Advertisement

Oncology pp 254-268 | Cite as

Tumor Immunology and Immunotherapy

  • Jeffrey Weber
  • Sophie Dessureault
  • Scott Antonia
Chapter

Abstract

The principles of basic cellular immunology as elucidated during the past decade include a much greater understanding of the way cytolytic T cells and helper T cells are generated in the host, how immune tolerance mechanisms lead to the deletion of reactive T cells centrally within the thymus or peripherally within the tissues, and the molecular mechanisms by which T cells recognize cognate antigen and transduce signals to become activated effector cells. A significant level of attention has been paid in recent years to how those principles of basic immunology may be applied to the generation of immunotherapy strategies for cancer. In this chapter, we review recent data on the existence of tumor-specific and tumor-associated antigens that might be recognized by immune effector cells; discuss the development of immune molecules and cytokines that might be effective in mediating tumor regression by an immunologic mechanism; mention new developments on mechanisms of immunosuppression in cancer patients; and review the most recent data on the use of nonspecific and antigen-specific immunotherapies that have promise in the treatment of human malignancy.

Keywords

Dendritic Cell Major Histocompatibility Complex Clin Oncol Human Leukocyte Antigen Major Histocompatibility Complex Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Topalian SL, Solomon D, Rosenberg SA. Tumor specific cytolysis y lymphocytes infiltrating human tumors. J Immunol 1989;142:3714–3725.PubMedGoogle Scholar
  2. 2.
    Van Der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991;254:1643–1647.PubMedCrossRefGoogle Scholar
  3. 3.
    Traversari C, van der Bruggen P, Luescher I, et al. A nonpeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 1992;176:1453–1457.PubMedCrossRefGoogle Scholar
  4. 4.
    Gauler B, van den Eynde B, van der Bruggen P, et al. Human gene AGE-3 codes for an antigen recognized on melanoma cells by autologous lymphocytes. J Exp Med 1994;179:921–929.CrossRefGoogle Scholar
  5. 5.
    Kawakami Y, Eliyahu S, Delgado C, et al. Cloning of the gene coding for a shared melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 1994;96:3515–3519.CrossRefGoogle Scholar
  6. 6.
    Coulie PG, Brichard V, Van Pel A, et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1994;180:35–42.PubMedCrossRefGoogle Scholar
  7. 7.
    Kawakami Y, Eliyahu S, Sakaguchi K, et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor-infiltrating lymphocytes. J Exp Med 1994;180:347–352.PubMedCrossRefGoogle Scholar
  8. 8.
    Romero P, Gervois N, Schneider J, et al. Cytolytic T lymphocyte recognition of the immunodominant HLA-A*0201-restricted Melan-A/MART-1 antigenic peptide in melanoma. J Immunol 1997;159:2366–2374.PubMedGoogle Scholar
  9. 9.
    Romero P, Dunbar PR, Valmori D, et al. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor specific cytolytic T lymphocytes. J Exp Med 1998;188:1641–1650.PubMedCrossRefGoogle Scholar
  10. 10.
    Jimenez M, Maloy WL, Hearing VJ. Specific identification of an authentic clone for mammalian tyrosinase. J Biol Chem 1989;264:3397–3403.PubMedGoogle Scholar
  11. 11.
    Adema GJ, DeBoer AJ, Vogel AM, et al. Molecular characterization of the melanocyte lineage specific antigen gp100. J Biol Chem 1994;269:20126–20133.PubMedGoogle Scholar
  12. 12.
    Bakker ABH, Schreurs WJ, de Boer AJ, et al. Melanocyte lineage specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 1994;179:1005–1011.PubMedCrossRefGoogle Scholar
  13. 13.
    Bakker ABH, Schreurs MWJ, Tafazzul G, et al. Identification of novel peptide derived from the melanocyte specific gp100 antigen as the dominant epitope recognized by an HLA-A2.1 restricted anti-melanoma CTL line. Int J Cancer 1995;62:97–102.PubMedCrossRefGoogle Scholar
  14. 14.
