Advertisement

PACBB: A Projected Adaptive Cyclic Barzilai-Borwein Method for Box Constrained Optimization

  • Hongchao Zhang
  • William W. Hager
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 82)

Summary

The adaptive cyclic Barzilai-Borwein (BB) method [DZ05] for unconstrained optimization is extended to bound constrained optimization. Using test problems from the CUTE library [BCGT95], performance is compared with SPG2 (a BB method), GENCAN (a BB/conjugate gradient scheme), and L-BFGS-B (limited BFGS for bound constrained problems).

Key words

box constrained optimization cyclic Barzilai-Borwein stepsize method nonmonotone line search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BB88]
    J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal., 8 (1988), pp. 141–148.MathSciNetGoogle Scholar
  2. [BCM99]
    E. G. Birgin, I. Chambouleyron, and J. M. Martínez, Estimation of the optical constants and the thickness of thin films using unconstrained optimization, J. Comput. Phys., 151 (1999), pp. 862–880.CrossRefGoogle Scholar
  3. [BM02]
    E. G. Birgin and J. M. Martínez, Large-scale active-set box-constrained optimization method with spectral projected gradients, Comput. Optim. Appl., 23 (2002), pp. 101–125.MathSciNetCrossRefGoogle Scholar
  4. [BMR00]
    E. G. Birgin, J. M. Martínez, and M. Raydan, Nonmonotone Spectral Projected Gradient Methods for convex sets, SIAM J. Optim., 10 (2000), pp. 1196–1211.MathSciNetCrossRefGoogle Scholar
  5. [BMR01]
    E. G. Birgin, J. M. Martínez and M. Raydan, Algorithm 813: SPG-software for convex-constrained optimization, ACM Trans. Math. Software, 27 (2001), pp. 340–349.CrossRefGoogle Scholar
  6. [BLN95]
    R. H. Byrd, P. Lu and J. Nocedal, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput., 16, (1995), pp. 1190–1208.MathSciNetCrossRefGoogle Scholar
  7. [BCGT95]
    I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint, CUTE: constrained and unconstrained testing environments, ACM Trans. Math. Software, 21 (1995), pp. 123–160.CrossRefGoogle Scholar
  8. [DZ01]
    Y. H. Dai and H. Zhang, An Adaptive Two-point Stepsize Gradient Algorithm, Numer. Algorithms, 27 (2001), pp. 377–385MathSciNetCrossRefGoogle Scholar
  9. [DZ05]
    Y. H. Dai, W. W. Hager, K. Schittkowski and H. Zhang, Cyclic Barzilai-Borwein Stepsize Method for Unconstrained Optimization, March, 2005 (see www.math.ufl.edu/~hager/papers/CBB)Google Scholar
  10. [DM02]
    E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Prog., 91 (2002), pp. 201–213.CrossRefGoogle Scholar
  11. [GHR93]
    W. Glunt, T. L. Hayden, and M. Raydan, Molecular conformations from distance matrices, J. Comput. Chem., 14 (1993), pp. 114–120.CrossRefGoogle Scholar
  12. [GLL86]
    L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for Newton’s method, SIAM J. Numer. Anal., 23 (1986), pp. 707–716.MathSciNetCrossRefGoogle Scholar
  13. [Ray01]
    M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems Report in the International Workshop on “Optimization and Control with Applications”, Erice, Italy, July 9–17, 2001Google Scholar
  14. [Toi97]
    Ph. L. Toint, A non-monotone trust region algorithm for nonlinear optimization subject to convex constraints, Math. Prog., 77 (1997), pp. 69–94.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [ZBN97]
    C. Zhu, R. H. Byrd and J. Nocedal, L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization, ACM Trans. Math. Software, 23 (1997), pp. 550–560.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Hongchao Zhang
    • 1
  • William W. Hager
    • 1
  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations