Advertisement

Problems in the Logic of Provability

  • Lev Beklemishev
  • Albert Visser
Part of the International Mathematical Series book series (IMAT, volume 4)

Keywords

Modal Logic Propositional Logic Proof Theory Peano Arithmetic Arithmetical Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Abashidze, Ordinal completeness of the Gödel-Löb modal system [in Russian], In: Intensional Logics and Logical Structure of Theories: Material from the Fourth Soviet-Finnish Symposium on Logic, Telavi, May 20–24, 1985, Tbilisi, Metsniereba, 1988, pp. 49–73.Google Scholar
  2. 2.
    S. Abramsky, Algorithmic game semantics. A tutorial introduction, In: H. Schwichtenberg (ed.) et al, Proof and System-Reliability. Proc. NATO Advanced Study Institute, Marktoberdorf, Germany, July 24–August 5, 2001, Dordrecht, Kluwer Academic Publishers, 2002, pp. 21–47.Google Scholar
  3. 3.
    S. Artemov, Explicit provability and constructive semantics, Bull. Symbolic Log. 7 (2001), no. 1, 1–36.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. N. Artemov, Applications of modal logic in proof theory [in Russian], In: Questions of Cybernetics: Nonclassical Logics and Their Applications, Moscow, Nauka, 1982, pp. 3–20.Google Scholar
  5. 5.
    S. N. Artemov and L. D. Beklemishev, On propositional quantifiers in provability logic, Notre Dame J. Formal Logic 34 (1993), no. 3, 401–419.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. N. Artemov and L.D. Beklemishev, Provability logic, In: D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, 2nd ed., Vol. 13, Dordrecht, Kluwer, 2004, pp. 229–403.Google Scholar
  7. 7.
    H. Barendregt, Towards an interactive mathematical proof language, In: F. Kamareddine (ed.), Thirty Five Years of Automath, Dordrecht, Kluwer, 2003, pp. 25–36.Google Scholar
  8. 8.
    J. Barwise and J. Etchemendy, Visual information and valid reasoning, In: W. Zimmerman and S. Cunningham (eds.), Visualization in Teaching and Learning Mathematics, Washington, Math. Ass. Amer. 1990, pp. 9–24.Google Scholar
  9. 9.
    L. D. Beklemishev, On the classification of propositional provability logics [in Russian], Izv. AN SSSR, Ser. Mat. 53 (1989), no. 5, 915–943; English transl., Math. USSR Izv. 35 (1990), 247-275.MathSciNetGoogle Scholar
  10. 10.
    L. D. Beklemishev, On bimodal logics of provability, Ann. Pure Appl. Logic 68 (1994), no. 2, 115–160.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    L. D. Beklemishev, Bimodal logics for extensions of arithmetical theories, J. Symbolic Logic 61 (1996), no. 1, 91–124.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    L. D. Beklemishev, Provability algebras and proof-theoretic ordinals I, Ann. Pure Appl. Logic 128 (2004), 103–123.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    L. D. Beklemishev, The Worm Principle, Logic Group Preprint Ser. no. 219, Univ. Utrecht, March 2003. http://preprints.phil.uu.nl/lgps/.Google Scholar
  14. 14.
    L. D. Beklemishev, M. Pentus, and N. Vereshchagin, Provability, Complexity, Grammars, Am. Math. Soc. Transl. Series 2, 192, 1999.Google Scholar
  15. 15.
    L. D. Beklemishev and A. Visser, On the Limit Existence Principles in Elementary Arithmetic and Related Topics, Tech. Report LGPS no. 224, Dept. Phil., Univ. Utrecht, 2004.Google Scholar
  16. 16.
    A. Berarducci, The interpretability logic of Peano arithmetic, J. Symbolic Logic 55 (1990), 1059–1089.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Berarducci and R. Verbrugge, On the provability logic of bounded arithmetic, Ann. Pure Appl. Logic 61 (1993), 75–93.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Blass, Infinitary combinatorics and modal logic, J. Symbolic Logic 55 (1990), 7611–778.MathSciNetGoogle Scholar
  19. 19.