    Kawakami Y, Eliyahu S, Delgado C, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 1994;91:6458–6462.PubMedCrossRefGoogle Scholar
  15. 15.
    Brichard V, Van Pel A, Wolfel T, et al. The tyrosinase gene encodes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1993;178:489–495.PubMedCrossRefGoogle Scholar
  16. 16.
    Wolfel T, Van Pel A, Brichard V, et al. Two tyrosinase nonpeptides ecognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 1994;24:759–764.PubMedCrossRefGoogle Scholar
  17. 17.
    Skipper JCA, Hendrickson RC, Gulden PH, et al. An HLA-A2 restricted tyrosinase antigen on melanoma cells results from post-translational modification and suggests a novel processing pathway for membrane proteins. J Exp Med 1996;183:527–534.PubMedCrossRefGoogle Scholar
  18. 18.
    Weber J, Sondak VK, Scotland R, et al. Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer (Phila) 2003;97(1):186–2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang R-F, Parkhurst MR, Kawakami Y, et al. Utilization of an alternative open reading frame of a normal gene in generating a human cancer antigen. J Exp Med 1996;183:1131–1138.PubMedCrossRefGoogle Scholar
  20. 20.
    Lang KS, Caroli CC, Muhm A, et al. HLA-A2 restricted melanocyte specific CD8(+) T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MART-1. J Invest Dermatol 2001;116:891–897.PubMedCrossRefGoogle Scholar
  21. 21.
    Jaeger E, Chen Y-T, Drijfhout JW, et al. Simultaneous humoral and cellular immune response against cancer testis antigen NY-ESO-1: definition of human histocompatibility leucocyte antigen (HLA)-A2 binding peptide epitopes. J Exp Med 1998;187:265–274.CrossRefGoogle Scholar
  22. 22.
    Wang R-F, Johnston SL, Zeng G, et al. A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. J Immunol 1998;161:3596–3606.Google Scholar
  23. 23.
    Jager E, Chen YT, Drijfhout JW, et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998;187(2):265–270.PubMedCrossRefGoogle Scholar
  24. 24.
    Manici S, Sturniolo T, Imro MA, et al. Melanoma cells present a MAGE-3 epitope to CD4+ cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. J Exp Med 1999;189:871.PubMedCrossRefGoogle Scholar
  25. 25.
    Chaux P, Vantomme V, Stroobant V, et al. Identification of MAGE-3 epitopes presented by HLA-DR molecules to CD4(+) T lymphocytes. J Exp Med 1999;189(5):767–778.PubMedCrossRefGoogle Scholar
  26. 26.
    Schultz ES, Lethe B, Cambiaso CL, et al. A MAGE-A3 peptide presented by HLA-DP4 is recognized on tumor cells by CD4+ cytolytic T lymphocytes. Cancer Res 2000;60(22):6272–6275.PubMedGoogle Scholar
  27. 27.
    Toulokian CE, Leitner WW, Topalian SL, et al. Identification of a MHC class II restricted human gp100 epitope using DR4-IE transgenic mice. J Immunol 2000;164:3535–3542.Google Scholar
  28. 28.
    Zeng G, Touloukian CE, Wang X, et al. Identification of CD4+ T cell epitopes from NY-ESO-1 presented by HLA-DR molecules. J Immunol 2000;165(2):1153–1159.PubMedGoogle Scholar
  29. 29.
    Kobayashi H, Lu J, Celis E. Identification of helper T-cell epitopes that encompass or lie proximal to cytotoxic T-cell epitopes in the gp100 melanoma tumor antigen. Cancer Res 2001;61(20):7577–7584.PubMedGoogle Scholar
  30. 30.
    Zeng G, Wang X, Robbins PF, et al. CD4(+) T cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: association with NY-ESO-1 antibody production. Proc Natl Acad Sci USA 2001;98(7):3964–3969.PubMedCrossRefGoogle Scholar
  31. 31.
    Schlom J. Carcinoembyronic antigen (CEA) peptides and vaccines for carcinoma. In: Kast M (ed). Peptide-Based Cancer Vaccines. Georgetown: Landes Bioscience, 2000:90–105.Google Scholar
  32. 32.
