Survival Signaling in Retinal Pigment Epithelial Cells in Response to Oxidative Stress: Significance in Retinal Degenerations

  • Nicolas G. Bazan
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (volume 572)


Photoreceptor survival depends on the integrity of retinal pigment epithelial (RPE) cells. The pathophysiology of several retinal degenerations involves oxidative stress-mediated injury and RPE cell death; in some instances it has been shown that this event is mediated by A2E and its epoxides. Photoreceptor outer segments display the highest DHA content of any cell type. RPE cells are active in DHA uptake, conservation, and delivery. Delivery of DHA to photoreceptor inner segments is mediated by the interphotoreceptor matrix. DHA is necessary for photoreceptor function and at the same time is a target of oxidative stress-mediated lipid peroxidation. It has not been clear whether specific mediators generated from DHA contribute to its biological properties. Using ARPE-19 cells, we demonstrated the synthesis of 10,17S-docosatriene [neuroprotectin D1 (NPD1)]. This synthesis was enhanced by the calcium ionophore A-23187, by IL-1β, or by supplying DHA. Added NPD1 (50nM) potently counteracted H2O2/tumor necrosis factor-α oxidative stress-triggered apoptotic DNA damage in RPE. NPD1 also up-regulated the anti-apoptotic proteins Bcl-2 and Bcl-xL and decreased pro-apoptotic Bax and Bad expression. Moreover, NPD1 (50nM) inhibited oxidative stress-induced caspase-3 activation. NPD1 also inhibited IL-1β-stimulated expression of COX-2. Furthermore, A2E-triggered oxidative stress induction of RPE cell apoptosis was also attenuated by NPD1. Overall, NPD1 protected RPE cells from oxidative stress-induced apoptosis. In conclusion, we have demonstrated an additional function of the RPE: its capacity to synthesize NPD1. This new survival signaling is potentially of interest in the understanding of the pathophysiology of retinal degenerations and in exploration of new therapeutic modalities.


Retinal Pigment Epithelial Retinal Pigment Epithelial Cell Outer Segment Retinal Degeneration Docoshexaenoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. E., Maude, M. B., and Bok, D., 2001, Low docosahexaenoic acid levels in rod outer segment membranes of mice with rds/peripherin and P216L peripherin mutations. Invest. Ophthalmol. Vis. Sci. 42:1715–1720.PubMedGoogle Scholar
  2. Anderson, R. E., Maude, M. B., McClellan, M., Matthes, M. T., Yasumura, D., and LaVail, M. M., 2002, Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations. Mol. Vis. 8:351–358.PubMedGoogle Scholar
  3. Aveldano, M. I., and Bazan, N. G., 1974, Displacement into incubation medium by albumin of highly unsaturated retina free fatty acids arising from membrane lipids. FEBS Lett. 40:53–56.PubMedCrossRefGoogle Scholar
  4. Aveldano, M. I., and Bazan, N. G., 1975, Differential lipid deacylation during brain ischemia in a homeotherm and a poikilotherm. Content and composition of free fatty acids and triacylglycerols. Brain Res. 100:99–110.PubMedCrossRefGoogle Scholar
  5. Aveldano de Caldironi, M. I., and Bazan, N. G., 1977, Acyl groups, molecular species, and labeling by 14C-glycerol and 3H-arachidonic acid of vertebrate retina glycerolipids. Adv. Exp. Med. Biol. 83:249–256.Google Scholar
  6. Barreiro, S. G., Marcheselli, V. L., and Bazan, N. G., 2005, Human retinal pigment epithelial cells protected by NPD1 after A2E-epoxide induction. ARVO abstract B224.Google Scholar
  7. Bazan, N. G., 1970, Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218:1–10.PubMedGoogle Scholar
  8. Bazan, N. G., 1990, Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system. Nutrition and the Brain, vol. 8, R. J. Wurtman, and J. J. Wurtman, eds., Raven Press, Ltd., New York, pp. 1–24.Google Scholar
  9. Bazan, N. G., in press Eicosanoids, docosanoids, platelet-activating factor, and inflammation. Basic Neurochemistry 7th ed. G. Siegel, R. W. Albers, S. Brady, and D. Price, eds. London, Elsevier.Google Scholar
  10. Bazan, N. G., Birkle, D. L., and Reddy, T. S., 1984, Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina. Biochem. Biophys. Res. Commun. 125:741–747.PubMedCrossRefGoogle Scholar