    A. Blass and Yu. Gurevich, Algorithms vs. Machines, Bull. Europ. Ass. Theoret. Comput. Sci. 77(200), June, 96–118.Google Scholar
  20. 20.
    A. Blass and Yu. Gurevich, Algorithms: A Quest for Absolute Definitions, Bull. Europ. Ass. Theoret. Comput. Sci. 81 (2003), Oct., 195–225.MathSciNetzbMATHGoogle Scholar
  21. 21.
    G. Boolos, The Logic of Provability, Cambridge, Cambridge Univ. Press, 1993.zbMATHGoogle Scholar
  22. 22.
    G. Boolos and G. Sambin, Provability: the emergence of a mathematical modality, Studia Logica 50 (1991), no. 1, 1–23.zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    W. Burr, Fragments of Heyting arithmetic, J. Symbolic Logic 65 (2000), no. 3, 1223–1240.zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Buss, Bounded arithmetic, Napoli, Bibliopolis, 1986.zbMATHGoogle Scholar
  25. 25.
    T. Carlson, Modal logics with several operators and provability interpretations, Israel J. Math. 54 (1986), 14–24.zbMATHMathSciNetGoogle Scholar
  26. 26.
    D. de Jongh and G. Japaridze, The logic of provability, In: S. R. Buss (ed.), Handbook of Proof Theory, Stud. Logic Found. Math. 137 Amsterdam, Elsevier, 1998, pp. 475–546.Google Scholar
  27. 27.
    D. H. J. de Jongh, The maximality of the intuitionistic predicate calculus with respect to Heyting’s Arithmetic, J. Symbolic Logic 36 (1970), 606.Google Scholar
  28. 28.
    D. H. J. de Jongh and F. Veltman, Provability logics for relative interpretability, In: [64, pp. 31–42].Google Scholar
  29. 29.
    D. H. J. de Jongh and A. Visser, Embeddings of Heyting algebras, In: M. Hyland, C. Steinhorn, and J. Truss (eds.), Logic: from Foundations to Applications, Oxford, Clarendon Press, 1996 [49, pp. 187–213].Google Scholar
  30. 30.
    K. Došen, Idedntity of proofs based on normalization and generality, Bull. Symbolic Log. 9 (2003), 477–503.CrossRefzbMATHGoogle Scholar
  31. 31.
    S. Feferman, Arithmetization of metamathematics in a general setting, Fundamen. Math. 49 (1960), 35–92.zbMATHMathSciNetGoogle Scholar
  32. 32.
    S. Feferman, Transfinite recursive progressions of axiomatic theories, J. Symbolic Logic 27 (1962), 259–316.MathSciNetCrossRefGoogle Scholar
  33. 33.
    H. Friedman, Some applications of Kleene’s methods for intuitionistic systems, In: A. R. D. Mathias and H. Rogers (eds.), Cambridge Summerschool in Mathematical Logic, Berlin etc., Springer-Verlag, 1973, pp. 113–170.Google Scholar
  34. 34.
    H. Friedman, The disjunction property implies the numerical existence property, Proc. Nat. Acad. USA, 72 (1975), 2877–2878.zbMATHCrossRefGoogle Scholar
  35. 35.
    Yu. V. Gavrilenko, Recursive realizability from the inuitionistic point of view, Soviet. Math. Dokl. 23 (1981), 9–14.zbMATHGoogle Scholar
  36. 36.
    G. Gentzen, Die Wiederspruchsfreiheit der reinen Zahlentheorie, Math. Ann. 112 (1936), no. 4, 493–565.zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    G. Gentzen, Neue Fassung des Wiederspruchsfreiheitsbeweises für die reine Zahlentheorie, Forsch. Logik Grund. Wiss. 4 (1938), 19–44.zbMATHGoogle Scholar
  38. 38.
    S. Ghilardi, Unification in intuitionistic logic, J. Symbolic Logic 64 (1990), 859–880.MathSciNetGoogle Scholar
  39. 39.