    Marshall J. Carcinoembryonic antigen-based vaccines. Semin Oncol 2003;30:30–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Morse MA, Deng Y, Coleman D, et al. A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 1999;5:1331–1338.PubMedGoogle Scholar
  34. 34.
    Peoples GE, Goedegebuure PS, Smith R, et al. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 1995;92:432–436.PubMedCrossRefGoogle Scholar
  35. 35.
    Fisk B, Blevins TL, Wharton JT, et al. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 1995;181:2109–2117.PubMedCrossRefGoogle Scholar
  36. 36.
    Knutson KL, Schiffman K, Disis ML. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 2001;107:477–484.PubMedCrossRefGoogle Scholar
  37. 37.
    Disis ML, Grabstein KH, Sleath PR, et al. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 1999;5:1289–1297.PubMedGoogle Scholar
  38. 38.
    Knutson KL, Schiffman K, Cheever MA, et al. Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity. Clin Cancer Res 2002;8:1014–1018.PubMedGoogle Scholar
  39. 39.
    Disis ML, Gooley TA, Rinn K, et al. Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 2002;20:2624–2632.PubMedCrossRefGoogle Scholar
  40. 40.
    Butterfield L, Meng W, Koh A, et al. T cell responses to HLAA0201 restricted peptides derived from human alpha fetoprotein. J Immunol 2001;166:5300–5308.PubMedGoogle Scholar
  41. 41.
    Brossart P, Heinrichs KS, Stuhler G, et al. Identification of HLAA2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 1999;93:4309–4317.PubMedGoogle Scholar
  42. 42.
    Legha SS, Papadopoulos NE, Plager C, et al. Clinical evaluation of recombinant interferon alfa-2a (Roferon-A) in metastatic melanoma using two different schedules. J Clin Oncol 1987;5:1240–1246.PubMedGoogle Scholar
  43. 43.
    Kirkwood JM, Ibrahim JG, Sondak VK, et al. Interferon alfa-2a for melanoma metastases. Lancet 2002;359:978–979.PubMedCrossRefGoogle Scholar
  44. 44.
    Pehamberger H, Soyer HP, Steiner A, et al. Adjuvant interferon alfa-2a treatment in resected primary stage II cutaneous melanoma. J Clin Oncol 1998;16:1425–1429.PubMedGoogle Scholar
  45. 45.
    Grob JJ, Dreno B, Salmoniere P, et al. Randomised trial of interferon α-2a as adjuvant therapy in resected primary melanoma thicker than 1.5 mm without clinically detectable node metastases. Lancet 1998;351:1905–1910.PubMedCrossRefGoogle Scholar
  46. 46.
    Cascinelli N, Belli F, Mackie RM, et al. Effect of long-term adjuvant therapy with interferon alpha-2a in patients with regional node metastases from cutaneous melanoma: a randomised trial. Lancet 2001;358:866–869.PubMedCrossRefGoogle Scholar
  47. 47.
    Cameron DA, Cornbleet MC, Mackie RM, et al. Adjuvant interferon alpha 2b in high risk melanoma: the Scottish study. Br J Cancer 2001;84:1146–1149.PubMedCrossRefGoogle Scholar
  48. 48.
    Kleeberg UR, Bröcker EB, Lejeune F, et al. Adjuvant trial in melanoma patients comparing rIFNα to IFNγ to Iscador to a control group after curative resection of high risk primary (>3mm) or regional lymph node metastasis (EORTC 18871). Eur J Cancer 1999;35:582 (abstract 24).CrossRefGoogle Scholar
  49. 49.
    Hancock BW, Wheatley K, Harriss S, et al. Adjuvant interferon in high-risk melanoma: the AIM HIGH Study—United Kingdom Coordinating Committee on Cancer Research Randomized Study of Adjuvant Low-Dose Extended-Duration Interferon Alfa-2a in High-Risk Resected Malignant Melanoma. J Clin Oncol 2004;22(1):53–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Creagan ET, Dalton RJ, Ahmann DL, et al. Randomized, surgical adjuvant clinical trial of recombinant interferon alfa-2a in selected patients with malignant melanoma. J Clin Oncol 1995;13:2776–2783.PubMedGoogle Scholar
  51. 51.
