Josephson junction Materials Research Using Phase Qubits

  • R. W. Simmonds
  • D. A. Hite
  • R. McDermott
  • M. Steffen
  • K. B. Cooper
  • K. M. Lang
  • John M. Martinis
  • D. P. Pappas

Abstract

At present, the performance of superconducting qubits is limited by decoherence. Strong decoherence of phase qubits is associated with spurious microwave resonators residing within the Josephson junction tunnel barrier.1 In this Chapter three different fabrication techniques for producing tunnel junctions that vary the properties of the superconductor-insulator interface are investigated. Through experimental measurements, the junction and corresponding qubit quality is characterized. A strong correlation between the morphology of oxidized base electrodes and the lowering of subgap currents in the junction I–V characteristics is found, while there is no noticeable improvement in the performance of fabricated phase qubits. Thus, “traditional” indicators of junction performance may not be enough to determine qubit performance. However, truly crystalline insulating barriers may be the key to improving Josephson junction based qubits.

Keywords

Josephson junctions Quantum computing Qubits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Simmonds, K. M. Lang, D. A. Hite, D. P. Pappas, John M. Martinis, Decoherence in josephson phase qubits from junction resonators, Phys. Rev. Lett. 93, 077003 (2004).CrossRefADSGoogle Scholar
  2. 2.
    John Clarke, Hans Mooji, Michel Devoret (private communication).Google Scholar
  3. 3.
    J. M. Martinis, M. H. Devoret, J. Clarke, Energy-level quantization in the zero-voltage state of a currentbiased Josephson junction, Phys. Rev. Lett. 55, 1543 (1985).CrossRefADSGoogle Scholar
  4. 4.
    K. B. Cooper, Matthias Steffen, R. McDermott, R. W. Simmonds, Seongshik Oh, D. A. Hite, D. P. Pappas, John M. Martinis, Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout, cond-mat/0405710 accepted by Phys. Rev. Lett. (2004).Google Scholar
  5. 5.
    A. I. Braginski, J. Talvacchio, M. A. Janocko, and J. R. Gavaler, Crystalline oxide tunnel barriers formed by thermal oxidation of aluminum overlayers on superconductor surfaces J. Appl. Phys. 60, 2058 (1986).CrossRefADSGoogle Scholar
  6. 6.
    K. M. Lang, S. Nam, J. Aumentando, C. Urbina, and John M. Martinis, Banishing quasiparticles from Josephson-junction qubits: Why and how to do it, IEEE Trans. Appl. Supercond. 13, 989 (2003).CrossRefGoogle Scholar
  7. 7.
    B. S. Swartzentruber, Y.-W. Mo, M. B. Webb, and M. G. Lagally, Scanning tunneling microscopy studies of structural disorder and steps on Si surfaces, J. Vac. Sci. Technol. A 7, 2901 (1989).CrossRefADSGoogle Scholar
  8. 8.
    H. J. Wen, M. Dhne-Prietsch, A. Bauer, M. T. Cuberes, I. Manke, and G. Kaindl, Thermal annealing of the epitaxial Al/Si(111)7 × 7 interface: Al clustering, interfacial reaction, and Al-induced p+ doping, J. Vac. Sci. Technol. A 13, 2399 (1995).CrossRefADSGoogle Scholar
  9. 9.
    L. Aballe, C. Rogero, P. Kratzer, S. Gokhale, and K. Horn, Probing interface electronic structure with overlayer quantum-well resonances: Al/Si(111), Phys. Rev. Lett. 87, 156801 (2001).CrossRefADSGoogle Scholar
  10. 10.
    L. Aballe, C. Rogero, S. Gokhale, S. Kulkarni, and K. Horn, Quantum-well states in ultrathin aluminium films on Si(111), Surf. Sci. 482–485, 488 (2001).CrossRefGoogle Scholar
  11. 11.
    L. Floreano, D. Cvetko, F. Bruno, G. Bavdek, A. Cossaro, R. Gotter, A. Verdini, and A. Morgante, Quantum size effects in the low temperature layer-by-layer growth of Pb on Ge(001), Prog. Surf. Sci. 72, 135 (2003).CrossRefADSGoogle Scholar
  12. 12.
    E. N. Bratus, V. S. Shumeiko, G. Wendin, Theory of subharmonic gap structure in superconducting mesoscopic tunnel contacts, Phys. Rev. Lett. 74, 2110 (1995)CrossRefADSGoogle Scholar
  13. 13.
    D. Averin, A. Bardas, AC Josephson effect in a single quantum channel, Phys. Rev. Lett. 75, 1831 (1995)CrossRefADSGoogle Scholar
  14. 14.
    Theodore Van Duzer and Charles W. Turner Principles of Superconductive Devices and Circuits (Prentice Hall, New Jersey, 1999) pp. 194–195.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • R. W. Simmonds
    • 1
  • D. A. Hite
    • 1
    • 2
  • R. McDermott
    • 1
    • 3
  • M. Steffen
    • 1
    • 3
  • K. B. Cooper
    • 1
    • 3
  • K. M. Lang
    • 1
    • 4
  • John M. Martinis
    • 1
    • 3
  • D. P. Pappas
    • 1
  1. 1.National Institute of Standards and TechnologySt. Boulder
  2. 2.Physics DepartmentWestern State College of ColoradoGunnison
  3. 3.Physics DepartmentUniversity of CaliforniaSanta Barbara
  4. 4.Physics DepartmentColorado CollegeColorado Springs

Personalised recommendations