  11. Bazan, N. G., Birkle, D. L., and Reddy, T. S., 1985, Biochemical and nutritional aspects of the metabolism of polyunsaturated fatty acids and phospholipids in experimental models of retinal degeneration. Retinal Degeneration: Experimental and Clinical Studies. M. M. LaVail, R. E. Anderson, and J. Hollyfield, eds. Alan R. Liss, Inc., New York, pp. 159–187.Google Scholar
  12. Bazan N. G., Marcheselli, V. L., Hu, J., Finley, J., Bok, D., and Chandamuri, B., 2005, Pigment epithelium-derived growth factor (PEDF) selectively up-regulates NPD1 synthesis and release throught the apical side of human RPE cells in primary cultures. ARVO abstract B141.Google Scholar
  13. Bicknell, I. R., Darrow, R., Barsalou, L., Fliesler, S. J., and Organisciak, D. T., 2002, Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats. Mol. Vis. 8:333–340.PubMedGoogle Scholar
  14. Bryckaert, M., Guillonneau, X., Hecquet, C., Courtois, Y., and Mascarelli, F., 1999, Both FGF1 and bcl-x synthesis are necessary for the reduction of apoptosis in retinal pigmented epithelial cells by FGF2: role of the extracellular signal-regulated kinase 2. Oncogene. 18:7584–7593.PubMedCrossRefGoogle Scholar
  15. Catalan, J., Moriguchi, T., Slotnick, B., Murthy, M., Greiner, R. S., and Salem, N. Jr., 2002, Cognitive deficits in docosahexaenoic acid-deficient rats. Behav. Neurosci. 116:1022–1031.PubMedCrossRefGoogle Scholar
  16. Choe, H.-G., and Anderson, R. E., 1990, Unique molecular species composition of glycerolipids of frog rod outer segments. Exp. Eye Res. 51:159–165.PubMedCrossRefGoogle Scholar
  17. Gordon, W. C., Rodriguez de Turco, E. B., and Bazan, N. G., 1992, Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Curr. Eye Res. 11:73–83.PubMedGoogle Scholar
  18. Hinton, D. R., He, S., and Lopez, P. F., 1998, Apoptosis in surgically excised choroidal neovascular membranes in age-related macular degeneration. Arch. Ophthalmol. 116:203–209.PubMedGoogle Scholar
  19. Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L., and Serhan, C. N., 2003, Novel docosanoids and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells: autacoids in anti-inflammation. J. Biol. Chem. 278:14677–14687.PubMedCrossRefGoogle Scholar
  20. Hu, J., and Bok, D., 2001, A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers. Mol. Vis. 7:14–19.PubMedGoogle Scholar
  21. Kim, H. Y., Akbar, M., Lau, A., and Edsall, L., 2000, Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. 275:35215–35223.PubMedCrossRefGoogle Scholar
  22. Li, F., Cao, W., and Anderson, R. E., 2001, Protection of photoreceptor cells in adult rats from light-induced degeneration by adaptation to bright cyclic light. Exp. Eye Res. 73:569–577.PubMedCrossRefGoogle Scholar
  23. Liang, Y. G., Jorgensen, A. G., Kaestel, C. G., Wiencke, A. K., Lui, G. M., la Cour, M. H., Ropke, C. H., and Nissen, M. H., 2000, Bcl-2, Bax, and c-Fos expression correlates to RPE cell apoptosis induced by UV-light and daunorubicin. Curr. Eye Res. 20:25–34.PubMedCrossRefGoogle Scholar
  24. Litman, B. J., Niu, S. L., Polozova, A., and Mitchell, D. C., 2001, The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction. J. Mol. Neurosci. 16:237–242.PubMedCrossRefGoogle Scholar
  25. Marcheselli, V. L. Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., Hardy, M., Gimenez, J. M., Chiang, N., Serhan, C. N., and Bazan, N. G., 2003, Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817. Erratum in: J. Biol. Chem. 2003, 278:51974.PubMedCrossRefGoogle Scholar
  26. Mattson, M. P., and Bazan, N. G., in press, Apoptosis and necrosis. Basic Neurochemistry 7th ed. G. Siegel, R. W. Albers, S. Brady, D. Price, eds., London, Elsevier.Google Scholar
  27. Moriguchi, T., and Salem, N. Jr., 2003, Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J. Neurochem. 87:297–309.PubMedCrossRefGoogle Scholar
  28. Neuringer, M., Connor, W. E., Van Petten, C., and Barstad, L., 1984, Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 73:272–276.PubMedCrossRefGoogle Scholar
  29. Neuringer, M., Connor, W. E., Lin, D. S., Barstad, L., and Luck, S., 1986, Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Natl. Acad. Sci. U. S. A. 83:4021–4025.PubMedCrossRefGoogle Scholar