    Kirkwood JM, Strawderman MH, Ernstoff MS, et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Co-operative Oncology Group trial EST1684. J Clin Oncol 1996;14:7–17.PubMedGoogle Scholar
  52. 52.
    Kirkwood JM, Ibrahim JG, Sondak VK, et al. High and low-dose interferon alpha-2b in high risk melanoma: first analysis of Intergroup trial E1690/S9111/C9190. J Clin Oncol 2000;18:2444–2458.PubMedGoogle Scholar
  53. 53.
    Kirkwood JM, Ibrahim JG, Sosman JA, et al. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of Intergroup Trial E1694/S9512/C509801. J Clin Oncol 2001;19:2370–2380.PubMedGoogle Scholar
  54. 54.
    Kirkwood JM, Manola J, Ibrahim J, et al. A pooled analysis of Eastern Cooperative Oncology Group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res 2004;10(5):1670–1677.PubMedCrossRefGoogle Scholar
  55. 55.
    Wheatley K, Ives N, Hancock BW, et al. Does adjuvant interferon α for high risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials. Cancer Treat Rev 2003;29:241–252.PubMedCrossRefGoogle Scholar
  56. 56.
    Eggermont AM, Punt CJ. Does adjuvant systemic therapy with interferon-alpha for stage II–III melanoma prolong survival? Am J Clin Dermatol 2003;4(8):531–536.PubMedCrossRefGoogle Scholar
  57. 57.
    Cole BF, Gelber RD, Kirkwood JM, et al. Quality-of-life adjusted survival analysis of interferon alfa-2b adjuvant treatment of high-risk resected cutaneous melanoma: an Eastern Cooperative Oncology Group study. J Clin Oncol 1996;14:2666–2673.PubMedGoogle Scholar
  58. 58.
    Overwijk WW, Theoret MR, Restifo NP. The future of interleukin-2: enhancing therapeutic anticancer vaccines. Cancer J Sci Am 2000;6(suppl 1):S76–S80.PubMedGoogle Scholar
  59. 59.
    Shimizu K, Fields RC, Giedlin M, et al. Systemic administration of interleukin 2 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines. Proc Natl Acad Sci USA 1999;96:2268–2273.PubMedCrossRefGoogle Scholar
  60. 60.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998;4:321–327.PubMedCrossRefGoogle Scholar
  61. 61.
    Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999;17(7):2105–2116.PubMedGoogle Scholar
  62. 62.
    Atkins MB, Kunkel L, Sznol M, et al. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am 2000;6(suppl 1):S11–S14.PubMedGoogle Scholar
  63. 63.
    Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002;8:793–800.PubMedGoogle Scholar
  64. 64.
    Carter L, Fouser LA, Jussif J, et al. PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol 2002;32:634–643.PubMedCrossRefGoogle Scholar
  65. 65.
    Yee C, Thompson JA, Byrd D, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 2002;99:16168–16173.PubMedCrossRefGoogle Scholar
  66. 66.
    Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133–146.PubMedCrossRefGoogle Scholar
  67. 67.
    Leonard JP, Sherman ML, Fisher GL, et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 1997;90:2541–2548.PubMedGoogle Scholar
  68. 68.
    Noguchi Y, Richards EC, Chen YT, et al. Influence of interleukin 12 on p53 peptide vaccination against established Meth A sarcoma. Proc Natl Acad Sci USA 1995;92:2219–2223.PubMedCrossRefGoogle Scholar
  69. 69.
    Fallarino F, Uyttenhove C, Boon T, et al. Improved efficacy of dendritic cell vaccines and successful immunization with tumor antigen peptide-pulsed peripheral blood mononuclear cells by coadministration of recombinant murine interleukin-12. Int J Cancer 1999;80:324–333.PubMedCrossRefGoogle Scholar
  70. 70.
    Peterson AC, Harlin H, Gajewski TF. Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J Clin Oncol 2003;21:2342–2348.PubMedCrossRefGoogle Scholar
  71. 71.
