Making PCR a Normal Routine of the Food Microbiology Lab

  • Susan Sanchez
Part of the Food Microbiology and Food Safety book series (FMFS)


Polymerase Chain Reaction Polymerase Chain Reaction Assay Listeria Monocytogenes Foodborne Pathogen Polymerase Chain Reaction Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anonymous. 2002. Microbiology of food and animal feeding stuffs—Protocol for the validation of alternative methods (EN ISO/FIDS 16140). European Committee for Standardization, AFNOR, Paris, France.Google Scholar
  2. 2.
    Anonymous. 2002b. AFNOR Certificate QUA-18/3-11/02: Dupont Qualicon BAX® system PCR assay for screening Salmonella. Scholar
  3. 3.
    Anonymous. 2002c. BAX® system with automated detection PCR assay for screening for Salmonella. Scholar
  4. 4.
    Anonymous. 2002d. BAX® system with automated detection PCR assay for screening for L. monocytogenes. Scholar
  5. 5.
    Anonymous. 2003a. Evaluation of the BAX® system for the detection of Salmonella in selected foods (DuPont Qualicon, Inc.; Willmington, DE). Scholar
  6. 6.
    Anonymous. 2003b. FSIS procedure for the use of the BAX® system PCR assay for screening Salmonella in raw meat, carcass sponge samples, whole bird rinses, readyto-eat meat and poultry products and pasteurized egg products. Scholar
  7. 7.
    Anonymous. 2003c. NordVal Certificate 2003-20-5408-00023: Dupont Qualicon BAX® system PCR assay for screening Salmonella. Scholar
  8. 8.
    Anonymous. 2003d. Roche Diagnostics LightCycler® foodproof Salmonella detection kit for Salmonella spp. in combination with ShortPrep foodproof I Kit. Scholar
  9. 9.
    Anonymous. 2004a. BAX® system PCR assay for screening E. coli O157:H7 kit. Scholar
  10. 10.
    Anonymous. 2004b. Roche/BIOTECON diagnostics LightCycler® Listeria monocytogenes detection systems in combination with the Listeria ShortPrep foodproof® II kit. Scholar
  11. 11.
    Anonymous. 2005. FSIS procedure for the use of Listeria monocytogenes BAX® screening test. Scholar
  12. 12.
    Bhagwat, A.A. 2003. Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains by real-time PCR. Int. J. Food Microbiol. 84:217–224.Google Scholar
  13. 13.
    Borst, A., A.T. Box, and A.C. Fluit. 2004. False-positive results and contamination in nucleic-acid amplification assays: Suggestions for a “prevent and destroy” strategy. Eur. J. Clin. Microbiol. Infect. Dis. 23:289–299.CrossRefGoogle Scholar
  14. 14.
    Coquard, D., A. Exinger, and J.M. Jeltsch. 1999. Routine detection of Salmonella species in water: Comparative evaluation of the ISO and PROBELIA polymerase chain reaction methods. J. AOAC Int. 82:871–876.Google Scholar
  15. 15.
    Cui, S., C.M. Schroeder, D.Y. Zhang, and J. Meng. 2003. Rapid sample preparation method for PCR-based detection of Escherichia coli O157:H7 in ground beef. J. Appl. Microbiol. 95:129–134.CrossRefGoogle Scholar
  16. 16.
    Englen, M.D. and P.J. Fedorka-Cray. 2002. Evaluation of commercial diagnostic PCR for the identification of Campylobacter jejuni and Campylobacter coli. Lett. Appl. Microbiol. 55:353–356.CrossRefGoogle Scholar
  17. 17.
    Erlandsson, A., A. Backman, E. Tornqvist, and P. Olsen. 1997. PCR assay or culture for diagnosis of Bordetella pertussis in the routine diagnostic laboratory? J. Infect. 35:221–224.CrossRefGoogle Scholar
  18. 18.
    Fach, P., F. Dilasser, J. Grout, and J. Tache. 1999. Evaluation of a polymerase chain reaction-based test for detecting Salmonella spp. in food samples: Probleia Salmonella spp. J. Food Prot. 62:1387–1393.Google Scholar
  19. 19.
    Herrera-Leon, S., J.R. McQuiston, M.A. Usera, P.I. Fields, J. Garaizar, and M.A. Echeita. 2004. Multiplex PCR for distinguishing the most common phase-1 flagellar antigens of Salmonella spp. J. Clin. Microbiol. 42:2581–2586.CrossRefGoogle Scholar
  20. 20.
