Class I. Alphaproteobacteria class. nov.

  • George M. Garrity
  • Julia A. Bell
  • Timothy Lilburn

Abstract

Al.pha.pro.te.o.bac.te′ri.a. Gr. n. alpha name of first letter of Greek alphabet; Gr. n. Proteus ocean god able to change shape; Gr. n. bakterion a small rod; M.L. fem. pl. n. Alphaproteobacteria class of bacteria having 16S rRNA gene sequences related to those of the members of the order Caulobacterales.

Further Reading

  1. Drews, G. and J.F. Imhoff. 1991. Phototrophic purple bacteria. In Shively and Barton (Editors), Variations in Autotrophic Life, Academic Press, London. pp. 51–97.Google Scholar
  2. Imhoff, J.F. 1988. Anoxygenic phototrophic bacteria. In Austin (Editor), Methods in Aquatic Bacteriology, John Wiley & Sons Ltd., Chichester. pp. 207–240.Google Scholar
  3. Imhoff, J.F. 1992. Taxonomy, phylogeny, and general ecology of anoxygenic phototrophic bacteria. In Mann and Carr (Editors), Biotechnology Handbooks: Photosynthetic Prokaryotes, Vol. 6, Plenum Press, New York. pp. 53–92.CrossRefGoogle Scholar
  4. Imhoff, J.F. 1999. A phylogenetically oriented taxonomy of anoxygenic phototrophic bacteria. In Pescheck, Löffelhardt and Schmetteter (Editors), The Phototrophic Prokaryotes, Plenum Publishing Corporation, New York. pp. 763–774.CrossRefGoogle Scholar
  5. Imhoff, J.F., R. Petri and J. Süling. 1998. Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov, of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov, of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov, of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov, of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int. J. Syst. Bacteriol. 48: 793–798.PubMedCrossRefGoogle Scholar
  6. Imhoff, J.F. and H.G. Trüper. 1992. The genus Rhodospirillum and related genera. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook on the Biology of Bacteria. Ecophysiology, Isolation, Identification, Applications, 2nd ed., Springer-Verlag, New York. pp. 2141–2155.Google Scholar
  7. Kawasaki, H., Y. Hoshino and K. Yamasato. 1993. Phylogenetic diversity of phototrophic purple non-sulfur bacteria in the alpha proteobacteria group. FEMS Microbiol. Lett. 112: 61–66.Google Scholar
  8. Rodriguez-Valera, F., A. Ventosa, G. Juez and J.F. Imhoff. 1985. Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb. Ecol. 11: 107–116.CrossRefGoogle Scholar

Further Reading

  1. De Ley, J. 1992. The Proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications., 2nd Ed., Vol. 2, Springer-Verlag, New York. pp. 2111–2140.Google Scholar
  2. Döbereiner, J. 1992. The genera Azospirillum and Herbaspirillum. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 3, Springer-Verlag, New York. pp. 2236–2253.Google Scholar
  3. Döbereiner, J. 1992. History and new perspective of diazotrophs in association with non-leguminous plants. Symbiosis 13: 1–13.Google Scholar
  4. Döbereiner, J. and F.O. Pedrosa. 1987. Nitrogen-Fixing Bacteria in Non-Leguminous Crop Plants. Brock/Springer Series in Contemporary Bioscience, Springer-Verlag, New York.Google Scholar
  5. Gillis, M. and B. Reinhold-Hurek. 1994. Taxonomy of Azospirillum. In Okon (Editor), Azospirillum/Plant Associations, CRC Press, Boca Raton. pp. 1–14.Google Scholar
  6. Tarrand, J.J., N.R. Krieg and J. Döbereiner. 1978. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24: 967–980.PubMedCrossRefGoogle Scholar

Further Reading

  1. Shimada, K. 1995. Aerobic anoxygenic phototrophs. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht. pp. 105–122.Google Scholar
  2. Yurkov, V.V. and J.T. Beatty. 1998. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62: 695–724.Google Scholar

Further Reading

  1. Maratea, D. and R.P. Blakemore. 1981. Aquaspirillum magnetotacticum, sp. nov., a magnetic spirillum. Int. J. Syst. Bacteriol. 31: 452−455.CrossRefGoogle Scholar
  2. Schleifer, K.H., D. Schüler, S. Spring, M. Weizenegger, R. Amann, W. Lduwig and M. Köhler. 1991. The genus Magnetospirillum, gen. nov., description of Magnetospirillum gryphiswaldense, sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum, comb. nov. Syst. Appl. Microbiol. 14: 379−385.CrossRefGoogle Scholar
  3. Schüler, D. 1999. Formation of magnetosomes in magnetotactic bacteria. J. Mol. Microbiol. Biotechnol. 1: 79−86.PubMedGoogle Scholar
  4. Spring, S. and K.H. Schleifer. 1995. Diversity of magnetotactic bacteria. Syst. Appl. Microbiol. 18: 147−153.CrossRefGoogle Scholar

Further Reading

  1. Favinger, J., R. Stadtwald and H. Gest. 1989. Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Leeuwenhoek 55: 291–296.PubMedCrossRefGoogle Scholar
  2. Imhoff, J.F., R. Petri and J. Süling. 1998. Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov, Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov, of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov, of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov, of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov, of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int. J. Syst. Bacteriol. 48: 793–798.PubMedCrossRefGoogle Scholar
  3. Kawasaki, H., Y Hoshino, H. Kuraishi and K. Yamasato. 1992. Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic postion in the Proteobacteria alpha group. J. Gen. Appl. Microbiol. 38: 541–551.CrossRefGoogle Scholar
  4. Kawasaki, H., Y Hoshino and K. Yamasato. 1993. Phylogenetic diversity of phototrophic purple non-sulfur bacteria in the alpha proteobacteria group. FEMS Microbiol. Lett. 112: 61–66.Google Scholar

Further Reading

  1. Imhoff, J.F., R. Petri and J. Süling. 1998. Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov, of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov, of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int. J. Syst. Bacteriol. 48: 793–798.PubMedCrossRefGoogle Scholar
  2. Kawasaki, H., Y. Hoshino and K. Yamasato. 1993. Phylogenetic diversity of phototrophic purple non-sulfur bacteria in the alpha proteobacteria group. FEMS Microbiol. Lett. 112: 61–66.Google Scholar

Further Reading

  1. Imhoff, J.F., R. Petri and J. Süling. 1998. Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov, of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov, of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov, of Rhodospirillum sodomenseto Rhodovibrio sodomensis comb. nov, of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int. J. Syst. Bacteriol. 48: 793–798.PubMedCrossRefGoogle Scholar
  2. Kompantseva, E.I. andV.M. Gorlenko. 1984. Anew species of moderately halophilic purple bacterium, Rhodospirillum mediosalinum. Mikrobiologiya 53: 954–961.Google Scholar

Further Reading

  1. Harrison, Jr., A.P. 1984. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Ann. Rev. Microbiol. 38: 265–292.CrossRefGoogle Scholar
  2. Hiraishi, A. and S. Shimada. 2001. Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J. Gen. Appl. Microbiol. 47: 161–180.PubMedCrossRefGoogle Scholar
  3. Shimada, K. 1995. Aerobic anoxygenic phototrophs. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht. pp. 105–122.Google Scholar

Further Reading

  1. Shimada, K. 1995. Aerobic anoxygenic phototrophs. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht. pp. 105–122.Google Scholar
  2. Yurkov, V.V. andJ.T. Beatty. 1998. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62: 695–724.PubMedGoogle Scholar

Further Reading

  1. Shimada, K. 1995. Aerobic anoxygenic phototrophs. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht. pp. 105–122.Google Scholar
  2. Yurkov, V.V. and J.T. Beatty. 1998. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62: 695–724.PubMedGoogle Scholar

Further Reading

  1. Dickerson, R.E. 1980. Evolution and gene transfer in purple photosynthetic bacteria. Nature 283: 210–212.PubMedCrossRefGoogle Scholar
  2. Gibson, J.E. Stackebrandt, L.B. Zablen, R. Gupta and C.R. Woese. 1979. A phylogenetic analysis of the purple photosynthetic bacteria. Curr. Microbiol. 3: 59–64.CrossRefGoogle Scholar
  3. Imhoff, J.F. 1982. Occurrence and evolutionary significance of two sulfate assimilation pathways in the Rhodospirillaceae. Arch. Microbiol. 132: 197–203.CrossRefGoogle Scholar
  4. Imhoff, J.F. 1992. Taxonomy, phylogeny, and general ecology of anoxygenic phototrophic bacteria. In Mann and Carr (Editors), Biotechnology Handbooks: Photosynthetic Prokaryotes, Vol. 6, Plenum Press, New York. pp. 53–92.CrossRefGoogle Scholar
  5. Imhoff, J.F., J. Then, F. Hashwa and H.G. Trüper. 1981. Sulfate assimilation in Rhodopseudomonas globiformis. Arch. Microbiol. 130:234–237.CrossRefGoogle Scholar
  6. Imhoff, J.F., H.G. Trüper and N. Pfennig. 1984. Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int. J. Syst. Bacteriol. 34: 340–343.CrossRefGoogle Scholar
  7. Madigan, M.T. and S.S. Cox. 1982. Nitrogen metabolism in Rhodopseudomonas globiformis. Arch. Microbiol. 133: 6–10.CrossRefGoogle Scholar
  8. Schmidt, K. 1978. Biosynthesis of carotenoids. In Clayton and Sistrom (Editors), The Photosynthetic Bacteria, Plenum Press, New York. pp. 729–750.Google Scholar

Further Reading

  1. Shimada, K. 1995. Aerobic anoxygenic phototrophs. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht. pp. 105–122.Google Scholar
  2. Yurkov, V. and J.T. Beatty. 1998. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62: 695–724.PubMedGoogle Scholar

Further Reading

  1. Gilardi, G.L. and Y.C. Faur. 1984. Pseudomonas mesophilica, and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria. J. Clin. Microbiol. 20: 626–629.PubMedGoogle Scholar
  2. Rihs, J.D., D.J. Brenner, R.E. Weaver, A.G. Steigerwalt, D.G. Hollis and V.L. Yu. 1993. Roseomonas, a new genus associated with bacteremia and other human infections. J. Clin. Microbiol. 31: 3275–3283.PubMedGoogle Scholar
  3. Wallace, P.L., D.G. Hollis, R.E. Weaver and C.W. Moss. 1990. Biochemical and chemical characterization of pink-pigmented oxidative bacteria. J. Clin. Microbiol. 28: 689–693.PubMedGoogle Scholar

Further Reading

  1. Barbet, A.F. 1995. Recent developments in the molecular biology of anaplasmosis. Vet. Parasitol. 57: 43–49.PubMedCrossRefGoogle Scholar
  2. Dumler, J.S., A.F. Barbet, C.P.J. Baker, G.A Dasch, G.H. Palmer, S.C. Ray, Y. Rikihisa and F.R. Rurangirwa. 2001. Reorganization of the genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, description of six new species combinations and designation of Ehrlichia equi and “HGE agent” as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 51: 2145–2165.PubMedCrossRefGoogle Scholar
  3. Palmer, G.H., W.C. Brown and F.R. Rurangirwa. 2000. Antigenic variation in the persistence and transmission of the ehrlichia Anaplasma marginale. Microbes Infect. 2: 167–176.PubMedCrossRefGoogle Scholar
  4. Rikihisa, Y. 1991. The tribe Ehrlichieae and ehrlichial diseases. Clin. Microbiol. Rev. 4: 286–308.PubMedGoogle Scholar