    Cebon J, Jager E, Shackleton MJ, et al. Two phase I studies of low dose recombinant human IL-12 with Melan-A and influenza peptides in subjects with advanced malignant melanoma. Cancer Immunol 2003;3:7–17.Google Scholar
  72. 72.
    Morse MA, Nair S, Fernandez-Casal M, et al. Preoperative mobilization of circulating dendritic cells by Flt3 ligand administration to patients with metastatic colon cancer. J Clin Oncol 2000;18:3883–3893.PubMedGoogle Scholar
  73. 73.
    Rini BI, Paintal A, Vogelzang NJ, et al. Flt-3 ligand and sequential FL/interleukin-2 in patients with metastatic renal carcinoma: clinical and biologic activity. J Immunother 2002;25:269–277.PubMedCrossRefGoogle Scholar
  74. 74.
    Fong L, Hou Y, Rivas A, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 2001;98:8809–8814.PubMedCrossRefGoogle Scholar
  75. 75.
    Disis ML, Rinn K, Knutson KL, et al. Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers. Blood 2002;99:2845–2850.PubMedCrossRefGoogle Scholar
  76. 76.
    Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998;16:111–135.PubMedCrossRefGoogle Scholar
  77. 77.
    Delamarre L, Holcombe H, Mellman I. Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation. J Exp Med 2003;198:111–122.PubMedCrossRefGoogle Scholar
  78. 78.
    Sotomayor EM, Borrello I, Tubb E, et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 1999;5:780–787.PubMedCrossRefGoogle Scholar
  79. 79.
    Brossart P, Zobywalski A, Grunebach F, et al. Tumor necrosis factor alpha and CD40 ligand antagonize the inhibitory effects of interleukin 10 on T-cell stimulatory capacity of dendritic cells. Cancer Res 2000;60:4485–4492.PubMedGoogle Scholar
  80. 80.
    Pirtskhalaishvili G, Shurin GV, Esche C, et al. Cytokine-mediated protection of human dendritic cells from prostate cancer-induced apoptosis is regulated by the Bcl-2 family of proteins. Br J Cancer 2000;83:506–513.PubMedCrossRefGoogle Scholar
  81. 81.
    Esche C, Gambotto A, Satoh Y, et al. CD154 inhibits tumor-induced apoptosis in dendritic cells and tumor growth. Eur J Immunol 1999;29:2148–2155.PubMedCrossRefGoogle Scholar
  82. 82.
    Dotti G, Savoldo B, Yotnda P, et al. Transgenic expression of CD40 ligand produces an in vivo antitumor immune response against both CD40(+) and CD40(−) plasmacytoma cells. Blood 2002;100:200–207.PubMedCrossRefGoogle Scholar
  83. 83.
    Vonderheide RH, Dutcher JP, et al. Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol 2001;19:3280–3287.PubMedGoogle Scholar
  84. 84.
    Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002;20:709–760.PubMedCrossRefGoogle Scholar
  85. 85.
    Krieg AM. CpG motifs: the active ingredient in bacterial extracts? Nat Med 2003;9:831–835.PubMedCrossRefGoogle Scholar
  86. 86.
    Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature (Lond) 2000;408:740–745.PubMedCrossRefGoogle Scholar
  87. 87.
    Jakob T, Walker PS, Krieg AM, et al. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J Immunol 1998;161:3042–3049.PubMedGoogle Scholar
  88. 88.
    Sparwasser T, Koch ES, Vabulas RM, et al. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 1998;28:2045–2054.PubMedCrossRefGoogle Scholar
  89. 89.
    Hartmann G, Weiner GJ, Krieg AM. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA 1999;96:9305–9310.PubMedCrossRefGoogle Scholar
  90. 90.
    Brunner C, Seiderer J, Schlamp A, et al. Enhanced dendritic cell maturation by TNF-alpha or cytidine-phosphate-guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo. J Immunol 2000;165:6278–6286.PubMedGoogle Scholar
  91. 91.
