Formation and Role of Nitric Oxide Stores in Adaptation to Hypoxia

  • Eugenia B. Manukhina
  • Anatoly F. Vanin
  • Khristo M. Markov
  • Igor Yu. Malyshev
Part of the Advances in Experimental Medicine and Biology book series (volume 578)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3. References

  1. 1.
    Prabhakar N. R., Fields R. D., Baker T., and Fletcher E. C., Intermittent hypoxia: cell to system, Am. J. Physiol. 281, L524–L528 (2001).Google Scholar
  2. 2.
    Neubauer J. A., Physiological and pathophysiological responses to intermittent hypoxia. J. Appl. Physiol. 90, 1593–1599 (2001).Google Scholar
  3. 3.
    F.Z. Meerson, Essentials of Adaptive Medicine: Protective Effects of Adaptation (Hypoxia Medical LTD, Moscow, 1994)Google Scholar
  4. 4.
    Hong Y., Suzuki S., Yatoh S., Mitzutani M., Nakajima T., Bannai S., Sato H., Soma M., Okuda Y., and Yamada N., Effect of hypoxia on nitric oxide production and its synthase gene expression in rat smooth muscle cells, Biochem. Biophys. Res. Commun. 268, 329–332 (2000).CrossRefGoogle Scholar
  5. 5.
    Bredt D. S., Endogenous nitric oxide synthesis: biological functions and pathophysiology, Free Rad. Res. 31, 577–596 (1999).CrossRefGoogle Scholar
  6. 6.
    Toporsian M., Govindaraju K., Nagi M., Eidelman D., Thibault G., and Ward M. E., Downregulation of endothelial nitric oxide synthase in rat aorta after prolonged hypoxia in vivo, Circ. Res. 86, 671–675 (2000).Google Scholar
  7. 7.
    Pearl J. M., Nelson D. P., Wellmann S. A., Raake J. L., Wagner C. J., McNamara J. L., and Duffy J. Y., Acute hypoxia and reoxygenation impairs exhaled nitric oxide release and pulmonary mechanics, J. Cardiovasc. Surg. 119, 931–938 (2000).CrossRefGoogle Scholar
  8. 8.
    Abu-Soud H. M., Ichimori K., Presta A., and Stuehr D. J., Electron transfer, oxygen binding and nitric oxide feedback inhibition in endothelial nitric-oxide synthase, Biol. Chem. 275, 17349–17357 (2000).CrossRefGoogle Scholar
  9. 9.
    Abu-Soud H. M., Rousseau D. L., and Stuehr D. J., Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to change in oxygen tension, J. Biol. Chem. 271, 32515–32518 (1996).CrossRefGoogle Scholar
  10. 10.
    Rengasamy A., and Johns R. A., Determination of Km for oxygen of nitric oxide synthase isoforms, J. Pharmacol. Exp. Ther. 276, 30–33 (1996).Google Scholar
  11. 11.
    Su Y., and Block E. R., Role of calpain in hypoxic inhibition of nitric oxide synthase activity in pulmonary endothelial cells, Am. J. Physiol. 278, L1204–L1212 (2000).Google Scholar
  12. 12.
    Shi Y., Baker J. E, Zhang C., Tweddell J. S., Su J., and Pritchard K. A:, Chronic hypoxia increases endothelial nitric oxide synthase generation of nitric oxide by increasing heat shock protein 90 association and serin phosphorylation, Circ. Res. 91, 300–306 (2002).CrossRefGoogle Scholar
  13. 13.
    Hampl V., and Herget J., Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension, Physiol. Rev. 80, 1337–1372 (2000).Google Scholar
  14. 14.
    Gess B., Schricker K., Pfeifer M., and Kurtz A., Acute hypoxia upregulates NOS gene expression in rats, Am. J. Physiol. 273, R905–R910 (1997).Google Scholar
  15. 15.
    Ferreiro C. R., Chagas A. C., Carvalho M. H., Dantas A. P., Jatene M. B., Bento de Souza L.C., and Lemos da Luz P., Influence of hypoxia on nitric oxide synthase activity and gene expression in children with congenital heart disease: a novel pathophysiological adaptive mechanism, Circulation 103, 2272–2276 (2001).Google Scholar
  16. 16.
    Manukhina E. B., Malyshev I. Yu., Smirin B. V., Mashina S. Yu., Saltykova V. A., and Vanin A. F., Production and storage of nitric oxide in adaptation to hypoxia, Nitric Oxide 3, 393–401 (1999).CrossRefGoogle Scholar
  17. 17.