    J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987), 1–102.zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    J.-Y. Girard, Proof Theory and Logical Complexity. Studies in Proof Theory. Monographs 1, Napoli, Bibliopolis, 1987.Google Scholar
  41. 41.
    J.-Y. Girard, Locus solum: From the rules of logic to the logic of rules, Math. Structures Comput. Sci. 11 (2001), no. 3, 301–506.zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, Cambridge, Cambridge Univ. Press, 1989.zbMATHGoogle Scholar
  43. 43.
    K. Gödel, Eine Interpretation des intuitionistischen Aussagenkalkuls Ergebnisse Math. Kolloq. (1933), 39–40.Google Scholar
  44. 44.
    O. Goldreich, Zero-knowledge twenty years after its invention, Tutorial, URL: http://www.wisdom.weizmann.ac.il/oded/zk-tut02.html, 2004.Google Scholar
  45. 45.
    S. Goldwasser, S. Micali, and C. Rako, The knowledge complexity of interactive proof systems, SIAM J. Comput. 18 (1989), 186–208.zbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    S. V. Goryachev, On interpretability of some extensions of arithmetic [in Russian], Mat. Zametki, 40 (1986), 561–572.zbMATHMathSciNetGoogle Scholar
  47. 47.
    P. Hájek and F. Montagna, The logic of Π1-conservativity, Arch. Math. Logik 30 (1990), 113–123.zbMATHCrossRefGoogle Scholar
  48. 48.
    P. Hájek and P. Pudlák, Metamathematics of First Order Arithmetic, Berlin etc., Springer-Verlag, 1993.zbMATHGoogle Scholar
  49. 49.
    W. Hodges, M. Hyland, C. Steinhorn, and J. Truss (eds.), Logic: from Foundations to Applications, Oxford, Clarendon Press, 1996.zbMATHGoogle Scholar
  50. 50.
    R. Iemhof, On the admissible rules of intuitionistic propositional logic, J. Symbolic Logic 66 (2001), no. 1, 281–294.MathSciNetCrossRefGoogle Scholar
  51. 51.
    R. Iemhof, Provability Logic and Admissible Rules, PhD Thesis, Univ. Amsterdam, 2001.Google Scholar
  52. 52.
    K. N. Ignatiev, Partial Conservativity and Modal logics, ITLI Prepublication Ser. X-91-04, Univ. Amsterdam, 1991.Google Scholar
  53. 53.
    K. N. Ignatiev, On strong provability predicates and the associated modal logics, J. Symbolic Logic 58 (1993), 249–290.zbMATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    G. K. Japaridze, The modal logical means of investigation of provability [in Russian], Thesis in Phil., Moscow, 1986.Google Scholar
  55. 55.
    J. J. Joosten, Interpretability Formalized, PhD Thesis, Univ. Utrecht, 2004.Google Scholar
  56. 56.
    J. J. Joosten and A. Visser, The interpretability logic of all reasonable arithmetical theories, Erkenntnis, 53 (2000), no. 1-2, 3–26.zbMATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    J. J. Joosten and A. Visser, How to derive principles of interpretability logic. A toolkit, In: J. van Benthem, A. Troelstra, F. Veltman, and A. Visser (eds.), Liber Amicorum for Dick de Jongh. ILLC, hhttp://www.illc.uva.nl/D65/i, 2004.Google Scholar
  58. 58.
    A. Kolmogorov and V. Uspensky, On the definition of algorithm [in Russian], Uspekhi Mat. Nauk 13 (1958), no. 4, 3–28; English transl.: Am. Math. Soc. Transl. 29 (1963), 217-245.zbMATHGoogle Scholar
  59. 59.
    J. Krajíček, Bounded Arithmetic, Propositional Logic, and Complexity Theory, Cambridge, Cambridge Univ. Press, 1995.zbMATHGoogle Scholar
  60. 60.
    G. Kreisel, A survey of proof theory. II, In: Proc. 2nd Scandinav. Logic Symposium (Univ. Oslo, Oslo, 1970), Stud. Logic Found. Math. 63 Amsterdam, Elsevier, 1971, pp. 109–170.Google Scholar
  61. 61.