    Sandler AD, Chihara H, Kobayashi G, et al. CpG oligonucleotides enhance the tumor antigen-specific immune response of a granulocyte macrophage colony-stimulating factor-based vaccine strategy in neuroblastoma. Cancer Res 2003;63:394–399.PubMedGoogle Scholar
  92. 92.
    Rieger R, Kipps TJ. CpG oligodeoxynucleotides enhance the capacity of adenovirus-mediated CD154 gene transfer to generate effective B-cell lymphoma vaccines. Cancer Res 2003;63:4128–4135.PubMedGoogle Scholar
  93. 93.
    Davila E, Kennedy R, Celis E. Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Cancer Res 2003;63:3281–3288.PubMedGoogle Scholar
  94. 94.
    Stern BV, Boehm BO, Tary-Lehmann M. Vaccination with tumor peptide in CpG adjuvant protects via IFN-gamma-dependent CD4 cell immunity. J Immunol 2002;168:6099–6105.PubMedGoogle Scholar
  95. 95.
    Merad M, Sugie T, Engleman EG, et al. In vivo manipulation of dendritic cells to induce therapeutic immunity. Blood 2002;99:1676–1682.PubMedCrossRefGoogle Scholar
  96. 96.
    Halperin SA, Van Nest G, Smith B, et al. A phase I study of the safety and immunogenicity of recombinant hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide adjuvant. Vaccine 2003;21:2461–2467.PubMedCrossRefGoogle Scholar
  97. 97.
    Van Ojik H, Bevaart L, Dahle CE, et al. Phase I/II study with CpG 7909 as adjuvant to vaccination with MAGE-3 protein in patients with MAGE-3 positive tumors. Ann Oncol 2003;13:157.Google Scholar
  98. 98.
    Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994;1:405–413.PubMedCrossRefGoogle Scholar
  99. 99.
    Chambers CA, Krummel MF, Boitel B, et al. The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol Rev 1996;153:27–46.PubMedCrossRefGoogle Scholar
  100. 100.
    Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003;100:8372–8377.PubMedCrossRefGoogle Scholar
  101. 101.
    Hodi FS, Mihm MC, Soiffer RJ, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003;100:4712–4717.PubMedCrossRefGoogle Scholar
  102. 102.
    Hsueh EC, Gupta RK, Qi K. Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine. J Clin Oncol 1998;16:2913–2920.PubMedGoogle Scholar
  103. 103.
    Mitchell MS. Cancer vaccines, a critical review: part I. Curr Opin Invest Drugs 2002;3:140–149.Google Scholar
  104. 104.
    Sosman JA, Unger JM, Liu PY, et al. Southwest Oncology Group. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome. J Clin Oncol 2002;20:2067–2075.PubMedCrossRefGoogle Scholar
  105. 105.
    Sondak VK, Liu PY, Tuthill RJ, et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: overall results of a randomized trial of the Southwest Oncology Group. J Clin Oncol 2002;20:2058–2066.PubMedCrossRefGoogle Scholar
  106. 106.
    Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete GM-CSF stimulates potent, specific, and long lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993;90:3539–3543.PubMedCrossRefGoogle Scholar
  107. 107.
    Soiffer R, Hodi FS, Haluska F, et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003;21:3343–3350.PubMedCrossRefGoogle Scholar
  108. 108.
    Salgia R, Lynch T, Skarin A, et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 2003;21:624–630.PubMedCrossRefGoogle Scholar
  109. 109.
    Jaffee EM, Hruban RH, Biedrzycki B, et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001;19:145–156.PubMedGoogle Scholar
  110. 110.
    Belli F, Testori A, Rivoltini L, et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 2002;20:4169–4180.PubMedCrossRefGoogle Scholar
  111. 111.
    Mazzaferro V, Coppa J, Carrabba MG, et al. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 2003;9:3235–3245.PubMedGoogle Scholar
  112. 112.
    Marchand M, van Baren N, Weynants P, et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 1999;80:219–230.PubMedCrossRefGoogle Scholar
  113. 113.