    Malyshev I. Yu., Zenina T. A., Golubeva L. Yu., Saltykova V. A., Manukhina E. B., Mikoyan V. D., Kubrina L. N., and Vanin, A. F., NO-dependent mechanisms of adaptation to hypoxia, Nitric Oxide 3, 105–113 (1999).CrossRefGoogle Scholar
  18. 18.
    Manukhina E. B., Smirin B. V., Malyshev I. Yu., Stoclet J.-C., Muller B., Solodkov A. P., Shebeko V. I., and Vanin A. F., Nitric oxide storage in the cardiovascular system, Biology Bulletin, 29, 477–486 (2002).Google Scholar
  19. 19.
    Vanin A.F., Dinitrosyl iron complexes and S-nitrosothiols: two possible forms of nitric oxide stabilization and transport in biological systems, Biochemistry (Moscow) 63, 782–796 (1998).Google Scholar
  20. 20.
    A.F. Vanin, and A.L Kleschyov, in: Nitric Oxide in Transplant Rejection and Anti-Tumor Defense, edited by S. J. Lukiewicz, and J. L. Zweier (Kluwer Academic Publ., Norwell, MA, 1998) pp. 49–82.Google Scholar
  21. 21.
    Flitney F. W., Megson I. L., Flitney D. E., and Butler A. R., Iron-sulphur cluster nitrosyls, a novel class of nitric oxide generator: mechanism of vasodilator action on rat isolated tail artery, Br. J. Pharmacol. 107, 842–848 (1992).Google Scholar
  22. 22.
    Alencar J. L., Lobysheva I., Geffard M., Sarr M., Schott C., Schini-Kerth V. B., Nepveu O., Stoclet J.-C., and Muller B., Role of S-nitrosation of cysteine residues in long-lasting inhibitory effect of nitric oxide on arterial tone, Mol. Pharmacol. 63, 1148–1158 (2003).CrossRefGoogle Scholar
  23. 23.
    Megson I. L., Holme S. A., and Magid K. S., Selective modifiers of glutathione biosynthesis and ‘repriming’ of vascular smooth muscle photorelaxation, Br. J. Pharmacol. 130, 1575–1580 (2000).CrossRefGoogle Scholar
  24. 24.
    Muller B., Kleschyov A. L., and Stoclet J.-C., Evidence for N-acetylcysteine-sensitive nitric oxide storage as dinitrosyl iron complexes in lipopolysaccharide-treated rat aorta, Brit. J. Pharmacol. 119, 1281–1285 (1996).Google Scholar
  25. 25.
    Smirin B. V., Vanin A. F., Malyshev I. Yu., Pokidyshev D. A., and Manukhina E. B., Nitric oxide storage in blood vessels in vivo, Biull. Eksp. Biol. Med. 127, 629–632 (1999) (Russ).CrossRefGoogle Scholar
  26. 26.
    Semenza G. L., HIF-1 and mechanisms of hypoxia sensing, Curr. Opin. Cell Biol. 13, 167–171 (2001).CrossRefGoogle Scholar
  27. 27.
    Yu A. Y., Frid M. G., Shimoda L. A., Wiener C. M., Stenmark K., and Semenza G. L., Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung, Am. J. Physiol. 275, L818–L826 (1998).Google Scholar
  28. 28.
    Wu C.-C., Yen M.-H. Nitric oxide synthase in spontaneously hypertensive rats, Biomed. Sci. 4, 249–255 (1997).CrossRefGoogle Scholar
  29. 29.
    Mikoyan V. D., Kubrina L. N., Manukhina E. B., Malysheva E. V., Malyshev I. Yu., and Vanin A. F., Differences in stimulation of NO synthesis by heat shock in rats of genetically different populations, Biull. Eksp. Biol. Med. 121, 634–637 (1996) (Russ).CrossRefGoogle Scholar
  30. 30.
    Mashina S. Yu., Smirin B. V., Malyshev I. Yu., Lyamina N. P., Senchikhin V. N., Pokidyshev D. A., and Manukhina E. B., Correction of NO-dependent cardiovascular disorders by adaptation to hypoxia, Ross. Fiziol. Zh. Im. I. M. Sechenova 87, 110–117 (2001) (Russ).Google Scholar
  31. 31.
    Pshennikova M. G., Smirin B. V., Bondarenko O. N., Malyshev I. Yu., and Manukhina E. B., Nitric oxide storage in rats of different strains and its role in the antistress effect of adaptation to hypoxia, Ross. Fiziol. Zh. Im. I. M. Sechenova 86, 174–181 (2000) (Russ).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Eugenia B. Manukhina
    • 1
  • Anatoly F. Vanin
    • 2
  • Khristo M. Markov
    • 3
  • Igor Yu. Malyshev
    • 1
  1. 1.Institute of General Pathology and PathophysiologyMoscowRussia
  2. 2.Institute of Chemical PhysicsMoscowRussia
  3. 3.Institute of PediatricsMoscowRussia

Personalised recommendations