Further Reading

  1. Dame, J.B., S.M. Mahan and C.A. Yowell. 1992. Phylogenetic relationship of Cowdria ruminantium, agent of heartwater, to Anaplasma marginale and other members of the order Rickettsiales determined on the basis of 16S rRNA sequence. Int. J. Syst. Bacteriol. 42: 270–274.PubMedCrossRefGoogle Scholar
  2. Popov, V.L., V.C. Han, S.M. Chen, J.S. Dumler, H.M. Feng, T.G. Andreadis, R.B. Tesh and D.H. Walker. 1998. Ultrastructural differentiation of the genogroups in the genus Ehrlichia. J. Med. Microbiol. 47: 235–251.PubMedCrossRefGoogle Scholar
  3. Rikihisa, Y. 1991. The tribe Ehrlichieae and ehrlichial diseases. Clin. Microbiol. Rev. 4: 286–308.PubMedGoogle Scholar
  4. Wen, B., Y. Rikihisa, J. Mott, P.A. Fuerst, M. Kawahara and C. Suto. 1995. Ehrlichia muris sp. nov., identified on the basis of 16S rRNA base sequences and serological, morphological, and biological characteristics. Int. J. Syst. Bacteriol. 45: 250–254.PubMedCrossRefGoogle Scholar
  5. Yu, X., J.W. McBride, X. Zhang and D.H. Walker. 2000. Characterization of the complete transcriptionally active Ehrlichia chaffeensis 28 kDa outer membrane protein multigene family. Gene 248: 59–68.PubMedCrossRefGoogle Scholar

Further Reading

  1. Madigan, J.E., N. Pusterla, E. Johnson, J.S. Chae, J.B. Pusterla, E. Derock and S.P. Lawler. 2000. Transmission of Ehrlichia risticii, the agent of Potomac horse fever, using naturally infected aquatic insects and helminth vectors: preliminary report. Equine Vet. J. 32: 275–279.PubMedCrossRefGoogle Scholar
  2. Millemann, R.E. and S.E. Knapp. 1970. Biology of Nanophyetus salmincola and “salmon poisoning” disease. Adv. Parasitol. 8: 1–41.PubMedCrossRefGoogle Scholar
  3. Rikihisa, Y. 1991. The tribe Ehrlichieae and ehrlichial diseases. Clin. Microbiol. Rev. 4: 286–308.PubMedGoogle Scholar
  4. Rikihisa, Y. 1997. Rickettsial diseases in horses. In Bayly and Reed (Editors), Equine Internal Medicine, W.B. Saunders, Philadelphia. pp. 112–123.Google Scholar
  5. Rikihisa, Y., H. Stills and G. Zimmerman. 1991. Isolation and continuous culture of Neorickettsia helminthoeca in a macrophage cell line. J. Clin. Microbiol. 29: 1928–1933.PubMedGoogle Scholar
  6. Rikihisa, Y. and G. Zimmerman. 1995. Salmon poisoning disease. In Kirk and Bonagura (Editors), Current Veterinary Therapy XII Small Animal Practice, W.B. Saunders Co., Philadelphia. pp. 297–300.Google Scholar

Further Reading

  1. Bandi, C., A.J. Trees and N.W. Brattig. 2001. Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet. Parasitol. 98: 215–238.PubMedCrossRefGoogle Scholar
  2. Stevens, L.A., R. Giordano and R.F. Fialho. 2001. Male-killing, nematode infections, bacteriophage infection and virulence of cytoplasmic bacteria in the genus Wolbachia. Annu. Rev. Ecol. Syst. 32: 519–545.CrossRefGoogle Scholar
  3. Stouthamer, R., J.A.J. Breeuwer and G.D.D. Hurst. 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53: 71–102.PubMedCrossRefGoogle Scholar
  4. Werren, J.H. 1997. Biology of Wolbachia. Annu. Rev. Entomol. 42: 587–609.PubMedCrossRefGoogle Scholar

Further Reading

  1. Bird, R.G. and P.C. Garnham. 1969. Aegyptianella pullorum Carpano 1928-fine structure and taxonomy. Parasitology. 59: 745–752.PubMedGoogle Scholar
  2. Gothe, R. and J.P. Kreier. 1977. Aegyptianella, Eperythrozoon, and Haemobartonella. In Kreier (Editor), Parasitic Protozoa, Vol. IV, Academic Press, New York. pp. 251–294.Google Scholar

Further Reading

  1. Heckmann, K. and H.D. Gortz. 1991. Procaryotic symbionts of ciliates. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Springer Verlag, Berlin, Heidelberg, New York. pp. 3865–3890.Google Scholar
  2. Pond, F.R., I. Gibson, J. Lalucat and R.L. Quackenbush. 1989. R-body producing bacteria. Microbiol. Rev. 53: 25–67.PubMedGoogle Scholar
  3. Preer, J.R., Jr., L.B. Preer and A. Jurand. 1974. Kappa and other endosymbionts in Paramecium aurelia. Bacteriol. Rev. 38: 113–163.PubMedGoogle Scholar
  4. Quackenbush, R.L. 1988. Endosymbionts of killer paramecia. In Görtz (Editor), Paramecium, Springer Verlag, Heidelberg, New York. pp. 406–418.Google Scholar
  5. Soldo, A.T. 1974. Intracellular particles in Paramecium aurelia. In Wagtendonk, v. (Editor), Paramecium: A Current Survey, Elsevier, Amsterdam. pp. 375–442.Google Scholar

Further Reading

  1. Cech, J.S. and P. Hartman. 1993. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Res. 27: 1219–1225.CrossRefGoogle Scholar
  2. Maszenan, A.M., R.J. Seviour, B.K.C. Patel, G.N. Rees and B.M. McDougall. 1997. Amaricoccus gen. nov., a gram-negative coccus occurring in regular packages or tetrads, isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov. Int. J. Syst. Bacteriol. 47: 727–734.PubMedCrossRefGoogle Scholar
  3. Maszenan, A.M., R.J. Seviour, B.K.C. Patel, G.N. Rees and B. McDougall. 1998. The hunt for the G-bacteria in activated sludge biomass. Water Sci. Technol. 37: 65–69.Google Scholar
  4. Maszenan, A.M., R.J. Seviour, B.K.C. Patel and J. Wanner. 2000. A fluorescently-labelled rRNA targeted oligonucleotide probe for the in situ detection of G-bacteria of the genus Amaricoccus in activated sludge. J. Appl. Microbiol. 88: 826–835.PubMedCrossRefGoogle Scholar
  5. Seviour, R.J., A.M. Maszenan, J.A. Soddell, V. Tandoi, B.K. Patel, Y. Kong and P. Schumann. 2000. Microbiology of the “G-bacteria” in activated sludge. Environ. Microbiol. 2 : 581–593.PubMedCrossRefGoogle Scholar
  6. Suzuki, T., Y. Muroga, M. Takahama, T. Shiba and Y. Nishimura. 1999. Rubrimonas cliftonensis gen. nov., sp. nov., an aerobic bacteriochloro-phyll-containing bacterium isolated from a saline lake. Int. J. Syst. Bacteriol. 49: 201–205.PubMedCrossRefGoogle Scholar
  7. Williams, T.M. and R.F. Unz. 1985. Isolation and characterization of filamentous bacteria present in bulking activated-sludge. Appl. Microbiol. Biotechnol. 22: 273–282.Google Scholar

Further Reading

  1. Schlesner, H., C. Bartels, M. Sittig, M. Dorsch and E. Stackebrandt. 1990. Taxonomic and phylogenetic studies on a new taxon of budding, hyphal Proteobacteria, Hirschia baltica gen. nov., sp. nov. Int. J. Syst. Bacteriol. 40: 443–451.PubMedCrossRefGoogle Scholar

Further Reading

  1. Moore, R.L. 1981. The biology of Hyphomicrobium and other prosthecate, budding bacteria. Annu. Rev. Microbiol. 35: 567–594.PubMedCrossRefGoogle Scholar
  2. Moore, R.L., R.M. Weiner and R. Gebers. 1984. Genus Hyphomonas Pon-gratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend., (Hyphomicrobium neptunium). Int. J. Syst. Bacteriol. 34: 71–73.CrossRefGoogle Scholar
  3. Quintero, E.J., K. Busch and R.M. Weiner. 1998. Spatial and temporal deposition of adhesive extracellular polysaccharide capsule and fimbriae by Hyphomonas strain MHS-3. Appl. Environ. Microbiol. 64: 1246–1255.PubMedGoogle Scholar
  4. Weiner, R.M. 1998. Plasticity of bacteria. Survival mechanisms. In Rosenberg (Editor), Recent Advances in Microbial Ecology and Infectious Disease, ASM Press, Washington D.C. pp. 17–29.Google Scholar
  5. Weiner, R.M., R.A. Devine, D.M. Powell, L. Dagasan and R.L. Moore. 1985. Hyphomonas oceanitis sp. nov., Hyphomonas hirschiana sp. nov., and Hyphomonas jannaschiana sp. nov. Int. J. Syst. Bacteriol. 35: 237–243.CrossRefGoogle Scholar
  6. Weiner, R.M., M. Melick, K. O’Neill and E.J. Quintero. 2000. Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. Int. J. Syst. Evol. Microbiol. 50: 459–469.PubMedCrossRefGoogle Scholar

Further Reading

  1. Shimada, K. 1995. Aerobic anoxygenic phototrophs. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht. pp. 105–122.Google Scholar
  2. Yurkov, V.V. and J.T. Beatty. 1998. Anoxygenic aerobic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62: 695–724.PubMedGoogle Scholar

Further Reading

  1. Shimada, K. 1995. Aerobic anoxygenic phototrophs. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht. pp. 105–122.Google Scholar
  2. Yurkov, V.V. and J.T. Beatty. 1998. Anoxygenic aerobic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62: 695–724.PubMedGoogle Scholar

Further Reading

  1. Imhoff, J.F., R. Petri and J. Süling. 1998. Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the Alphaproteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int. J. Syst. Bacteriol. 48: 793–798.PubMedCrossRefGoogle Scholar
  2. Imhoff, J.F. and H.G. Trüper.. 1992. The genus Rhodospirillum and related genera. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook on the Biology of Bacteria. Ecophysiology, Isolation, Identification, Applications, Springer-Verlag, New York. pp. 2141–2155.Google Scholar
  3. Kawasaki, H., Y. Hoshino and K. Yamasato. 1993. Phylogenetic diversity of phototrophic purple non-sulfur bacteria in the alpha proteobacteria group. FEMS Microbiol. Lett. 112: 61–66.Google Scholar

Further Reading

  1. Shimada, K. 1995. Aerobic anoxygenic phototrophs. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht. pp. 105–122.Google Scholar
  2. Yurkov, V.V. and J.T. Beatty. 1998. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62: 695–724.PubMedGoogle Scholar

Further Reading

  1. Shimada, K. 1995. Aerobic anoxygenic phototrophs. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht. pp. 105–122.Google Scholar
  2. Yurkov, V.V. and J.T. Beatty. 1998. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62: 695–724.PubMedGoogle Scholar