    Marchand M, Punt CJ, Aamdal S, et al. Immunisation of metastatic cancer patients with MAGE-3 protein combined with adjuvant SBAS-2: a clinical report. Eur J Cancer 2003;39:70–77.PubMedCrossRefGoogle Scholar
  114. 114.
    Jager E, Ringhoffer M, Karbach J, et al. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 1996;66:470–476.PubMedCrossRefGoogle Scholar
  115. 115.
    Slingluff CL Jr, Petroni GR, Yamshchikov GV, et al. Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 2003;21:4016–4026.PubMedCrossRefGoogle Scholar
  116. 116.
    Bettinnotti MP, Panelli MC, Ruppe E, et al. Clinical and immunological evaluation of patients with metastatic melanoma undergoing immunization with the HLA-Cw*0702-associated epitope MAGE-A12:170–178. Int J Cancer 2003;105:210–216.CrossRefGoogle Scholar
  117. 117.
    Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide-or tumor-lysate pulsed dendritic cells. Nat Med 1998;4:328–332.PubMedCrossRefGoogle Scholar
  118. 118.
    Panelli MC, Wunderlish J, Jeffries J, et al. Phase 1 study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J Immunother 2000;23:487–498.PubMedCrossRefGoogle Scholar
  119. 119.
    Sadanaga N, Nagashima H, Mashino K, et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res 2001;7:2277–2284.PubMedGoogle Scholar
  120. 120.
    Thurner B, Haendle I, Roder C, et al. Vaccination with Mage-3A1 peptide-pulsed mature monocyte-derived dendritic cells expands specific cytotoxic T-cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999;190:1669–1678.PubMedCrossRefGoogle Scholar
  121. 121.
    Mackensen A, Herbst B, Chen JL, et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int J Cancer 2000;86:385–392.PubMedCrossRefGoogle Scholar
  122. 122.
    Banchereau J, Palucka AK, Dhodapkar M, et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 2001;61:6451–6458.PubMedGoogle Scholar
  123. 123.
    Geiger J, Hutchinson R, Hohenkirk L, et al. Treatment of solid tumors in children with tumour-lysate-pulsed dendritic cells. Lancet 2000;356:1163–1164.PubMedCrossRefGoogle Scholar
  124. 124.
    Chang AE, Redman BG, Whitfield JR, et al. A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin Cancer Res 2002;8:1021–1032.PubMedGoogle Scholar
  125. 125.
    Yee C, Thompson JA, Byrd D, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 2002;99(25):16168–16173.PubMedCrossRefGoogle Scholar
  126. 126.
    Dudley ME, Wunderlich JR, Yang JC, et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 2002;25:243–251.PubMedCrossRefGoogle Scholar
  127. 127.
    Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002;298:850–854.PubMedCrossRefGoogle Scholar
  128. 128.
    Mitchell MS, Darrah D, Yeung D, et al. Phase I trial of adoptive immunotherapy with cytolytic T lymphocytes immunized against a tyrosinase epitope. J Clin Oncol 2002;20:1075–1086.PubMedCrossRefGoogle Scholar
  129. 129.
    Kageshita T, Wang Z, Calorini L, et al. Selective loss of human leukocyte class I allospecificities and staining of melanoma cells by monoclonal antibodies recognizing monomorphic determinants of class I human leukocyte antigens. Cancer Res 1993;53:3349–3354.PubMedGoogle Scholar
  130. 130.
    van Duinen SG, Ruiter DJ, Broecker EB, et al. Level of HLA antigens in locoregional metastases and clinical course of the disease in patients with melanoma. Cancer Res 1988;48(4):1019–1025.PubMedGoogle Scholar
  131. 131.
    Natali PG, Nicotra MR, Bilgotti A, et al. Selective changes in expression of HLA class I polymorphic determinants in human solid tumors. Proc Natl Acad Sci USA 1989;6:6719–6723.CrossRefGoogle Scholar
  132. 132.
    Marincola FM, Shamamian P, Alexander RB, et al. Loss of HLA haplotype and B locus down-regulation in melanoma cell lines. J Immunol 1994;153:1225–1237.PubMedGoogle Scholar
  133. 133.
