Application of Quasi Monte Carlo Methods in Global Optimization

  • Sergei Kucherenko
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 84)


It has been recognized through theory and practice that uniformly distributed deterministic sequences provide more accurate results than purely random sequences. A quasi Monte Carlo (QMC) variant of a multi level single linkage (MLSL) algorithm for global optimization is compared with an original stochastic MLSL algorithm for a number of test problems of various complexities. An emphasis is made on high dimensional problems. Two different low-discrepancy sequences (LDS) are used and their efficiency is analysed. It is shown that application of LDS can significantly increase the efficiency of MLSL. The dependence of the sample size required for locating global minima on the number of variables is examined. It is found that higher confidence in the obtained solution and possibly a reduction in the computational time can be achieved by the increase of the total sample size N. N should also be increased as the dimensionality of problems grows. For high dimensional problems clustering methods become inefficient. For such problems a multistart method can be more computationally expedient.

Key words

stochastic methods low-discrepancy sequences multi level single linkage method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Adhya, M. Tawarmalani, and N. Sahinidis, A lagrangian approach to the pooling problem, Industrial and Engineering Chemistry Research, 38, 1956–1972 (1999).CrossRefGoogle Scholar
  2. 2.
    I.I. Artobolevski, M.D. Genkin, V.K. Grinkevich, I.M. Sobol’ and R.B. Statnikov, Optimization in the theory of machines by an LP-search, Dokl. Akad. Nauk SSSR (in Russian), 200, 1287–1290 (1971).Google Scholar
  3. 3.
    C.G.E. Boender, The Generalized Multinomial Distribution: A Bayesian Analysis and Applications, Ph.D. Dissertation, Erasmus Universiteit Rotterdam, Centrum voor Wiskunde en Informatica (Amsterdam, 1984).Google Scholar
  4. 4.
    P. Bratley, B.L. Fox and H. Niederreiter, Implementation and tests of low-discrepancy sequences, ACM Trans. Model, Comput. Simulation., 2, 195–213 (1992).CrossRefzbMATHGoogle Scholar
  5. 5.
    L.C.W. Dixon and M. Jha, Parallel algorithms for global optimization, Journal of Optimization Theory and Applications, 79, no. l, 385–395 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C.A. Floudas and Panos M. Pardalos (eds.), State of the Art in Global Optimization: Computational Methods and Applications (Princeton University Press, 1996).Google Scholar
  7. 7.
    C. Floudas and Panos M. Pardalos (eds.), Encyclopedia of Optimization (Kluwer Academic Publishers, 2001).Google Scholar
  8. 8.
    C. Floudas, M. Pardalos Panos, C. Adjiman, W.R. Esposito, Z. Gumus, S.T. Harding, J.L. Klepeis, C.A. Meyer and C.A. Schweiger, Handbook of Test Problems in Local and Global Optimization (Kluwer Academic Publishers, 1999).Google Scholar
  9. 9.
    J.H. Holton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math, 2, 84–90 (1960).MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Horst and Panos M. Pardalos (eds.), Handbook of Global Optimization (Kluwer Academic Publishers, 1995).Google Scholar
  11. 11.
    L. Liberti, Linearity embedded in nonconvex programs, Journal of Global Optimization (to appear).Google Scholar
  12. 12.
    M. Locatelli and F. Schoen, Simple linkage: analysis of a threshold-accepting global optimization method, Journal of Global Optimization, 9, 95–111 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    NAG Library (2002); Scholar
  14. 14.
    H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math., 104, 273–337 (1987).zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods (SIAM, Philadelphia, 1992).zbMATHGoogle Scholar
  16. 16.
    S. Paskov and J.F. Traub, Faster evaluation of financial derivatives, The Journal of Portfolio Management, 22, no.l, 113–120 (1995).CrossRefGoogle Scholar
  17. 17.
    A.H.G. Rinnooy Kan and G.T. Timmer, Stochastic global optimization methods, part I, Clustering methods, Mathematical Programming, 39, 27–56 (1987).MathSciNetzbMATHGoogle Scholar
  18. 18.
    A.H.G. Rinnooy Kan and G.T. Timmer, Stochastic global optimization methods, part II, Multilevel methods, Mathematical Programming, 39, 57–78 (1987).MathSciNetzbMATHGoogle Scholar
  19. 19.
    F. Schoen, Random and quasi-random linkage methods in global optimization, Journal of Global Optimization, 13, 445–454 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    I.M. Sobol’, Primer for the Monte Carlo Method (CRC press, Florida, 1994).Google Scholar
  21. 21.
    I.M. Sobol’, On quasi-Monte Carlo integrations, Mathematics and Computers in Simulation, 47, 103–112 (1998).MathSciNetCrossRefGoogle Scholar
  22. 22.
    I.M. Sobol’ On the systematic search in a hypercube, SIAM J. Numer. Anal., 16, 790–793 (1979).MathSciNetCrossRefGoogle Scholar
  23. 23.
    I.M. Sobol’, On an estimate of the accuracy of a simple multidimensional search, Soviet Math. Dokl., 26, 398–401 (1982).Google Scholar
  24. 24.
    I.M. Sobol’, On the distribution of points in a cube and the approximate evaluation of integrals, Comput. Math. Math. Phys., 7, 86–112 (1967).MathSciNetCrossRefGoogle Scholar
  25. 25.
    I.M. Sobol’, On the search for extreme values of functions of several variables satisfying a general Lipschitz condition, USSR Comput. Math. Math. Phys., 28, 112–118 (1988).MathSciNetCrossRefGoogle Scholar
  26. 26.
    I.M. Sobol’, An efficient approach to multicriteria optimum design problems, Survey Math. Ind., 1, 259–281 (1992).MathSciNetGoogle Scholar
  27. 27.
    A.G. Sukharev, Optimal strategies of the search for an extremum, Zh. Vychisl. Mat. i Mat. Fiz (in Russian), 11, 910–924 (1971).Google Scholar
  28. 28.
    A. Törn and A. Zilinskas, Global Optimization, Lecture Notes in Computer Science, 350 (Springer, Berlin, 1989).zbMATHGoogle Scholar
  29. 29.
    A. Törn, M. Afi and S. Vjitanen, Stochastic global optimization, Problem Classes and Solution Techniques, Journal of Global Optimization, 14, 437–447 (1999).CrossRefzbMATHGoogle Scholar
  30. 30.
    J.F. Traub and H. Wozniakowski, A General Theory of Optimal Algorithms (Academic Press, New York, 1980).zbMATHGoogle Scholar
  31. 31.
    S. Zakovic, Global Optimization Applied to an Inverse Light Scattering Problem, PhD Thesis, University of Hertfordshire (Hartfield, 1997).Google Scholar
  32. 32.
    S. Zakovic, Z. Ulanowski, and M C. Bartholomew-Biggs, Application of global optimisation to particle identification using light scattering, Inverse Problems, 14, 1053–1067 (1998).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Sergei Kucherenko
    • 1
  1. 1.CPSEImperial College LondonUK

Personalised recommendations