Further Reading

  1. Shimada, K. 1995. Aerobic anoxygenic phototrophs. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht. pp. 105–122.Google Scholar
  2. Yurkov, V.V. and J.T. Beatty. 1998. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62: 695–724.PubMedGoogle Scholar

Further Reading

  1. Abraham, W.R., C. Strömpl, H. Meyer, S. Lindholst, E.R. Moore, R. Christ, M. Vancanneyt, B.J. Tindall, A. Bennasar, J. Smit and M. Tesar. 1999. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int. J. Syst. Bacteriol. 49: 1053–1073.PubMedCrossRefGoogle Scholar
  2. Ballard, R.W., M. Doudoroff R.Y. Stanier and M. Mandel. 1968. Taxonomy of the aerobic pseudomonads: Pseudomonas diminuta and P. vesiculare.J. Gen. Microbiol. 53: 349–361.PubMedCrossRefGoogle Scholar
  3. Gilardi, G.L. 1978. Identification of Pseudomonas and related bacteria. In Gilardi (Editor), Glucose Nonfermenting Gram-Negative Bacteria in Clinical Microbiology, CRC Press, West Palm Beach, Florida. pp. 15–44.Google Scholar
  4. Palleroni, N.J. 1984. Genus I Pseudomonas. In Krieg and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 1, The Williams & Wilkins Co., Baltimore. pp. 141–199.Google Scholar
  5. Poindexter, J.S. 1964. Biological properties and classification of the Caulobacter group. Bacteriol. Rev. 28: 231–295.PubMedGoogle Scholar
  6. Poindexter, J.S. 1989. The genus Caulobacter and the genus Asticcacaulis. In Staley, Byrant, Pfenning and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 3, The Williams & Wilkins Co., Baltimore. pp. 1924–1942.Google Scholar
  7. Segers, P., M. Vancanneyt, B. Pot, U. Torck, B. Hoste, D. Dewettinck, E. Falsen, K. Kersters and P. De Vos. 1994. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov, respectively. Int. J. Syst. Bacteriol. 44: 499–510.PubMedCrossRefGoogle Scholar

Further Reading

  1. Lingens, F., R. Blecher, H. Blecher, F. Blobel, J. Eberspächer, C. Fröhner, H. Görisch, H. Görisch and G. Layh. 1985. Phenylobacterium immobile gen. nov., sp. nov., a Gram-negative bacterium that degrades the herbicide chloridazon. Int. J. Syst. Bacteriol. 35: 26–39.CrossRefGoogle Scholar

Further Reading

  1. Anderson, B.E. and M.A. Neuman. 1997. Bartonella spp. as emerging human pathogens. Clin. Microbiol. Rev. 10: 203–219.PubMedGoogle Scholar
  2. Brenner, D.J., S.P. O’Connor, D.G. Hollis, R.E. Weaver and A.G. Steigerwalt. 1991. Molecular characterization and proposal of a neotype strain for Bartonella bacilliformis. J. Clin. Microbiol. 29: 1299–1302.PubMedGoogle Scholar
  3. Brenner, D.J., S.P. O’Connor, H.H. Winkler and A.G. Steigerwalt. 1993. Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb. nov., Bartonella vinsonii comb. nov., Bartonella henselae comb. nov., and Bartonella elizabethae comb. nov., and to remove the family Bartonellaceae from the order Rickettsiales. Int. J. Syst. Bacteriol. 43: 777–786.PubMedCrossRefGoogle Scholar
  4. Maurin, M., R. Birtles and D. Raoult. 1997. Current knowledge of Bartonella species. Eur. J. Clin. Microbiol. Infect. Dis. 16: 487–506.PubMedCrossRefGoogle Scholar
  5. Relman, D.A., P.W. Lepp, K.N. Sadler and T.M. Schmidt. 1992. Phylogenetic relationships among the agent of bacillary angiomatosis, Bartonella bacilliformis, and other alpha-proteobacteria. Mol. Microbiol. 6: 1801–1807.PubMedCrossRefGoogle Scholar

Further Reading

  1. Abraham, W.R., C. Strömpl, H. Meyer, S. Lindholst, E.R. Moore, R. Christ, M. Vancanneyt, B.J. Tindall, A. Bennasar, J. Smit and M. Tesar. 1999. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int. J. Syst. Bacteriol. 49: 1053–1073.PubMedCrossRefGoogle Scholar
  2. Gray, P.H.H. and H.G. Thornton. 1928. Soil bacteria that decompose certain aromatic compounds. Centralbl. Bakteriol. Parasitenkd. Infektionskr. 2. Abt. 73: 74–96.Google Scholar
  3. Urakami, T, H. Oyanagi, H. Araki, K.I. Suzuki and K. Komagata. 1990. Recharacterization and emended description of the genus Mycoplana and description of two new species, Mycoplana ramosa and Mycoplana segnis. Int. J. Syst. Bacteriol. 40: 434–442.CrossRefGoogle Scholar

Further Reading

  1. Holmes, B., M. Popoff, M. Kiredjian and K. Kersters. 1988. Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int. J. Syst. Bacteriol. 38: 406–416.CrossRefGoogle Scholar
  2. Lebuhn, M., W. Achouak, M. Schloter, O. Berge, H. Meier, M. Barakat, A. Hartmann and T. Heulin. 2000. Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. Int. J. Syst. Evol. Microbiol. 50: 2207–2223.PubMedCrossRefGoogle Scholar

Further Reading

  1. Bowman, J.P., L.I. Sly, P.D. Nichols and A.C. Hayward. 1993. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Bacteriol. 43: 735–753.CrossRefGoogle Scholar
  2. Hanson, R.S. and T.E. Hanson. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439–471.PubMedGoogle Scholar
  3. Hanson, R.S., A.I. Netrusov and K. Tsuji. 1992. The obligate methanotrophic bacteria Methylococcus, Methylomonas, and Methylosinus. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 3, Springer-Verlag, New York. pp. 2350–2364.Google Scholar
  4. Whittenbury, R.A., K.C. Phillips and J.F. Wilkinson. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205–218.PubMedCrossRefGoogle Scholar

Further Reading

  1. Becking, J.H. 1992. The Genus Beijerinckia. In Balows (Editor), The Prokaryotes. A Handbook on the Biology Of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 3, Springer-Verlag, New York. pp. 2254–2267.Google Scholar

Further Reading

  1. Brenner, D.J., D.G. Hollis, C.W. Moss, CK. English, G.S. Hall, J. Vincent, J. Radosevic, K.A. Birkness, W.F. Bibb, F.D. Quinn, B. Swaminathan, R.E. Weaver, M.W. Reeves, S. O’Connor, P. Hayes, F Tenover, A.G. Steigerwalt, B. Perkins, M.I. Daneshvar, B.C. Hill, J.A. Washington, T. Woods, S. Hunter, D.J. Wear and J. Wenger. 1991. Proposal of Afipia, gen. nov., with Afipia felis, sp. nov. (formerly the cat scratch disease bacillus), Afipia clevelandensis, sp. nov. (formerly the Cleveland Clinic Foundation strain), Afipia broomeae, sp. nov., and three unnamed genospecies. J. Clin. Microbiol. 29: 2450–2460.PubMedGoogle Scholar
  2. English, C.K., D.J. Wear, A.M. Margileth, C.R. Lissner and G.P. Walsh. 1988. Cat-scratch disease: isolation and culture of the bacterial agent. JAMA (J. Am. Med. Assoc). 259: 1347–1352.CrossRefGoogle Scholar
  3. Müller, H.E. 1995. Investigations of culture and properties of Afipia spp. Zentbl. Bakteriol. 282: 18–23.CrossRefGoogle Scholar

Further Reading

  1. Hattori, T. and R. Hattori. 2000. The plate count method: an attempt to delineate the bacterial life in the microhabitat of soil. In Bollag and Stotzsky (Editors), Soil Biochemistry, Vol. 10, Marcel Dekker Inc.,New York, NY. pp. 271–302.Google Scholar
  2. Saito, A., H. Mitsui, R. Hattori, K. Minamisawa andT. Hattori. 1998. Slow-growing and oligotrophic soil bacteria phylogenetically close to Bradyrhizobium japonicum. FEMS Microbiol. Ecol. 25: 277–286.CrossRefGoogle Scholar

Further Reading

  1. Bartosch, S., I. Wolgast, E. Spieck and E. Bock. 1999. Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase. Appl. Environ. Microbiol. 65: 4126–4133.PubMedGoogle Scholar
  2. Bock, E., H.P. Koops, U.C. Möller and M. Rudert. 1990. A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris, sp. nov. Arch. Microbiol. 153: 105–110.CrossRefGoogle Scholar
  3. Bock, E., H. Sundermeyer-Klinger and E. Stackebrandt. 1983. New facultative lithoautotrophic nitrite-oxidizing bacteria. Arch. Microbiol. 136: 281–284.CrossRefGoogle Scholar
  4. Kirstein, K. and E. Bock. 1993. Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases. Arch. Microbiol. 160: 447–453.PubMedCrossRefGoogle Scholar
  5. Sorokin, D.Y., G. Muyzer, T. Brinkhoff, J.G. Kuenen and M.S.M. Jetten. 1998. Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov. Arch. Microbiol. 170: 345–352.PubMedCrossRefGoogle Scholar
  6. Sundermeyer-Klinger, H., W. Meyer, B. Warninghoff and E. Bock. 1984. Membrane-bound nitrite oxidoreductase of Nitrobacter: evidence for a nitrate reductase system. Arch. Microbiol. 140: 153–158.CrossRefGoogle Scholar
  7. Watson, S.W., E. Bock, H. Harms, H.P. Koops and A.B. Hooper. 1989. Nitrifying bacteria. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 3, The Williams & Wilkins Co., Baltimore. pp. 1808–1833.Google Scholar

Further Reading

  1. Harder, W. and M.M. Attwood. 1978. Biology, physiology and biochemistry of hyphomicrobia. Adv. Microb. Physiol. 17: 303–359.PubMedCrossRefGoogle Scholar
  2. Moore, R.L. 1981. The biology of Hyphomicrobium and other prosthecate, budding bacteria. Annu. Rev. Microbiol. 35: 567–594.PubMedCrossRefGoogle Scholar
  3. Moore, R.L. 1981. The genera Hyphomicrobium, Pedomicrobium and Hyphomonas. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, 1st Ed., vol. I, Springer-Verlag, Berlin. pp. 480–487.Google Scholar
  4. Poindexter, J.S. 1992. Dimorphic prosthecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas and Thiodendron. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Springer-Verlag, New York. pp. 2176–2196.Google Scholar

Further Reading

  1. Staley, J.T. 1989. Genus Ancalomicrobium. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 3, The Williams & Wilkins Co., Baltimore. pp. 1914%1916.Google Scholar
  2. Staley, J.T. 1992. The genera: Prosthecomicrobium, Ancalomicrobium and Prosthecobacter. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes-A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications., 2nd Ed., Vol. III, Springer-Verlag, New York. pp. 2162–2166.Google Scholar

Further Reading

  1. Foster, J.W. 1944. Microbiological aspects of riboflavin. I. Introduction. II. Bacterial oxidation of riboflavin to lumichrome. J. Bacteriol. 47: 27–41.PubMedGoogle Scholar

Further Reading

  1. Schlesner, H. 1987. Filomicrobium fusiformegen. nov., sp. nov., a slender budding, hyphal bacterium from brackish water. Syst. Appl. Microbiol. 10: 63–67.CrossRefGoogle Scholar

Further Reading

  1. Croucher, S.C. and E.M. Barnes. 1983. The occurrence and properties of Gemmiger formicilis and related anaerobic budding bacteria in the avium caecum. J. Appl. Bacteriol. 54: 7–22. CrossRefGoogle Scholar
  2. Gossling, J. and W.E.C. Moore. 1975. Gemmiger formicilis, n. gen., n. sp., an anaerobic budding bacterium from intestines. Int. J. Syst. Bacteriol. 25: 202–207.CrossRefGoogle Scholar
  3. Salanitro, J.P., P.A. Muirhead and J.R. Goodman. 1976. Morphological and physiological characteristics of Gemmiger formicilis isolated from chicken ceca. Appl. Environ. Microbiol. 32: 623–632.PubMedGoogle Scholar

Further Reading

  1. Hirsch, P. 1974. Budding bacteria. Annu. Rev. Microbiol. 28: 391–444.PubMedCrossRefGoogle Scholar
  2. Moore, R.L. 1981. The biology of Hyphomicrobium and other prosthecate, budding bacteria. Ann. Rev. Microbiol. 35: 567–594.CrossRefGoogle Scholar
  3. Moore, R.L. 1981. The genera Hyphomicrobium, Pedomicrobium and Hyphomonas. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, 1st Ed., vol. I, Springer-Verlag, Berlin. pp. 480–487.Google Scholar

Further Reading

  1. Gorlenko, V.M., N.N. Egorova and AN. Puchkov. 1974. Fine structure of exospores of nonsulfur purple bacterium Rhodomicrobium vannielii. Mikrobiologia. 43: 913–915.Google Scholar
  2. Hirsch, P. 1974. Budding bacteria. Ann. Rev. Microbiol. 28: 391–444.CrossRefGoogle Scholar
  3. Whittenbury, R. and C.S. Dow. 1977. Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. Bacteriol. Rev. 41: 754–808.PubMedGoogle Scholar

Further Reading

  1. Aristovskaya, T.V. 1974. Seliberia. In Buchanan and Gibbons (Editors), Bergey’s Manual of Determinative Bacteriology, The Williams & Wilkins Co., Baltimore. p. 160.Google Scholar
  2. Aristovskkaya, T.V. and V.V. Parinkina. 1963. New soil microorganism Seliberia stellata nov. gen., n. sp. Izv. Akad. Nauk S.S.S. R. Ser. Biol. 28: 49–56.Google Scholar
  3. Schmidt, J.M. and J.R. Swafford. 1979. Isolation and morphology of helically sculptured, rosette-forming, freshwater bacteria resembling Seliberia. Curr. Microbiol. 3: 65–70.CrossRefGoogle Scholar
  4. Schmidt, J.M. and J.R. Swafford. 1992. The genus Seliberia. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Springer-Verlag, New York. pp. 2490–2494.Google Scholar