    G. Kreisel and A. Lévy, Reflection principles and their use for establishing the complexity of axiomatic systems, Z. Math. Logik 14 (1968), 97–142.zbMATHGoogle Scholar
  62. 62.
    R. Magari, The diagonalizable algebras (the algebraization of the theories which express Theor.:II), Boll. Unione Mat. Ital., Ser. 4, 12 (1975). Suppl. fasc. 3, 117–125.zbMATHMathSciNetGoogle Scholar
  63. 63.
    Y. Moschovakis, What is an algorithm? In: B. Engquist and W. Schmid (eds.), Mathematics Unlimited, Berlin, Springer-Verlag, 2001, pp. 919–936.Google Scholar
  64. 64.
    P. P. Petkov (ed.), Mathematical Logic, Proc. the Heyting 1988 summer school in Varna, Bulgaria, Plenum Press, 1990.Google Scholar
  65. 65.
    W. Pohlers, Subsystems of set theory and second order number theory, In: S. R. Buss (ed.), Handbook of Proof Theory, Stud. Logic Found. Math. 137 Amsterdam, Elsevier, 1998, pp. 210–335.Google Scholar
  66. 66.
    H. Prakken, Logical Tools for Modelling Legal Argument, A Study of Defeasible Reasoning in Law, Dordrecht, 1997.Google Scholar
  67. 67.
    D. Prawitz, Ideas and results in proof theory, In: Proc. 2nd Scandinav. Logic Symposium (Univ. Oslo, Oslo, 1970), Stud. Logic Found. Math. 63 Amsterdam, Elsevier, 1971, pp. 235–307.Google Scholar
  68. 68.
    N. Preining, Sketch-as-proof, In: G. Gottlob, A. Leitsch, and D. Mundici (eds.), Computational Logic and Proof Theory, Lect. Notes Comput. Sci. 1289 (1997), pp. 264–277.Google Scholar
  69. 69.
    M. Rathjen, Recent advances in ordinal analysis: Π12-CA and related systems, Bull. Symbolic Log. 1 (1995) no. 4, 468–485.zbMATHMathSciNetCrossRefGoogle Scholar
  70. 70.
    G. F. Rose, Propositional calculus and realizability, Trans. Am. Math. Soc. 61 (1953), 1–19.CrossRefGoogle Scholar
  71. 71.
    V. V. Rybakov, A criterion for admissibility of rules in the modal system S4 and intuitionistic logic, Algebra Logic 23 (1984), 369–384.zbMATHCrossRefGoogle Scholar
  72. 72.
    V. V. Rybakov, Admissibility of Logical Inference Rules, Amsterdam, Elsevier, 1997.zbMATHGoogle Scholar
  73. 73.
    A. Schönhage, Storage modification machines, SIAM J. Comput. 9 (1980), 490–508.zbMATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    V. Yu. Shavrukov, The logic of relative interpretability over Peano arithmetic [in Russian], Tech. Report No. 5, Steklov Math. Institute, Moscow, 1988.Google Scholar
  75. 75.
    V. Yu. Shavrukov, A note on the diagonalizable algebras of PA and ZF, Ann. Pure Appl. Logic 61 (1993), 161–173.zbMATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    V. Yu. Shavrukov, Subalgebras of Diagonalizable Algebras of Theories Containing Arithmetic, Disser. Math., no. 323, 1993.Google Scholar
  77. 77.
    V. Yu. Shavrukov, Isomorphisms of diagonalizable algebras, Theoria 63 (1997), no. 3, 210–221.MathSciNetCrossRefGoogle Scholar
  78. 78.
    V. Yu. Shavrukov, Undecidability in diagonalizable algebras, J. Symbolic Logic 62 (1997), no. 1, 79–116.zbMATHMathSciNetCrossRefGoogle Scholar
  79. 79.
    T. Smiley, The logical basis of ethics, Act. Phil. Fennica 16 (1963), 237–246.MathSciNetGoogle Scholar
  80. 80.