  30. Nourooz-Zadeh, J., Liu, E. H. C., Yhlen, B., Änggåd, E. E., and Halliwell, B., 1999, F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J. Neurochem. 72:734–740.PubMedCrossRefGoogle Scholar
  31. Organisciak, D. T., Darrow, R. M., Jiang, Y. L., and Blanks, J. C., 1996, Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate. Invest. Ophthalmol. Vis. Sci. 37:2243–2257.PubMedGoogle Scholar
  32. Osborne, N. N., Cazevieillem C., Pergandem G., and Wood, J. P., 1997, Induction of apoptosis in cultured human retinal pigment epithelial cells is counteracted by flupirtine. Invest. Ophthalmol. Vis. Sci. 38:1390–1400.PubMedGoogle Scholar
  33. Politi, L. E., Rotstein, N. P., and Carri, N. G., 2001, Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid. Invest. Ophthalmol. Vis. Sci. 42:3008–3015.PubMedGoogle Scholar
  34. Radu, R. A., Mata, N. L., Nusinowitzm S., Lium X., Sieving, P. A., and Travis, G. H., 2003, Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc. Natl. Acad. Sci. USA 100:4742–4747.PubMedCrossRefGoogle Scholar
  35. Reddy, T. S., and Bazan, N. G., 1984, Synthesis of arachidonoyl coenzyme A and docosahexaenoyl coenzyme A in retina. Curr. Eye. Res. 3:1225–1232.PubMedGoogle Scholar
  36. Roberts, L. J. 2nd, Montine, T. J., Markesbery, W. R., Tapper, A. R., Hardy, P., Chemtob, S., Dettbarn, W. D., and Morrow, J. D., 1998, Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273:13605–13612.PubMedCrossRefGoogle Scholar
  37. Rotstein, N. P., Politi, L. E., German, O. L., and Girotti, R., 2003, Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors. Invest. Ophthalmol. Vis. Sci. 44:2252–2259.PubMedCrossRefGoogle Scholar
  38. Salem, N. Jr, Kim, H. Y., and Yergey, J. A., 1986, Docoshexaenoic acid: membrane function and metabolism. The Health Effects of Polyunsaturated Fatty Acids in Seafoods, A. P. Simopoulos, R. R. Kifer, and R. Martin, eds., Academic Press, New York, NY, pp. 263–317.Google Scholar
  39. Salem, N. Jr., Litman, B., Kim, H. Y., and Gawrisch, K., 2001, Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 36:945–959.PubMedCrossRefGoogle Scholar
  40. Scott, B. L., and Bazan, N. G., 1989, Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. U. S. A. 86:2903–2907.PubMedCrossRefGoogle Scholar
  41. Sieving, P. A., Chaudhry, P., Kondo, M., Provenzano, M., Wu, D., Carlson, T. J., Bush, R. A., and Thompson, D. A., 2001, Inhibition of the visual cycle in vivo by 13-cis retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. Proc. Natl. Acad. Sci. USA 98:1835–1840.PubMedCrossRefGoogle Scholar
  42. Simopoulos, A. P., Leaf, A., and Salem, N. Jr., 1999, Workshop on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. J. Am. Coll. Nutr. 18:487–489.PubMedGoogle Scholar
  43. Sparrow, J. R., and Cai, B., 2001, Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest. Ophthalmol. Vis. Sci. 42:1356–1362.PubMedGoogle Scholar
  44. Sparrow, J. R., Vollmer-Snarr, H. R., Zhou, J., Jang, Y. P., Jockusch, S., Itagaki, Y., and Nakanishi, K., 2003, A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J. Biol. Chem. 278:18207–18213.PubMedCrossRefGoogle Scholar
  45. Stinson, A. M., Wiegand, R. D., and Anderson, R. E., 1991, Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J. Lipid Res. 32:2009–2017.PubMedGoogle Scholar
  46. Weisinger, H. S., Armitage, J. A., Jeffrey, B. G., Mitchell, D. C., Moriguchi, T., Sinclair, A. J., Weisinger, R. S., and Salem, N. Jr., 2002, Retinal sensitivity loss in third-generation n-3 PUFA-deficient rats. Lipids. 37:759–765.PubMedCrossRefGoogle Scholar
  47. Wheeler, T. G., Benolken, R. M., and Anderson, R. E., 1975, Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science. 188:1312–1314.PubMedCrossRefGoogle Scholar
  48. Wiegand, R. D., and Anderson, R. E., 1983, Phospholipid molecular species of frog rod outer segment membranes. Exp. Eye Res. 37:159–173.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Nicolas G. Bazan
    • 1
  1. 1.Neuroscience Center of Excellence and Department of OphthalmologyLouisiana State University Health Sciences Center School of Medicine in New OrleansNew OrleansUSA

Personalised recommendations