References

  1. Aa, K. and R.A. Olsen. 1996. The use of various substrates and substrate concentrations by a Hyphomicrobium sp. isolated from soil: effect on growth rate and growth yield. Microb. Ecol. 31: 67–76.CrossRefGoogle Scholar
  2. Aamand, J., T. Ahl and E. Spieck. 1996. Monoclonal antibodies recognizing nitrite oxidoreductase of Nitrobacter hamburgensis, N winogradskyi, and N. vulgaris. Appl. Environ. Microbiol. 62: 2352–2355.PubMedGoogle Scholar
  3. Abdala, A.A., E. Pipano, D.H. Aguirre, A.B. Gaido, M.A. Zurbriggen, A.J. Mangold and A.A. Guglielmone. 1990. Frozen and fresh Anaplasma centrale vaccines in the protection of cattle against Anaplasma marginale infection. Rev. Elev. Med. Vet. Pays. Trop. 43: 155–158.PubMedGoogle Scholar
  4. Abe, M., R. Kawamura, S. Higashi, S. Mori, M. Shibata and T. Uchiumi. 1998. Transfer of the symbiotic plasmid from Rhizobium leguminosarum biovar trifolii to Agrobacterium tumefaciens. J. Gen. Appl. Microbiol. 44: 65–74.PubMedCrossRefGoogle Scholar
  5. Abraham, W.R., H. Meyer, S. Lindholst, M. Vancanneyt and J. Smit. 1997. Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato, Brevundimonas and Hyphomonas. Syst. Appl. Microbiol. 20: 522–539.CrossRefGoogle Scholar
  6. Abraham, W.R., C. Strömpl, H. Meyer, S. Lindholst, E.R. Moore, R. Christ, M. Vancanneyt, B.J. Tindall, A. Bennasar, J. Smit and M. Tesar. 1999. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int. J. Syst. Bacteriol. 49: 1053–1073.PubMedCrossRefGoogle Scholar
  7. Abraham, W.R., C. Strömpl, M. Vancanneyt, H. Lünsdorf and E.R. Moore. 2001. Determination of the systematic position of the genus Asticcacaulis Poindexter by a polyphasic analysis. Int. J. Syst. Evol. Microbiol. 51: 27–34.PubMedGoogle Scholar
  8. Abramochkina, F.N., L.V. Bezrukova, A.V. Koshelev, V.F. Gal’chenko and M.V. Ivanov. 1987. Microbial methane oxidation in a fresh-water reservoir. Mikrobiologiya 56: 464–471.Google Scholar
  9. Aguero-Rosenfeld, M., H.W. Horowitz, G.P. Wormser, D.F McKenna, J. Nowakowski, J. Munoz and J.S. Dumler. 1996. Human granulocytic ehrlichiosis (HGE): A series from a single medical center in New York State. Ann. Int. Med. 125: 904–908.PubMedGoogle Scholar
  10. Aguilar, O.M., H. Reilander, W. Arnold and A. Puhler. 1987. Rhizobium meliloti nifN (fixF) gene is part of an operon regulated by a nifA-dependent promoter and codes for a polypeptide homologous to the nifK gene product.J. Bacteriol. 169: 5393–5400.PubMedGoogle Scholar
  11. Ahamed, N.M., H. Mayer, H. Biebl andJ. Weckesser. 1982. Lipopolysaccharide with 2,3-diamino-2,3-dideoxyglucose containing lipid-A in Rhodopseudomonas sulfoviridis. FEMS Microbiol. Lett. 14: 27–30.CrossRefGoogle Scholar
  12. Ahlers, B., W. König and E. Bock. 1990. Nitrite reductase activity in Nitrobacter vulgaris. FEMS Microbiol. Lett. 67: 121–126.CrossRefGoogle Scholar
  13. Ahrens, R. 1968. Taxonomische Untersuchungen an sternbildenden Agrobacterium-Arten aus der westlichen Ostsee. Kiel. Meeresforsch. 24: 147–173.Google Scholar
  14. Ahrens, R. and G. Rheinheimer. 1967. Über einige sternbildende Bakterien aus der Ostsee. Kiel. Meeresforsch. 23: 127–136.Google Scholar
  15. Akiba, T., R. Usami and K. Horikoshi. 1983. Rhodopseudomonas rutila, a new species of nonsulfur purple photosynthetic bacteria. Int. J. Syst. Bacteriol. 33: 551–556.CrossRefGoogle Scholar
  16. Alarcón, B., M.M. Lopez, M. Cambra and J. Ortiz. 1987. Comparative study of Agrobacterium biotypes 1, 2, and 3 by electrophoresis and serological methods. J. Appl. Bacteriol. 62: 295–308.CrossRefGoogle Scholar
  17. Albuquerque, L., J. Santos, P. Travassos, M.F. Nobre, F.A. Rainey, R. Wait, N. Empadinhas, M.T. Silva and M.S. da Costa. 2002. Albidovulum inexpectatum gen. nov., sp nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum. Appl. Environ. Microbiol. 68: 4266–4273.PubMedCrossRefGoogle Scholar
  18. Aldrich, H.C., L. McDowell, M.F. Barbosa, L.P. Yomano, R.K. Scopes and L.O. Ingram. 1992. Immunocytochemical localization of glycolytic and fermentative enzymes in Zymomonas mobilis. J. Bacteriol. 174: 4504–4508.PubMedGoogle Scholar
  19. Alkan, S., M.B. Morgan, R.L. Sandin, L.C. Moscinski and C.W. Ross. 1995. Dual role for Afipia felis and Rochalimaea henselae in cat-scratch disease. Lancet 345: 385.PubMedCrossRefGoogle Scholar
  20. Allardet-Servent, A., G. Bourg, M. Ramuz, M. Pages, M. Bellis and G. Roizes. 1988. DNA polymorphism in strains of the genus Brucella. J. Bacteriol. 170: 4603–4607.PubMedGoogle Scholar
  21. Allardet-Servent, A., M.J. Carles-Nurit, G. Bourg, S. Michaux and M. Ramuz. 1991. Physical map of the Brucella melitensis 16 M chromosome. J. Bacteriol. 173: 2219–2224.PubMedGoogle Scholar
  22. Allardet-Servent, A., S. Michaux Charachon, E. Jumas-Bilak, L. Karayan and M. Ramuz. 1993. Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J. Bacteriol. 175: 7869–7874.PubMedGoogle Scholar
  23. Alleman, A.R., S.M. Kamper, N. Viseshakul and A.F. Barbet. 1992. Analysis of the Anaplasma marginale genome by pulsed-field electrophoresis. J. Gen. Microbiol. 139: 2439–2444.Google Scholar
  24. Allen, E.K. and O.N. Allen. 1950. Biochemical and symbiotic properties of the rhizobia. Bacteriol. Rev. 14: 273–330.PubMedGoogle Scholar
  25. Allen, J.R., D.D. Clark, J.G. Krum and S.A. Ensign. 1999. A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc. Natl. Acad. Sci. U.S.A. 96: 8432–8437.PubMedCrossRefGoogle Scholar
  26. Allen, O.N. and A.J. Holding. 1974. Genus II. Agrobacterium Conn. 1942, 359. In Buchanan and Gibbons (Editors), Bergey ’s Manual of Determinative Bacteriology, 8th Ed., The Williams & Wilkins Co., Baltimore. pp. 264–267.Google Scholar
  27. Allsopp, M., E.S. Visser, J.L. du Plessis, S.W. Vogel and B.A. Allsopp. 1997. Different organisms associated with heartwater as shown by analysis of 16S ribosomal RNA gene sequences. Vet. Parasitol. 71: 283–300.PubMedCrossRefGoogle Scholar
  28. Alton, GG., L.M. Jones, R.D. Angus and J.M. Verger. 1988. Techniques for the Brucellosis Laboratory, Institut National de la Recherche Agronomique, Paris.Google Scholar
  29. Altson, R.A. 1936. Studies on Azotobacter in Malayan soils. J. Agric. Sci. 26: 268–280.CrossRefGoogle Scholar
  30. Alvarez, B. and G. Martínez-Drets. 1995. Metabolic characterization of Acetobacter diazotrophicus. Can. J. Microbiol. 41: 918–924.CrossRefGoogle Scholar
  31. Amann, R., N. Springer, W. Ludwig, H.D. Görtz and K.H. Schleifer. 1991. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature (Lond.) 351: 161–164.CrossRefGoogle Scholar
  32. Amano, K., M. Cedzynski, A.S. Swierzko, K. Kyohno and W. Kaca. 1996. Comparison of serological reactions of rickettsiae-infected patients and rabbit anti-Proteus OX antibodies with Proteus OX2, OX19 and OXK lipopolysaccharides. Arch. Immunol. Ther. Exp. 44: 235–240.Google Scholar
  33. Amano, K.I., J.C. Williams and G.A. Dasch. 1998. Structural properties of lipopolysaccharides from Rickettsia typhi and Rickettsia prowazekii and their chemical similarity to the lipopolysaccharide from Proteus vulgaris OX19 used in the Weil–Felix test. Infect. Immun. 66: 923–926.PubMedGoogle Scholar
  34. Amano, Y., J. Rumbea, J. Knobloch, J. Olson and M. Kron. 1997. Bartonellosis in Ecuador: serosurvey and current status of cutaneous verrucous disease. Am. J. Trop. Med. Hyg. 57: 174–179.PubMedGoogle Scholar
  35. Amaral, J.A., C. Archambault, S.R. Richards and R. Knowles. 1995. Denitrification associated with Groups I and II methanotrophs in a gradient enrichment system. FEMS Microbiol. Ecol. 18: 289–298.CrossRefGoogle Scholar
  36. Amarger, N., V. Macheret and G. Laguerre. 1997. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int. J. Syst. Bacteriol. 47: 996–1006.PubMedCrossRefGoogle Scholar
  37. Ambler, R.P. 1973. Bacterial cytochrome c and molecular evolution. Syst. Zool. 22: 554–565.CrossRefGoogle Scholar
  38. Ambler, R.P., M. Daniel, J. Hermoso, T.E. Meyer, T.G. Bartsch and M.D. Kamen. 1979. Cytochrome c2 sequence variation among the recognized species of purple nonsulfur photosynthetic bacteria. Nature 278: 659–660.PubMedCrossRefGoogle Scholar
  39. Amerein, M.P., D. De Briel, B. Jaulhac, P. Meyer, H. Monteil and Y. Piemont. 1996. Diagnostic value of the indirect immunofluorescence assay in cat scratch disease with Bartonella henselae and Afipia felis antigens. Clin. Diagn. Lab. Immunol. 3: 200–204.PubMedGoogle Scholar
  40. Anacker, R.L., R.E. Mann and C. Gonzales. 1987. Reactivity of monoclonal antibodies to Rickettsia rickettsii with spotted fever and typhus group rickettsiae. J. Clin. Microbiol. 25: 167–171.PubMedGoogle Scholar
  41. Anacker, R.L., T.F. McCaul, W. Burgdorfer and R.K. Gerloff. 1980. Properties of selected rickettsiae of the spotted fever group. Infect. Immun. 27: 468–474.PubMedGoogle Scholar
  42. Anast, N. and J. Smit. 1988. Isolation and characterization of marine caulobacters and assessment of their potential for genetic experimentation. Appl. Environ. Microbiol. 54: 809–817.PubMedGoogle Scholar
  43. Anderson, A.R. and L.W. Moore. 1979. Host specificity in the genus Agrobacterium. Phytopathology 69: 320–323.CrossRefGoogle Scholar
  44. Anderson, B.E. 1990. The 17-kilodalton protein antigens of spotted fever and typhus group rickettsiae. Ann. N. Y. Acad. Sci. 590: 326–333.PubMedCrossRefGoogle Scholar
  45. Anderson, B.E., J.E. Dawson, D.C. Jones and K.H. Wilson. 1991. Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J. Clin. Microbiol. 29: 2838–2842.PubMedGoogle Scholar
  46. Anderson, B.E., G.A. McDonald, D.C. Jones and R.L. Regnery. 1990. A protective protein antigen of Rickettsia rickettsii has tandemly repeated, near-identical sequences. Infect. Immun. 58: 2760–2769.PubMedGoogle Scholar
  47. Anderson, B., D. Scotchlas, D. Jones, A. Johnson, T. Tzianabos and B. Baumstark. 1997. Analysis of 36-kilodalton protein (PapA) associated with the bacteriophage particle of Bartonella henselae. DNA Cell Biol. 16: 1223–1229.PubMedCrossRefGoogle Scholar
  48. Anderson, G.W., Jr. and J.V. Osterman. 1980. Host defenses in experimental rickettsialpox: Resistance of C3H mouse sublines. Acta Virol. 24: 294–296.PubMedGoogle Scholar
  49. Anderson, J.D. and H. Smith. 1965. The metabolism of erythritol by Brucella abortus. J. Gen. Microbiol. 38: 109–124.PubMedCrossRefGoogle Scholar
  50. Anderson, R.L., W.E. Bishop and R.L. Campbell. 1985. A review of the environmental and mammalian toxicology of nitrilotriacetic acid. Crit. Rev. Toxicol. 15: 1–102.PubMedCrossRefGoogle Scholar
  51. Andersson, S.G., A. Zomorodipour, J.O. Andersson, T. Sicheritz-Ponten, U.C. Alsmark, R.M. Podowski, A.K. Naslund, A.S. Eriksson, H.H. Winkler and C.G. Kurland. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140.PubMedCrossRefGoogle Scholar