    C. Smoryński, Applications of Kripke models, In: [87], pp. 324–391.Google Scholar
  81. 81.
    C. Smoryński, Fifty years of self-reference, Notre Dame J. Formal Logic 22 (1981), 357–374.MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    C. Smoryński, Self-Reference and Modal Logic, Berlin, Springer-Verlag, 1985.zbMATHGoogle Scholar
  83. 83.
    R. M. Solovay, Provability interpretations of modal logic, Israel J. Math. 28 (1976), 33–71.MathSciNetGoogle Scholar
  84. 84.
    G. Sundholm, Proofs as acts versus proofs as objects: Some questions for Dag Prawitz, Theoria 64 (1998), 187–216.MathSciNetCrossRefGoogle Scholar
  85. 85.
    V. Švejdar, Modal analysis of generalized Rosser sentences, J. Symbolic Logic 48 (1983), 986–999.MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    A. Tarski, A. Mostowski, and R. M. Robinson, Undecidable Theories, Amsterdam, North-Holland, 1953.zbMATHGoogle Scholar
  87. 87.
    A. Troelstra, Metamathematical Investigations of Intuitionistic Arithmetic and Analysis, Berlin, Springer-Verlag, Lect. Notes 344, 1973.Google Scholar
  88. 88.
    A. Troelstra and D. van Dalen, Constructivism in Mathematics, Vols. 1, 2, Amsterdam, North-Holland, 1988.Google Scholar
  89. 89.
    A. M. Turing, System of logics based on ordinals, Proc. London Math. Soc., Ser. 2 45 (1939), 161–228.zbMATHGoogle Scholar
  90. 90.
    R. Verbrugge, Efficient Metamathematics, PhD Thesis, Univ. Amsterdam, 1993.Google Scholar
  91. 91.
    A. Visser, Aspects of Diagonalization and Provability, PhD Thesis, Univ. Utrecht, 1981.Google Scholar
  92. 92.
    A. Visser, On the completeness principle, Ann. Math. Logic 22(1982), 263–295.zbMATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    A. Visser, Evaluation, provably deductive equivalence in Heyting’s Arithmetic of substitution instances of propositional formulas, Logic Group Preprint Ser. 4, Dept. Phil., Univ. Utrecht, 1985.Google Scholar
  94. 94.
    A. Visser, Interpretability logic, In: [64, pp. 175–209].Google Scholar
  95. 95.
    A. Visser, The formalization of interpretability, Studia Logica 51(1991), 81–105.MathSciNetCrossRefGoogle Scholar
  96. 96.
    A. Visser, An overview of interpretability logic, In: M. Kracht, M. de Rijke, H. Wansing, and M. Zakhariaschev (eds.), Advances in Modal Logic, Vol. 1, CSLI Lect. Notes, 87 (1998), 307–359.Google Scholar
  97. 97.
    A. Visser, Rules and arithmetics, Notre Dame J. Formal Logic 40 (1999), no. 1, 116–140.zbMATHMathSciNetCrossRefGoogle Scholar
  98. 98.
    A. Visser, Substitutions of Σ01 -sentences: Explorations between intuitionistic propositional logic and intuitionistic arithmetic, Ann. Pure Appl. Logic 114 (2002),no. 1–3, 227–271.zbMATHMathSciNetCrossRefGoogle Scholar
  99. 99.
    A. Visser, Faith and falsity, Ann. Pure Appl. Logic, 131 (2005),103–131.zbMATHMathSciNetCrossRefGoogle Scholar
  100. 100.
    A. Visser, J. van Benthem, D. de Jongh, and G. R. de Lavalette, NNIL, a study in intuitionistic propositional logic In: A. Ponse, M. de Rijke, and Y. Venema (eds.), Modal Logic and Process Algebra, a Bisimulation Perspective, CSLI Lect. Notes 53 (1995), 289–326.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Lev Beklemishev
    • 1
    • 2
  • Albert Visser
    • 2
  1. 1.Steklov Mathematical Institute RASMoscowRussia
  2. 2.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations