenna, D., Le, C., Defor, T.E., Burns, L.J., et al. (2005). Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood, 105, 3051–3057 (Epub 2005 Jan 3054).PubMedCrossRefGoogle Scholar
  48. Mittler, R.S. (2004). Suppressing the self in rheumatoid arthritis. Nat. Med., 10, 1047–1049.PubMedCrossRefGoogle Scholar
  49. Moss, P., and Rickinson, A. (2005). Cellular immunotherapy for viral infection after HSC transplantation. Nat. Rev. Immunol., 5, 9–20.PubMedCrossRefGoogle Scholar
  50. Mukherjee, P., Tinder, T.L., Basu, G.D., Pathangey, L.B., Chen, L., and Gendler, S.J. (2004). Therapeutic efficacy of MUC1-specific cytotoxic T lymphocytes and CD137 co-stimulation in a spontaneous breast cancer model. Breast Dis., 20, 53–63.PubMedGoogle Scholar
  51. Muller, A.J., DuHadaway, J.B., Donover, P.S., Sutanto-Ward, E., and Prendergast, G.C. (2005). Inhibition of indoleamine 2, 3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med., 11, 312–319 (Epub 2005 Feb 2013).PubMedCrossRefGoogle Scholar
  52. Munks, M.W., Mourich, D.V., Mittler, R.S., Weinberg, A.D., and Hill, A.B. (2004). 4-1BB and OX40 stimulation enhance CD8 and CD4 T-cell responses to a DNA prime, poxvirus boost vaccine. Immunology, 112, 559–566.PubMedCrossRefGoogle Scholar
  53. Murillo, O., Arina, A., Tirapu, I., Alfaro, C., Mazzolini, G., Palencia, B., Lopez-Diaz De Cerio, A., Prieto, J., Bendandi, M., Melero, I. (2003). Potentiation of therapeutic immune responses against malignancies with monoclonal antibodies. Clin Cancer Res., 9, 5454–5464.PubMedGoogle Scholar
  54. Murphy, A., Westwood, J.A., Teng, M.W., Moeller, M., Darcy, P.K., and Kershaw, M.H. (2005). Gene modification strategies to induce tumor immunity. Immunity, 22, 403–414.PubMedCrossRefGoogle Scholar
  55. Murphy, W.J., Tian, Z.G., Asai, O., Funakoshi, S., Rotter, P., Henry, M., Strieter, R.M., Kunkel, S.L., Longo, D.L., and Taub, D.D. (1996). Chemokines and T lymphocyte activation: II. Facilitation of human T cell trafficking in severe combined immunodeficiency mice. J. Immunol., 156, 2104–2111.PubMedGoogle Scholar
  56. Nam, K.O., Kang, H., Shin, S.M., Cho, K.H., Kwon, B., Kwon, B.S., Kim, S.J., and Lee, H.W. (2005). Cross-linking of 4-1BB activates TCR-signaling pathways in CD8+ T lymphocytes. J. Immunol., 174, 1898–1905.PubMedGoogle Scholar
  57. Ochsenbein, A.F., Klenerman, P., Karrer, U., Ludewig, B., Pericin, M., Hengartner, H., and Zinkernagel, R.M. (1999). Immune surveillance against a solid tumor fails because of immunological ignorance. Proc. Natl. Acad. Sci. USA, 96, 2233–2238.PubMedCrossRefGoogle Scholar
  58. Pardoll, D., and Allison, J. (2004). Cancer immunotherapy: Breaking the barriers to harvest the crop. Nat. Med., 10, 887–892.PubMedCrossRefGoogle Scholar
  59. Phan, G.Q., Yang, J.C., Sherry, R.M., Hwu, P., Topalian, S.L., Schwartzentruber, D.J., Restifo, N.P., Haworth, L.R., Seipp, C.A., Freezer, L.J., et al. (2003). Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA, 100, 8372–8377.PubMedCrossRefGoogle Scholar
  60. Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W.D., Tosti, A., Posati, S., Rogaia, D., Frassoni, F., Aversa, F., et al. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 295, 2097–2100.PubMedCrossRefGoogle Scholar