    Kageshita T, Hirai S, Ono T, et al. Down-regulation of HLA class I antigen-processing molecules in malignant melanoma: association with disease progression. Am J Pathol 1999;154(3):745–754.PubMedGoogle Scholar
  134. 134.
    Geertsen R, Boni R, Blasczyk R, et al. Loss of single HLA class I allospecificities in melanoma cells due to selective genomic abbreviations. Int J Cancer 2002;99(1):82–87.PubMedCrossRefGoogle Scholar
  135. 135.
    Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002;8(8):793–800.PubMedGoogle Scholar
  136. 136.
    Sato T, McCue P, Masuoka K, et al. Interleukin 10 production by human melanoma. Clin Cancer Res 1996;2(8):1383–1390.PubMedGoogle Scholar
  137. 137.
    Zuany-Amorim C, Sawicka E, Manlius C, et al. Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med 2002;8(6):625–629.PubMedCrossRefGoogle Scholar
  138. 138.
    Kitani A, Fuss I, Nakamura K, et al. Transforming growth factor (TGF)-beta 1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med 2003;198(8):1179–1188.PubMedCrossRefGoogle Scholar
  139. 139.
    Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003;9(5):562–567.PubMedCrossRefGoogle Scholar
  140. 140.
    Strome SE, Dong H, Tamura H, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 2003;63(19):6501–6505.PubMedGoogle Scholar
  141. 141.
    Overwijk WW, Theoret MR, Restifo NP. The future of interleukin-2: enhancing therapeutic anticancer vaccines. Cancer J Sci Am 2000;6(suppl 1):S76–S80.PubMedGoogle Scholar
  142. 142.
    Tatsumi T, Kierstead LS, Ranieri E, et al. Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J Exp Med 2002;196(5):619–628.PubMedCrossRefGoogle Scholar
  143. 143.
    Zou W, Machelon V, Coulomb-L’Hermin A, et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001;7(12):1339–1346.PubMedCrossRefGoogle Scholar
  144. 144.
    Peterson AC, Harlin H, Gajewski TF. Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J Clin Oncol 2003;21(12):2342–2348.PubMedCrossRefGoogle Scholar
  145. 145.
    Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996;2(10):1096–1103.PubMedCrossRefGoogle Scholar
  146. 146.
    Menetrier-Caux C, Montmain G, Dieu MC, et al. Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 1998;92(12):4778–4791.PubMedGoogle Scholar
  147. 147.
    Steinbrink K, Wolfl M, Jonuleit H, et al. Induction of tolerance by IL-10-treated dendritic cells. J Immunol 1997;159(10):4772–4780.PubMedGoogle Scholar
  148. 148.
    Koch F, Stanzl U, Jennewein P, et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med 1996;184(2):741–746.PubMedCrossRefGoogle Scholar
  149. 149.
    Steinbrink K, Jonuleit H, Muller G, et al. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 1999;93(5):1634–1642.PubMedGoogle Scholar
  150. 150.
    Esche C, Shurin GV, Kirkwood JM, et al. Tumor necrosis factor-alpha-promoted expression of Bcl-2 and inhibition of mitochondrial cytochrome c release mediate resistance of mature dendritic cells to melanoma-induced apoptosis. Clin Cancer Res 2001;7(suppl 3):974s–979s.PubMedGoogle Scholar
  151. 151.
    Kiertscher SM, Luo J, Dubinett SM, et al. Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J Immunol 2000;164(3):1269–1276.PubMedGoogle Scholar
  152. 152.
    Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998;16:111–135.PubMedCrossRefGoogle Scholar
  153. 153.
    Delamarre L, Holcombe H, Mellman I. Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation. J Exp Med 2003;198(1):111–122.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jeffrey Weber
    • 1
  • Sophie Dessureault
    • 2
  • Scott Antonia
    • 3
  1. 1.Division of Medical Oncology, Department of MedicineUSC/Norris Cancer CenterLos AngelesUSA
  2. 2.Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center & Research InstituteUniversity of South FloridaTampaUSA
  3. 3.Cellular Therapies Core, Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center & Research InstituteUniversity of South FloridaTampaUSA

Personalised recommendations