    Hochberg, A.M., A. Roering, V. Gangar, M. Curiale, and W.M. Barbour. 2001. Sensitivity and specificity of the BAX for screening/Listeria monocytogenes assay: Internal validation and independent laboratory study. J. AOAC Int. 84:1087–1097.Google Scholar
  21. 21.
    Hong, Y., T. Liu, C. Hofacre, M. Maier, S. Ayers, D.G. White, L. Wang, and J. J. Maurer. 2003. A restriction fragment length polymorphism based polymerase chain reaction as an alternative to serotyping for identifying Salmonella serotypes. Avian Dis. 47:387–395.CrossRefGoogle Scholar
  22. 22.
    Hoorfar, J., N. Cook, B. Malorny, M. Wagner, M.D. De, A. Abdulmawjood, and P. Fach. 2003. Making internal amplification control mandatory for diagnostic PCR. J. Clin. Microbiol. 41:5835.CrossRefGoogle Scholar
  23. 23.
    Hoorfar, J., N. Cook, B. Malorny, M. Wagner, M.D. De, A. Abdulmawjood, and P. Fach. 2004. Diagnostic PCR: Making internal amplification control mandatory. Lett. Appl. Microbiol. 38:79–80.CrossRefGoogle Scholar
  24. 24.
    Hoorfar, J. and N. Cook. 2003. Critical aspects of standardization of PCR. In K. Sachese and J. Frey (eds.), PCR Detection of Microbial Pathogens: Methods in Molecular Microbiology, Vol. 216, pp. 51–64.Google Scholar
  25. 25.
    Josefsen, M.H., S.T. Lambertz, S. Jensen, and J. Hoorfar. 2003. Food-PCR. Validation and standardization of diagnostic PCR for detection of Yersinia enterocolitica and other foodborne pathogens. Adv. Exp. Med. Biol. 529:443–449.Google Scholar
  26. 26.
    Keramas, G., D.D. Bang, M. Lund, M. Madsen, H. Bunkenborg, P. Telleman, and C.B. Christensen. 2004. Use of culture, PCR analysis, and DNA microarrays for detection of Campylobacter jejuni and Campylobacter coli from chicken feces. J. Clin. Microbiol. 42:3985–3991.CrossRefGoogle Scholar
  27. 27.
    Liming, S.H. and A.A. Bhagwat. 2004. Application of a molecular beacon-real-time PCR technology to detect Salmonella species contaminating fruits and vegetables. Int. J. Food Microbiol. 95:177–187.CrossRefGoogle Scholar
  28. 28.
    Liu, T., K. Liljebjelke, E. Bartlett, C.L. Hofacre, S. Sanchez, and J.J. Maurer. 2002. Application of nested PCR to detection of Salmonella in poultry environments. J. Food Prot. 65:1227–1232.Google Scholar
  29. 29.
    Lo, Y.M. 1998. Methods in Molecular Medicine: Clinical Applications of PCR, Vol. 16. Humana Press Inc., Totowa, NJ.Google Scholar
  30. 30.
    Loeffler, J., K. Schmidt, H. Hebart, U. Schumacher, and H. Einsele. 2002. Automated extraction of genomic DNA from medically important yeast species and filamentous fungi by using the MagNA pure LC system. J. Clin. Microbiol. 40:2240–2243.CrossRefGoogle Scholar
  31. 31.
    Luk, J.M., U. Kongmuang, R.S. Tsang, and A.A. Lindberg. 1997. An enzyme-linked immunosorbent assay to detect PCR products of the rfbS gene from serogroup D salmonella: A rapid screening prototype. J. Clin. Microbiol. 35:714–718.Google Scholar
  32. 32.
    Macrina, F.L. 1995. Scientific Integrity: An Introductory Text with Cases. ASM Press, Washington, DC.Google Scholar
  33. 33.
    Malorny, B., E. Paccassoni, P. Fach, C. Bunge, A. Martin, and R. Helmuth. 2004. Diagnostic real-time PCR for detection of Salmonella in food. Appl. Environ. Microbiol. 70:7046–7052.CrossRefGoogle Scholar
  34. 34.
    Malorny, B., P.T. Tassios, P. Radstrom, N. Cook, M. Wagner, and J. Hoorfar. 2003. Standardization of diagnostic PCR for the detection of foodborne pathogens. Int. J. Food.Google Scholar
  35. 35.