  52. Andreesen, M. and H.G. Schlegel. 1974. A new coryneform bacterium: Corynebacterium autotrophicum strain 7c. II. Isolation of a slime-free mutant. Arch. Microbiol. 100: 351–361.CrossRefGoogle Scholar
  53. Andrew, R., J.M. Bonnin and S. Williams. 1946. Tick typhus in North Queensland. Med. J. Aust. 2: 253–258.PubMedGoogle Scholar
  54. Antheunisse, J. 1972. Preservation of Microorganisms. J. Microbiol. Serol. 38: 617–622.Google Scholar
  55. Anthony, C. 1982. The Biochemistry of Methylotrophs, Academic Press, Ltd., London.Google Scholar
  56. Anthony, C. 1996. Quinoprotein-catalysed reactions. Biochem. J. 320: 697–711.PubMedGoogle Scholar
  57. Aragno, M. 1975. Mise en évidence d ’hydrogénobactéries corynéformes auxohétérotrophes pour la biotine dans l ’eau d ’un lac eutrophe. Ann. Microbiol. (Inst. Pasteur) 126A: 539–542.Google Scholar
  58. Aragno, M., A. Walther-Mauruschat, F. Mayer and H.G. Schlegel. 1977. Micromorphology of Gram-negative hydrogen bacteria. I. Cell morphology and flagellation. Arch. Microbiol. 114: 93–100.CrossRefGoogle Scholar
  59. Arata, H., Y. Serikawa and K. Takamiya. 1988. Trimethylamine N-oxide respiration by aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114. J. Biochem. (Tokyo) 103: 1011–1015.Google Scholar
  60. Arata, S., T. Hirayama, N. Kasai, T. Itoh and A. Ohsawa. 1989. Isolation of 9-hydroxy-delta-tetradecalactone from lipid-A of Pseudomonas diminuta and Pseudomonas vesicularis. FEMS Microbiol. Lett. 60: 219–222.Google Scholar
  61. Arata, S., N. Kasai, T.W. Klein and H. Friedman. 1994. Legionella pneumophila growth restriction and cytokine production by murine macrophages activated by a novel Pseudomonas lipid-A. Infect. Immun. 62: 729–732.PubMedGoogle Scholar
  62. Aretz, W., H. Kaspari and J.H. Klemme. 1978. Utilization of purines as nitrogen source by facultative phototropic bacteria. FEMS Microbiol. Lett. 4: 249–253.CrossRefGoogle Scholar
  63. Arfmann, H.-A., K.N. Timmis and R.M. Wittich. 1997. Mineralization of 4-chlorodibenzofuran by a consortium consisting of Sphingomonas sp. strain RW1 and Burkholderia sp. strain JWS. Appl. Environ. Microbiol. 63: 3458–3462.Google Scholar
  64. Argall, M.E. and G.D. Smith. 1993. The use of trehalose-stabilized lyophilized methanol dehydrogenase from Hyphomicrobium X for the detection of methanol. Biochem. Mol. Biol. Int. 30: 491–497.PubMedGoogle Scholar
  65. Arisoy, E.S., A.G. Correa, M.L. Wagner and S.L. Kaplan. 1999. Hepatos-plenic cat-scratch disease in children: selected clinical features and treatment. Clin. Infect. Dis. 28: 778–784.PubMedCrossRefGoogle Scholar
  66. Aristovskaya, T.V. 1961. Accumulation of iron in breakdown of organominereal humus complexes by microorganisms (in Russian). Dokl. Akad. Nauk. S.S.S.R. 136: 954–957.Google Scholar
  67. Aristovskaya, T.V. 1963. On the decomposition of organic minreal compounds in podzolic soils. Pochvoved. Akad. Nauk. S.S.S.R. 1: 30–42.Google Scholar
  68. Aristovskaya, T.V. 1964. The taxonomic position of the genus Seliberia Arist. et Parink. Mikrobiologiya 33: 823–828.Google Scholar
  69. Aristovskaya, T.V. 1974. Seliberia. In Buchanan and Gibbons (Editors), Bergey ’s Manual of Determinative Bacteriology, 8th Ed., The Williams & Wilkins Co., Baltimore. p. 160.Google Scholar
  70. Aristovskaya, T.V. and V.V. Parinkina. 1961. New soil microorganism Seliberia stellata nov. gen. n. sp. Izvestiya Akad. Nauk SSSR, Ser. Biol. 28: 49–56.Google Scholar
  71. Aristovskaya, T.V. and V.V. Parinkina. 1963. New soil microorganism Seliberia stellata nov. gen., n. sp. Izv. Akad. Nauk S.S.S. R. Ser. Biol. 28: 49–56.Google Scholar
  72. Armengaud, J., B. Happe and K.N. Timmis. 1998. Genetic analysis of dioxin dioxygenase of Sphingomonas sp. Strain RW1: catabolic genes dispersed on the genome. J. Bacteriol. 180: 3954–3966.PubMedGoogle Scholar
  73. Armengaud, J. and K.N. Timmis. 1997. Molecular characterization of Fdx1, a putidaredoxin-type [2Fe–2S] ferredoxin able to transfer electrons to the dioxin dioxygenase of Sphingomonas sp. RW1. Eur. J. Biochem. 247: 833–842.PubMedCrossRefGoogle Scholar
  74. Arthur, L.O., J. Bulla, L.A., G. St. Julian and L.K. Nakamura. 1973. Carbohydrate metabolism in Agrobacterium tumefaciens. J. Bacteriol. 116: 304–313.PubMedGoogle Scholar
  75. Arzumanyan, V.G., Z.V. Sakharova, N.S. Panikov and V.S. Vshivtsev. 1997. Growth and nitrogen-fixing activity of the batch culture of Xanthobacter autotrophicus at various concentrations of dissolved oxygen. Mikrobiologiya 66: 750–754.Google Scholar
  76. Asai, T. 1935. Taxonomic studies on acetic acid bacteria and allied oxidative bacteria isolated from fruits. A new classification of the oxidative bacteria. J. Agr. Chem. Soc. Jpn. 11: 674–708.Google Scholar
  77. Asai, T. 1968. Acetic acid bacteria. Classification and biochemical activities, University of Tokyo Press, Tokyo.Google Scholar
  78. Asanovich, K.M., J.S. Bakken, J.E. Madigan, M. Aguero-Rosenfeld, G.P. Wormser and J.S. Dumler. 1997. Antigenic diversity of granulocytic Ehrlichia isolates from humans in Wisconsin and New York and a horse in California. J. Infect. Dis. 176: 1029–1034.PubMedCrossRefGoogle Scholar
  79. Ashbolt, N.J. and P.A. Inkerman. 1990. Acetic acid bacterial biota of the pink sugar cane mealybug, Saccharococcus sacchari, and its environs. Appl. Environ. Microbiol. 56: 707–712.PubMedGoogle Scholar
  80. Aspinall, S.T. and R. Graham. 1989. Two sources of contamination of a hydrotherapy pool by environmental organisms. J. Hosp. Infect. 14: 285–292.PubMedCrossRefGoogle Scholar
  81. Assmus, B., P. Hutzler, G. Kirchhof, R. Amann, J.R. Lawrence and A. Hartmann. 1995. In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl. Environ. Microbiol. 61: 1013–1019.PubMedGoogle Scholar
  82. Assmus, B., M. Schloter, G. Kirchhof, P. Hutzler and A. Hartmann. 1997. Improved in situ tracking of rhizosphere bacteria using dual staining with fluorescence-labeled antibodies and rRNA-targeted oligonucleotides. Microb. Ecol. 33: 32–40.PubMedCrossRefGoogle Scholar
  83. Attwood, M.M. and W. Harder. 1972. A rapid and specific enrichment procedure for Hyphomicrobium spp. Antonie Leeuwenhoek 38: 369–377.PubMedCrossRefGoogle Scholar
  84. Attwood, M.M. and W. Harder. 1974. The oxidation and assimilation of C2 compounds by Hyphomicrobium sp. J. Gen. Microbiol. 84: 350–356.CrossRefGoogle Scholar
  85. Attwood, M.M. and W. Harder. 1977. Isocitrate lyase activity in Hyphomicrobium spp. a critical reappraisal. FEMS Microbiol. Lett. 1: 25–30.CrossRefGoogle Scholar
  86. Attwood, M.M., J.P. van Dijken and J.T. Pronk. 1991. Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J. Ferment. Bioeng. 72: 101–105.CrossRefGoogle Scholar
  87. Audy, J.R. 1968. Scrub-itch and the ecologist. In Audy (Editor), Red Mites and Typhus, Oxford University Press Inc., New York. pp. 1–27.Google Scholar
  88. Auling, G., M. Dittbrenner, M. Maarzahl, T. Nokhal and M. Reh. 1980. Deoxyribonucleic acid relationships among hydrogen-oxidizing strains of the genera Pseudomonas, Alcaligenes, and Paracoccus. Int. J. Syst. Bacteriol. 30: 123–128.CrossRefGoogle Scholar
  89. Auling, G., H.-J. Busse, M. Hahn, H. Hennecke, R.-M. Kroppenstedt, A. Probst and E. Stackebrandt. 1988. Phylogenetic heterogeneity and chemotaxonomic properties of certain Gram-negative aerobic carboxydobacteria. Syst. Appl. Microbiol. 10: 264–272.CrossRefGoogle Scholar
  90. Auling, G., H.-J. Busse, F. Pilz, L. Webb, H. Kneifel and D. Claus. 1991. Rapid differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic pseudomonads and other membersof the class Proteobacteria interacting with plants. Int. J. Syst. Bacteriol. 41: 223–228.CrossRefGoogle Scholar
  91. Auran, T.B. and E.L. Schmidt. 1972. Similarities between Hyphomicrobium and Nitrobacter with respect to fatty acids. J. Bacteriol. 109: 450–451.PubMedGoogle Scholar
  92. Austin, B. and M. Goodfellow. 1979. Pseudomonas mesophilica, a new species of pink bacteria isolated from leaf surfaces. Int. J. Syst. Bacteriol. 29: 373–378.CrossRefGoogle Scholar
  93. Austin, F.E., J. Turco and H.H. Winkler. 1987. Rickettsia prowazekii requires host cell serine and glycine for growth. Infect. Immun. 55: 240–244.PubMedGoogle Scholar
  94. Babalis, T., Y. Tselentis, V. Roux, A. Psaroulaki and D. Raoult. 1994. Isolation and identification of a rickettsial strain related to Rickettsia massiliae in Greek ticks. Am. J. Trop. Med. Hyg. 50: 365–372.PubMedGoogle Scholar
  95. Babel, W. 1984. Assimilation of methanol by an acidophilic bacterium of the genus Acetobacter. Acta Biotechnol. 4: 369–376.CrossRefGoogle Scholar
  96. Babinchak, J.A. and V.F. Gerencser. 1976. Bacteriophage typing of the “Caulobacter group ”. Int. J. Syst. Bacteriol. 26: 82–84.CrossRefGoogle Scholar
  97. Babudieri, B. 1950. Natura delle cosidette “S-formen ” delle leptospire. Loro identificazione con Hyphomicrobium vulgare Stutzer e Hartleb. Studio di quest. Ultimo germ. Estratto dai Rendiconti dell ’Istituto Superiore di Sanita. 13: 580–591.Google Scholar
  98. Baev, N. and Á. Kondorosi. 1992. Nucleotide sequence of the Rhizobium meliloti nodL gene located in locus n5 of the nod regulon. Plant. Mol. Biol. 18: 843–846.PubMedCrossRefGoogle Scholar
  99. Baev, N., G. Endre, G. Petrovics, Z. Banfalvi and Á. Kondorosi. 1991. Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for d-glucosamine synthetase. Mol. Gen. Genet. 228: 113–124.PubMedCrossRefGoogle Scholar
  100. Baier, R., A. Meyer, V. DePalma, R. Krieg and M. Fornalik. 1983. Surface microfouling during the induction period. J. Heat Trans. 105: 618– 624.CrossRefGoogle Scholar
  101. Baird, R.W., M. Lloyd, J. Stenos, B.C. Ross, R.S. Stewart and B. Dwyer. 1992. Characterization and comparison of Australian human spotted fever group rickettsiae. J. Clin. Microbiol. 30: 2896–2902.PubMedGoogle Scholar
  102. Baker, CA., G.W. Claus and P.A. Taylor. 1983. Predominant bacteria in an activated sludge reactor for the degradation of cutting fluids. Appl. Environ. Microbiol. 46: 1214–1223.PubMedGoogle Scholar
  103. Baker, P.J. and J.B. Wilson. 1965. Chemical composition and biological properties of endotoxin of Brucella abortus.J. Bacteriol. 90: 895–902.PubMedGoogle Scholar
  104. Baker, S.C., S.J. Ferguson, B. Ludwig, M.D. Page, O.M.H. Richter and R.J.M. van Spanning. 1998. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev. 62: 1046–1078.PubMedGoogle Scholar
  105. Baker, S.C., C.F Goodhew, I.P. Thompson, A. Bramwell, G. Pettigrewand S.J. Ferguson. 1995. A study of Paracoccus denitrificans using fatty acid methyl ester analysis and cytochrome c 550 amino acid sequence. In Schaffers and Dijken (Editors), Beijerinck Centennial. Microbial Physiology and Gene Regulation: Emerging Principles and Applications, Delft University Press, The Netherlands. pp. 311–312.Google Scholar