  61. Ruggeri, L., Capanni, M., Mancusi, A., Perruccio, K., Burchielli, E., Martelli, M.F., and Velardi, A. (2005). Natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Int. J. Hematol., 81, 13–17.PubMedCrossRefGoogle Scholar
  62. Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol., 6, 345–352.PubMedCrossRefGoogle Scholar
  63. Salih, H.R., Kosowski, S.G., Haluska, V.F., Starling, G.C., Loo, D.T., Lee, F., Aruffo, A.A., Trail, P.A., and Kiener, P.A. (2000). Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells. J. Immunol., 165, 2903–2910.PubMedGoogle Scholar
  64. Salih, H.R., Schmetzer, H.M., Burke, C., Starling, G.C., Dunn, R., Pelka-Fleischer, R., Nuessler, V., and Kiener, P.A. (2001). Soluble CD137 (4-1BB) ligand is released following leukocyte activation and is found in sera of patients with hematological malignancies. J. Immunol., 167, 4059–4066.PubMedGoogle Scholar
  65. Sanderson, K., Scotland, R., Lee, P., Liu, D., Groshen, S., Snively, J., Sian, S., Nichol, G., Davis, T., Keler, T., et al. (2005). Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol., 23, 741–750 (Epub 2004 Dec 2021).PubMedCrossRefGoogle Scholar
  66. Sangro, B., Mazzolini, G., Ruiz, J., Herraiz, M., Quiroga, J., Herrero, I., Benito, A., Larrache, J., Pueyo, J., Subtil, J.C., et al. (2004). Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J. Clin. Oncol., 22, 1389–1397.PubMedCrossRefGoogle Scholar
  67. Seo, S.K., Choi, J.H., Kim, Y.H., Kang, W.J., Park, H.Y., Suh, J.H., Choi, B.K., Vinay, D.S., and Kwon, B.S. (2004). 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat. Med., 10, 1088–1094 (Epub 2004 Sep 1026).PubMedCrossRefGoogle Scholar
  68. Shuford, W.W., Klussman, K., Tritchler, D.D., Loo, D.T., Chalupny, J., Siadak, A.W., Brown, T.J., Emswiler, J., Raecho, H., Larsen, C.P., et al. (1997). 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med., 186, 47–55.PubMedCrossRefGoogle Scholar
  69. Sun, Y., Chen, H.M., Subudhi, S.K., Chen, J., Koka, R., Chen, L., and Fu, Y.X. (2002a). Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease. Nat. Med., 8, 1405–1413.CrossRefGoogle Scholar
  70. Sun, Y., Lin, X., Chen, H.M., Wu, Q., Subudhi, S.K., Chen, L., and Fu, Y. X. (2002b). Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J. Immunol., 168, 1457–1465.Google Scholar
  71. Tan, J.T., Whitmire, J.K., Ahmed, R., Pearson, T.C., and Larsen, C.P. (1999). 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J. Immunol., 163, 4859–4868.PubMedGoogle Scholar
  72. Tirapu, I., Arina, A., Mazzolini, G., Duarte, M., Alfaro, C., Feijoo, E., Qian, C., Chen, L., Prieto, J., and Melero, I. (2004). Improving efficacy of interleukin-12-transfected dendritic cells injected into murine colon cancer with anti-CD137 monoclonal antibodies and alloantigens. Int. J. Cancer., 110, 51–60.PubMedCrossRefGoogle Scholar
  73. Tirapu, I., Mazzolini, G., Rodriguez-Calvillo, M., Arina, A., Palencia, B., Gabari, I., and Melero, I. (2002). Effective tumor immunotherapy: Start the engine, release the brakes, step on the gas pedal and get ready to face autoimmunity. Arch. Immunol. Ther. Exp. (Warsz), 50, 13–18.Google Scholar
  74. Tivol, E.A., Borriello, F., Schweitzer, A.N., Lynch, W.P., Bluestone, J.A., and Sharpe, A.H. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 3, 541–547.PubMedCrossRefGoogle Scholar
  75. Townsend, S.E., and Allison, J.P. (1993). Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science, 259, 368–370.PubMedCrossRefGoogle Scholar
  76. Uno, T., Takeda, K., Kojima, Y., Yoshizawa, H., Akiba, H., Mittler, R.S., Gejyo, F., Okumura, K., Yagita, H., and Smyth, M.J. (2006). Eradication of established tumors in mice by a combination antibody-based therapy. Nat. Med., 12, 693–698.PubMedCrossRefGoogle Scholar
  77. van Mierlo, G.J., Boonman, Z.F., Dumortier, H.M., den Boer, A.T., Fransen, M.F., Nouta, J., van der Voort, E.I., Offringa, R., Toes, R.E., and Melief, C.J. (2004). Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J. Immunol., 173, 6753–6759.PubMedGoogle Scholar
  78. Waldmann, T.A. (2003). IL-15 in the life and death of lymphocytes: Immunotherapeutic implications. Trends Mol. Med., 9, 517–521.PubMedCrossRefGoogle Scholar
  79. Waterhouse, P., Penninger, J.M., Timms, E., Wakeham, A., Shahinian, A., Lee, K.P., Thompson, C.B., Griesser, H., and Mak, T.W. (1995). Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 270, 985–988.PubMedCrossRefGoogle Scholar
  80. Watts, T.H. (2005). Tnf/Tnfr family members in costimulation of T cell responses. Annu. Rev. Immunol., 23, 23–68.PubMedCrossRefGoogle Scholar
  81. Wiethe, C., Dittmar, K., Doan, T., Lindenmaier, W., and Tindle, R. (2003). Provision of 4-1BB ligand enhances effector and memory CTL responses generated by immunization with dendritic cells expressing a human tumor-associated antigen. J. Immunol., 170, 2912–2922.PubMedGoogle Scholar
  82. Wilcox, R.A., Flies, D.B., Zhu, G., Johnson, A.J., Tamada, K., Chapoval, A.I., Strome, S.E., Pease, L.R., and Chen, L. (2002a). Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J. Clin. Invest., 109, 651–659.CrossRefGoogle Scholar
  83. Wilcox, R.A., Tamada, K., Strome, S.E., and Chen, L. (2002b). Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J. Immunol., 169, 4230–4236.Google Scholar
  84. Wilcox, R.A., Tamada, K., Flies, D.B., Zhu, G., Chapoval, A.I., Blazar, B.R., Kast, W.M., and Chen, L. (2004). Ligation of CD137 receptor prevents and reverses established anergy of CD8+ cytolytic T lymphocytes in vivo. Blood, 103, 177–184 (Epub 2003 Sep 2011).PubMedCrossRefGoogle Scholar
  85. Ye, Z., Hellstrom, I., Hayden-Ledbetter, M., Dahlin, A., Ledbetter, J.A., and Hellstrom, K.E. (2002). Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nat. Med., 8, 343–348.PubMedCrossRefGoogle Scholar
  86. Yewdell, J.W., and Del Val, M. (2004). Immunodominance in TCD8+ responses to viruses: Cell biology, cellular immunology, and mathematical models. Immunity, 21, 149–153.PubMedCrossRefGoogle Scholar
  87. Zheng, G., Wang, B., Chen, A., Choi, B.K., Bae, J.S., Choi, E.M., Kang, W.J., Sakaguchi, S., Vinay, D.S., and Kwon, B.S. (2004). The 4-1BB costimulation augments the proliferation of CD4+CD25+ regulatory T cells 4-1BB-dependent inhibition of immunosuppression by activated CD4+CD25+ T cells. J. Immunol., 173, 2428–2434.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ignacio Melero
    • 1
  • Oihana Murillo
    • 1
  • Iñigo Tirapu
    • 1
  • Eduardo Huarte
    • 1
  • Ainhoa Arina
    • 1
  • Laura Arribillaga
    • 1
  • Juan José Lasarte
    • 1
  1. 1.Centro de Investigación Médica Aplicada y Clínica UniversitariaUniversidad de NavarraPamplonaSpain

Personalised recommendations