    Metzger-Boddien, C., A. Bostel, and J. Kehle. 2004. AnDiaTec Salmonella sp. PCRELISA for analysis of food samples. J. Food Prot. 67:1585–1590.Google Scholar
  36. 36.
    Nogva, H.K., K. Rudi, K. Naterstad, A. Holck, and D. Lillehaug. 2000. Application of 5’-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl. Enivorn. Microbiol. 66:4266–4271.CrossRefGoogle Scholar
  37. 37.
    Riley, L. W. 2004. Molecular epidemiology of infectious diseases: principles and practices. ASM Press, Washington, DC.Google Scholar
  38. 38.
    Rudi, K., H.K. Hoidal, T. Katla, B.K. Johansen, J. Nordal, and K.S. Jakobsen. 2004. Direct real-time PCR quantification of Campylobacter jejuni in chicken fecal and cecal samples by integrated cell concentration and DNA purification. Appl. Environ. Microbiol. 70:790–797.CrossRefGoogle Scholar
  39. 39.
    Sails, A.D., A.J. Fox, F.J. Bolton, D.R. Wareing, and D.L. Greenway. 2003. A realtime PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Appl. Environ. Microbiol. 69:1383–1390.CrossRefGoogle Scholar
  40. 40.
    Sarkar, G. and S.S. Sommer. 1993. Removal of DNA contamination in polymerase chain reaction reagents by ultraviolet irradiation. Methods Enzymol. 218:381–388.CrossRefGoogle Scholar
  41. 41.
    Sergeev, N.,M. Distler, S. Courtney, S.F. Al-Khaldi, D. Volokhov, V. Chizhikov, and A. Rasooly. 2004. Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens. Bioelectron. 20:684–698.CrossRefGoogle Scholar
  42. 42.
    Shearer, A.E., C.M. Strapp, and R.D. Joerger. 2001. Evaluation of a polymerase chain reaction-based system for detection of Salmonella enteritidis, Escherichia coli O157:H7, Listeria spp., and Listeria monocytogenes on fresh fruits and vegetables. J. Food Prot. 64:788–795.Google Scholar
  43. 43.
    Shi, P.Y., E.B. Kauffman, P. Ren, A. Felton, J.H. Tai, A.P. Dupuis, II, S.A. Jones, K.A. Ngo, D.C. Nicholas, J. Maffei, G.D. Ebel, K.A. Bernard, and L.D. Kramer. 2001. High-throughput detection of West Nile virus RNA. J. Clin. Microbiol. 39:1264–1271.CrossRefGoogle Scholar
  44. 44.
    Silbernagel, K., R. Jechorek, C. Carver, W.M. Barbour, and P. Mrozinski. 2003. Evaluation of the BAX system for detection of Salmonella in selected foods: Collaborative study. J. AOAC Int. 86:1149–1159.Google Scholar
  45. 45.
    Uyttendaele, M., K. Vanwildemeersch, and J. Debevere. 2003. Evaluation of realtime PCR vs. automated ELISA and a conventional culture method using a semisolid medium for detection of Salmonella. Lett. Appl. Microbiol. 37:386–391.CrossRefGoogle Scholar
  46. 46.
    Wellinghausen, N., B. Wirths, A. Essig, and L. Wassill. 2004. Evaluation of the Hyplex Bloodscreen multiplex PCR-enzyme-linked immunosorbent assay system for direct identification of gram-positive cocci and gram-negative bacilli from positive blood cultures. J. Clin. Microbiol. 42:3147–3152.CrossRefGoogle Scholar
  47. 47.
    Wiedbrauk, D.L. and R.L. Hodinka. 1998. Applications of the polymerase chain reaction. In S. Specter, M. Bendinelli, and H. Friedman (eds.), Rapid Detection of Infectious Agents. Plenum Press, New York.Google Scholar
  48. 48.
    Wilson, I.G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63:3741–3751.Google Scholar
  49. 49.
    Wolk, D.M., S.K. Schneider, N.L. Wengenack, L.M. Sloan, and J.E. Rosenblatt. 2002. Real-time PCR method for detection of Encephalitozoon intestinalis from stool specimens. J. Clin. Microbiol. 40:3922–39288.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Susan Sanchez
    • 1
  1. 1.Athens Diagnostic Laboratory, and the Department of Infectious Diseases, College of Veterinary MedicineThe University of GeorgiaAthens

Personalised recommendations