  106. Bakken, J.S., J.S. Dumler, S.M. Chen, M.R. Eckman, L.L. Van Etta and D.H. Walker. 1994. Human granulocytic ehrlichiosis in the upper Midwest United States. A new species emerging? JAMA. 272: 212– 218.PubMedCrossRefGoogle Scholar
  107. Bakken, J.S., J. Krueth, C. Wilson-Nordskog, R.L. Tilden, K. Asanovich and J.S. Dumler. 1996. Clinical and laboratory characteristics of human granulocytic ehrlichiosis. JAMA. 275: 199–205.PubMedCrossRefGoogle Scholar
  108. Baldani, J.I., L. Caruso, V.L.D. Baldani, S.R. Goi and J. Dobereiner. 1997. Recent advances in BNF with non-legume plants. Soil Biol. Biochem. 29: 911–922.CrossRefGoogle Scholar
  109. Balke, E., A. Weber and B. Fronk. 1977. Untersuchungen des Aminosaurestoffwechsels mit der Dunnschichtchromatographie zur Differenzierung von Brucellen. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig.A. 237: 523–529.Google Scholar
  110. Balkwill, D.L., G.R. Drake, R.H. Reeves, J.K. Fredrickson, D.C. White, D.B. Ringelberg, D.P. Chandler, M.F. Romine, D.W. Kennedy andC.M. Spadoni. 1997. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov, Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int. J. Syst. Bacteriol. 47: 191–201.PubMedCrossRefGoogle Scholar
  111. Balkwill, D.L., D. Maratea and R.P. Blakemore. 1980. Ultrastructure of a magnetotactic spirillum. J. Bacteriol. 141: 1399–1408.PubMedGoogle Scholar
  112. Ballard, R.W., M. Doudoroff, R.Y. Stanier and M. Mandel. 1968. Taxonomy of the aerobic pseudomonads: Pseudomonas diminuta and P.vesiculare. J. Gen. Microbiol. 53: 349–361.PubMedCrossRefGoogle Scholar
  113. Bally, M. 1994. Physiology and ecology of nitrilotriacetate-degrad In g bacteria In pure culture, activated sludge and surface waters, Thesis, Swiss Federal Institute of Technology, Zürich.Google Scholar
  114. Bally, M. and T. Egli. 1996. Dynamics of substrate consumption and enzyme synthesis in Chelatobacter hentzii during growth in carbon-limited continuous culture with different mixtures of glucose and nitrilotri-acetate. Appl. Environ. Microbiol. 62: 133–140.PubMedGoogle Scholar
  115. Bally, M., E. Wilberg, M. Kühni and T. Egli. 1994. Growth and regulation of enzyme synthesis in the nitrilotriacetic acid (NTA)-degrading bacterium Chelatobacter heintzii ATCC 29600. Microbiology 140: 1927– 1936.PubMedCrossRefGoogle Scholar
  116. Bally, R., D. Thomas-Bauzon, T. Heulin, J. Balandreau and C. Richard. 1983. Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Can. J. Microbiol. 29: 881–887.CrossRefGoogle Scholar
  117. Banai, M., I. Mayer and A. Cohen. 1990. Isolation, identification, and characterization in Israel of Brucella melitensis biovar 1 atypical strains susceptible to dyes and penicillin, indicating the evolution of a new variant. J. Clin. Microbiol. 28: 1057–1059.PubMedGoogle Scholar
  118. Bandi, C., T.J. Anderson, C. Genchi and M.L. Blaxter. 1998. Phylogeny of Wolbachia in filarial nematodes. Proc. R. Soc. Lond. B Biol. Sci. 265: 2407–2413.CrossRefGoogle Scholar
  119. Bandi, C., J.W. McCall, C. Genchi, S. Corona, L. Venco and L. Sacchi. 1999. Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. int. J. Parasitol. 29: 357–364.PubMedCrossRefGoogle Scholar
  120. Bandi, C., M. Sironi, C.A. Nalepa, S. Corona and L. Sacchi. 1997. Phy-logenetically distant intracellular symbionts in termites. Parassitologia. 39: 71–75.PubMedGoogle Scholar
  121. Bandi, C., A.J. Trees and N.W. Brattig. 2001. Wolbachia in filarial nema-todes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet. Parasitol. 98: 215–238.PubMedCrossRefGoogle Scholar
  122. Banerjee, P.C., M.K. Ray, C. Koch, S. Bhattacharyya, S. Shivaji and E. Stackebrandt. 1996. Molecular characterization of two acidophilic heterotrophic bacteria isolated from a copper mine of india. Syst. Appl. Microbiol. 19: 78–82.CrossRefGoogle Scholar
  123. Banfalvi, Z., A. Nieuwkoop, M. Schell, L. Besl and G. Stacey. 1988. Regulation of nod gene expression in Bradyrhizobium japonicum. Mol. Gen. Genet. 214: 420–424.PubMedCrossRefGoogle Scholar
  124. Bang, B. 1897. Die aetiologie des seuchenhaften (“infektiosen”) verwerfens. Z. Tiermed. 1: 241–278.Google Scholar
  125. Bar, T. and Y. Okon. 1995. Conversion of tryptophan, indole-3-pyruvic acid, indole-3-lactic acid and indole- to indole-3-acetic acid by Azospirillum brasilense Sp7. NATO ASI Ser. Ser. G Ecol. Sci. 37: 347–359.Google Scholar
  126. Barbet, A.F. 1995. Recent developments in the molecular biology of an-aplasmosis. Vet. Parasitol. 57: 43–49.PubMedCrossRefGoogle Scholar
  127. Barbosa, H.R., M.F.A. Rodrigues, C.C. Campos, M.E. Chaves, I. Nunes, Y. Juliano and N.F. Novo. 1995. Counting of viable cluster forming and non cluster forming bacteria a comparison between the drop and the spread methods. J. Microbiol. Methods 22: 39–50.CrossRefGoogle Scholar
  128. Barbour, W.M., S.P. Wang and G. Stacey. 1992. Molecular genetics of Bradyrhizobium symbioses. in Stacey, Burris and Evans (Editors), Biological Nitrogen Fixation, Chapman and Hall, New York. 648–684.Google Scholar
  129. Bardenstein, S., M. Mandelboim, T.A. Ficht, M. Baum and M. Banai. 2002. Identification of the Brucella melitensis vaccine strain Rev1 In animals and humans in Israel by PCR analysis of the PstI site polymorphism of its omp2 gene. J. Clin. Microbiol. 40: 1475–1480.PubMedCrossRefGoogle Scholar
  130. Barker, B.T.P. 1948. Some recent studies on the nature and incidence of cider sickness. Annu. Rep. Agric. Hort. Res. Stn. Long Ashton Bristol, pp. 174–181.Google Scholar
  131. Barker, B.T.P. and V.F. Hillier. 1912. Cider sickness. J. Agric. Sci. 5: 67– 85.CrossRefGoogle Scholar
  132. Barlough, J.E., G.H. Reubel, J.E. Madigan, L.K. Vredevoe, P.E. Miller and Y. Rikihisa. 1998. Detection of Ehrlichia risticii, the agent of Potomac horse fever, in freshwater stream snails (Pleuroceridae: Juga spp.) from northern California. Appl. Environ. Microbiol. 64: 2888–2893.PubMedGoogle Scholar
  133. Barnes, A., L. Galbraith and S.G. Wilkinson. 1989. The Presence of 11-methyloctadec-11-enoic acid in the extractable lipids of Pseudomonas vesicularis. FEMS Microbiol. Lett. 59: 101–106.CrossRefGoogle Scholar
  134. Barnett, M.J. and S.R. Long. 1990. DNA sequence and translational product of a new nodulation-regulatory locus: syrM has sequence similarity to nodD proteins. J. Bacteriol. 172: 3695–3700.PubMedGoogle Scholar
  135. Barnewall, R.E., N. Ohashi and Y. Rikihisa. 1999. Ehrlichia chaffeensis and E. sennetsu, but not the human granulocytici ehrlichiosis agent, colocalize with transferrin receptor and up-regulate transferrin receptor mRNA by activating iron-responsive protein 1.infect. Immun. 67: 2258–2265.PubMedGoogle Scholar
  136. Barrera, L.L., M.E. Trujillo, M. Goodfellow, FJ. Garcia, I. Hernandez Lucas, G. Davila, P. van Berkum and E. Martinez Romero. 1997. Biodiversity of bradyrhizobia nodulating Lupinus spp. int. J. Syst. Bacteriol. 47: 1086–1091.CrossRefGoogle Scholar
  137. Barrett, P.A., E. Beveridge, P.L. Bradley, C.G.D. Brown, S.R.M. Bushby, M.L. Clarke, R.A. Neal, R. Smith andJ.K.H. Wilde. 1965. Biological activities of some α-dithiosemicarbozones. Nature 206: 1340–1341.PubMedCrossRefGoogle Scholar
  138. Barrow, G.I. and R.K.A. Feltham. 1993. Appendix A: Preparation and control of culture media. In Barrow and Feltham (Editors), Cowan and Steele’s Manual for the Identification of Medical bacteria, 3rd Ed., Cambridge University Press, Cambridge. pp. 188–213.CrossRefGoogle Scholar
  139. Barta, J.R., Y. Boulard and S.S. Desser. 1989. Blood parasites of Rana esculentafrom Corsica: comparison of its parasiteswith those of eastern North American ranids in the context of host phylogeny. Trans. Am. Microsc. Soc. 108: 6–20.CrossRefGoogle Scholar
  140. Barthel, T., R. Jonas and H. Sahm. 1989. NADP+-dependentacetaldehyde dehydrogenase from Zymomonas mobilis—isolation and partial characterization. Arch. Microbiol. 153: 95–100.CrossRefGoogle Scholar
  141. Bartosch, S., I. Wolgast, E. Spieck and E. Bock. 1999. Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase. Appl. Environ. Microbiol. 65: 4126–4133.PubMedGoogle Scholar
  142. Bashan, Y and G. Holguin. 1997. Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can.J. Microbiol. 43: 103–121.CrossRefGoogle Scholar
  143. Bass, J.W., B.C. Freitas, A.D. Freitas, C.L. Sisler, D.S. Chan, J.M. Vincent, D.A. Person, J.R. Claybaugh, R.R. Wittler, M.E. Weisse, R.L. Regnery and L.N. Slater. 1998. Prospective randomized double blind placebo-controlled evaluation of azithromycin for treatment of cat-scratch disease. Pediatr. infect. Dis. J. 17: 447–452.PubMedCrossRefGoogle Scholar
  144. Bassalik, K. 1913. Über die verabeitung der oxalsäure durch Bacillus ex-torquens n. sp. Jahrb. Botan. 53: 255–302.Google Scholar
  145. Batrakov, S.G. and D.I. Nikitin. 1996. Lipid composition of the phosphatidylcholine-producing bacterium HyphomicrobiumvulgareNP-160. Biochim. Biophys. Acta 1302: 129–137.PubMedCrossRefGoogle Scholar
  146. Batrakov, S.G., D.I. Nikitin and I.A. Pitryuk. 1996. A novel glycolipid, 1,2-diacyl-3-α-d-glucuronopyranosyl-sn-glycerol taurineamide, from the budding seawater bacterium Hyphomonas jannaschiana. Biochim. Biophys. Acta 130: 167–176.Google Scholar
  147. Batrakov, S.G., D.I. Nikitin, VI. Sheichenko and A.O. Ruzhitsky 1997. Unusual lipid composition of the gram-negative, freshwater, stalked bacterium Caulobacter bacteroidesNP-105. Biochim. Biophys. Acta 1347: 127–139.PubMedCrossRefGoogle Scholar
  148. Battelli, C. 1947. Si di un piroplasma della Naia nigrocollis (Aegyptianella carpani n. sp.). Riv. Parassitol. 8: 205–212.Google Scholar
  149. Bauld, J., R. Bigford and J.T Staley. 1983. Prosthecomicrobium litoralum, a new species from marine habitats. Int. J. Syst. Bacteriol. 33: 613–617.CrossRefGoogle Scholar
  150. Baumgarten, J., M. Reh and H.G. Schlegel. 1974. Taxonomic studies on some Gram-positive coryneform hydrogen bacteria. Arch. Microbiol. 100: 207–217.CrossRefGoogle Scholar
  151. Bazlikova, M. and R. Brezina. 1978. Some biological properties of rickettsiae isolated in Armenian SSR. In Kazar, Ormsbee and Tarasevich (Editors), Rickettsiae and Rickettsial Diseases, VEDA, Bratislava. pp.155–159.Google Scholar
  152. Bazylinski, D.A., L.K Kimble, D. Schüler, E.P. Phillips and D.R. Lovley. 2000. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria Geobacter metallireducens and Magnetospirillum species. Env. Microbiol. 2: 266–273.CrossRefGoogle Scholar
  153. Bazzicalupo, M. and E. Gallori. 1983. Genetic analysis in Azospirillum. In Klingmuller (Editor), Azospirillum II: Genetics, Physiology, Ecology, Birkhauser-Verlag, Basel. pp. 24–28.CrossRefGoogle Scholar
  154. Beardsley, R.E. 1955. Phage production by crown-gall bacteria and the formation of plant tumors. Am. Natur. 89: 175–176.CrossRefGoogle Scholar
  155. Beati, L., M. Meskini, B. Thiers and D. Raoult. 1997. Rickettsia aeschlimannii sp. nov., a new spotted fever group rickettsia associated with Hyalomma marginatum ticks. Int. J. Syst. Bacteriol. 47: 548–554.PubMedCrossRefGoogle Scholar
  156. Beati, L. and D. Raoult. 1993. Rickettsia massiliae sp. nov., a new spotted fever group rickettsia. Int. J. Syst. Bacteriol. 43: 839–840.PubMedCrossRefGoogle Scholar
  157. Beati, L., V. Roux, A. Ortuno, J. Castella, F.S. Porta and D. Raoult. 1996. Phenotypic and genotypic characterization of spotted fever group rickettsiae isolated from Catalan Rhipicephalus sanguineus ticks. J. Clin. Microbiol. 34: 2688–2694.PubMedGoogle Scholar
  158. Beaulieu, C., L.J. Coulombe, R.L. Granger, B. Miki, C. Beauchamp, G. Rossignol and P. Dion. 1983. Characterization of opine-utilizing bacteria isolated from Quebec. Phytoprotection. 64: 61–68.Google Scholar
  159. Becking, J.H. 1959. Nitrogen-fixing bacteria of the genus Beijerinckia in South African soils. Plant Soil 11: 193–206.CrossRefGoogle Scholar
  160. Becking, J.H. 1961. Studies on nitrogen-fixing bacteria of the genus Beijerinckia. I. Geographical and ecological distribution in soils. Plant Soil 14: 49–81.CrossRefGoogle Scholar
  161. Becking, J.H. 1962. Species differences in molybdenum and vanadium requirements and combined nitrogen utilization by Azotobacteraceae. Plant Soil 16: 171–201.CrossRefGoogle Scholar
  162. Becking, J.H. 1974. Nitrogen-fixing bacteria of the genus Beijerinckia. Soil Sci. 118: 196–212.CrossRefGoogle Scholar
  163. Becking, J.H. 1978. Beijerinckia in irrigated rice soils. In Environmental Role of Nitrogen-Fixing Blue-Green Algae and Asymbiotic Bacteria, Vol. Ecol. Bull. 26, Stockholm. pp. 116–129.Google Scholar
  164. Becking, J.H. 1981. The family Azotobacteraceae. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria, 1st Ed., Vol. 1, Springer-Verlag, Berlin. pp. 795–817.Google Scholar
  165. Beier, C.L., M. Horn, R. Michel, M. Schweikert, H.D. Görtz and M. Wagner. 2002. The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Appl. Biochem. Microbiol. 68: 6043–6050.Google Scholar
  166. Beijerinck, M.W. 1898. Uber die Arten der Essigbakterien. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg.. Abt. II 4: 209–216.Google Scholar
  167. Beijerinck, M.W. 1916. Formation of pyruvic acid from malic acid by microbes. Verslag gewone Vergad. Akad. Amst. 18: 1198–2000.Google Scholar
  168. Beijerinck, M. 1925. Uber ein Spirillum, welches freien Stickstoff binden kann? Zentralbl Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2 63: 353–359.Google Scholar
  169. Beijerinck, M.W. and D.C. Minkman. 1910. Bildung und verbrauch von stickoxydul durch bakterien. Zentbl. Bakteriol. Parasitenik. Abt. II 25: 30–63.Google Scholar
  170. Bell, E.J., G.M. Kohls, H.G. Stoenner and D.B. Lackman. 1963. Nonpathogenic rickettsias related to the spotted fever group isolated from ticks, Dermacentor variabilis and Dermacentor andersoni from Eastern Montana. J.Immunol. 90: 770–781.PubMedGoogle Scholar
  171. Bell, E.J. and E.G. Pickens. 1953. A toxic substance associated with the rickettsias of the spotted fever group. J. Immunol. 70: 461–472.PubMedGoogle Scholar
  172. Bell, E.J. and H.G. Stoenner. 1960. Immunologic relationships among the spotted fever group of rickettsias determined by toxin neutralization tests in mice with convalescent animal serums. J. Immunol. 84: 171–182.PubMedGoogle Scholar
  173. Bella, F., B. Font, S. Uriz, T Munoz, E. Espejo, J. Traveria, J.A. Serrano and F Segura. 1990. Randomized trial of doxycycline versusjosamycin for Mediterranean spotted fever. Antimicrob. Agents Chemother. 34: 937–938.PubMedCrossRefGoogle Scholar
  174. Bellaire, B.H., P.H. Elzer, C.L. Baldwin and R.M. Roop. 1999. The sid-erophore 2,3-dihydroxybenzoic acid is not required for virulence of Brucella abortus in BALB/c mice. Infect. Immun. 67: 2615–2618.PubMedGoogle Scholar
  175. Bellion, E. and L.B. Hersh. 1972. Methylamine metabolism in a Pseudomonas species. Arch. Biochem. Biophys. 153: 368–374.PubMedCrossRefGoogle Scholar
  176. Bellion, E. and J.C. Spain. 1976. The distribution of the isocitrate lyase serine pathway amongst one-carbon utilizing organisms. Can. J. Microbiol. 22: 404–408.PubMedCrossRefGoogle Scholar
  177. Bellmann, W. and F. Lingens. 1985. Demonstration of herbicide degrading bacteria by the detection of a bacteria specific fatty-acid in soil. Naturwissenschaften 72: 599.CrossRefGoogle Scholar
  178. Belyaev, S.S. 1967. Distribution of the caulobacter group of bacteria in the Volga-Don reservoirs. Mikrobiologiya 36: 157–162.Google Scholar
  179. Belyaev, S.S. 1969. Certain aspects of the ecology of Caulobacter. Mikro-biologiya 38: 499–504.Google Scholar
  180. Bender, R.A., CM. Refson and E.A. O’Neill. 1989. Role of the flagellum in cell-cycle-dependent expression of bacteriophage receptor activity in Caulobacter crescentus. J. Bacteriol. 171: 1035–1040.PubMedGoogle Scholar
  181. Bendis, I. and L. Shapiro. 1970. Properties of Caulobacter ribonucleic acid bacteriophage ϕCb5. J. Virol. 6: 847–854.PubMedGoogle Scholar
  182. Bennett, B.L.,J.E. Smadel and R.L. Gauld. 1949. Studies on scrub typhus (tsutsugamushi disease). IV Heterogeneity of strains of R. tsutsuga-mushi as demonstrated by cross-neutralization tests. J. Immunol. 62: 453–461.PubMedGoogle Scholar
  183. Beppu, T 1993. Genetic organization of Acetobacter for acetic acid fermentation. Antonie Leeuwenhoek 64: 121–135.PubMedCrossRefGoogle Scholar
  184. Berg, R.H., M.E. Tyler, N.J. Novick, V Vasil and I.K. Vasil. 1980. Biology of Azospirillum-sugarcane association: enhancement of nitrogenase activity. Appl. Environ. Microbiol. 39: 642–649.PubMedGoogle Scholar
  185. Berg, R.H., V Vasil and I.K. Vasil. 1979. The biology of Azospirillum-sugarcane association. II. Ultrastructure. Protoplasma. 101: 143–163.CrossRefGoogle Scholar
  186. Bergan, T. 1981. Human- and animal-pathogenic members of the genus Pseudomonas. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria, Springer-Verlag, Berlin. 666–700.Google Scholar
  187. Bergeron, H., D. Labbe, C. Turmel and P.C.K. Lau. 1998. Cloning, sequence and expression of a linear plasmid-based and a chromosomal homolog of chloroacetaldehyde dehydrogenase-encoding genes in Xanthobacter autotrophicus GJ10. Gene 207: 9–18.PubMedCrossRefGoogle Scholar
  188. Beringer, J.E. and D.A. Hopwood. 1976. Chromosomal recombination and mapping in Rhizobium leguminosarum. Nature (Lond.) 264: 291–293.CrossRefGoogle Scholar
  189. Beringer, J.E., A.W. Johnston and Á. Kondorosi. 1987. Genetic maps of Rhizobium meliloti and R. leguminosarum biovar phaseoli, biovar trifolii and biovar viciae. In O’Brien (Editor), Genetic Maps, Vol. 4, Cold Spring Harbor Laboratories, Cold Spring Harbor, New York. 245–251.Google Scholar
  190. Berlier, Y.M. and P.A. Lespinat. 1980. Mass-spectrometric kinetic studies of the nitrogenase and hydrogenase activities in in vivo cultures of Azospirillum brasilense. Arch. Microbiol. 125: 67–72.CrossRefGoogle Scholar
  191. Bernard, U., I. Probst and H.G. Schlegel. 1974. The cytochromes of some hydrogen bacteria. Arch. Microbiol. 95: 29–37.CrossRefGoogle Scholar
  192. Bernardo, E.B., B.A. Neilan and I. Couperwhite. 1998. Characterization, differentiation and identification of wild-type cellulose-synthesizing Acetobacter strains involved in Nata de Coco production. Syst. Appl. Bacteriol. 21: 599–608.CrossRefGoogle Scholar
  193. Berndt, H., D.J. Lowe and M.G. Yates. 1978. The nitrogen-fixing system of Corynebacterium autotrophicum. Purification and properties of the nitrogen- ase components and two ferredoxins. Eur. J. Biochem. 86: 133–142.PubMedCrossRefGoogle Scholar
  194. Berndt, H., K.P. Ostwal, J. Lalucat, C. Schumann, F. Mayer and H.G. Schlegel. 1976. Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ29. Arch. Microbiol. 108: 17–26.PubMedCrossRefGoogle Scholar
  195. Berndt, H. and D. Wölfle. 1979. Hydrogenase: its role as electron generating in the nitrogen fixing bacterium Xanthobacter autotrophicus. In Schlegel and Schneider (Editors), Hydrogenases: Their Catalytic Activity, Structure and Function, Erich Goltze KG, Göttingen. 327–351.Google Scholar
  196. Berry, A., D. Janssens, M. Hümbelin, J.P.M. Jore, B. Hoste, I. Cleenwerck, M. Vancanneyt, W. Bretzel, A.F Mayer, R. Lopez-Ulibarri, B. Shan-mugam, J. Swings and L. Pasamontes. 2003. Paracoccus zeaxanthinifa-ciens sp. nov., a zeaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 53: 231–238.PubMedCrossRefGoogle Scholar
  197. Bertini, I., F Capozzi, A. Dikiy, B. Happe, C. Luchinat and K.N. Timmis. 1995. Evidence of histidine coordination to the catalytic ferrous ion in the ring-cleaving 2,2′,3-trihydroxybiphenyl dioxygenase from the dibenzofuran-degrading bacterium Sphingomonas sp. strain RW1. Biochem. Biophys. Res. Commun. 215: 855–860.PubMedCrossRefGoogle Scholar
  198. Best, D.J. and I.J. Higgins. 1981. Methane-oxidizing activity and membrane morphology in a methanol grown obligate methanotroph, Methylosinus trichosporium OB3b. J. Gen. Microbiol. 125: 73–84.Google Scholar
  199. Bevan, L.G.W. 1930. Blood culture in undulant fever. Br. Med. J. 2: 267.CrossRefGoogle Scholar
  200. Bezrukova, L.V., N. Y.I., A.I. Nesterov, V.F. Gal’chenko and M.V. Ivanov. 1983. Comparative serological analysis of methanotrophic bacteria. Mikrobiologiya 52: 800–805.Google Scholar
  201. Biebl, H. and G. Drews. 1969. Das in-vivo-Spektrum als taxonomisches Merkmal bei Untersuchungen zur Bergreitung von Athiorhodoaceae. Zentbl. Bakteriol. Parasitenkd. Infektkrankh. Hyg. Abt. II Orig. 123: 425–452.Google Scholar
  202. Biebl, H. and N. Pfennig. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9–16.CrossRefGoogle Scholar
  203. Biebl, H. and N. Pfennig. 1981. Isoation of members of Rhodospirillaceae. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokary-otes: A Handbook on Habitats, Isolation, and Identification of Bacteria, Springer-Verlag, Berlin. pp. 267–273.Google Scholar
  204. Biggins, D.R. and J.R. Postgate. 1969. Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. J. Gen. Microbiol. 56: 181–193.PubMedCrossRefGoogle Scholar
  205. Biggins, D.R. and J.R. Postgate. 1971. Nitrogen fixation by extracts of Mycobacterium flavum 301. Use of natural electron donors and oxygen-sensitivity of cell-free preparations. Eur. J. Biochem. 19: 408–415.PubMedCrossRefGoogle Scholar
  206. Billings, A.N., G.J. Teltow, S.C. Weaver and D.H. Walker. 1998. Molecular characterization of a novel Rickettsia species from Ixodes scapularis in Texas. Emerg. Infect. Dis. 4: 305–309.PubMedCrossRefGoogle Scholar
  207. Binns, A.N. and P. Costantino. 1998. The Agrobacterium oncogenes. In Spaink, Kondorosi and Hooykaas (Editors), The Rhizobiaceae: Molecular Biology of Model Plant Associated Bacteria, Kluwer Academic, Dordrecht; Boston. 251–266.Google Scholar
  208. Bird, R.G. and P.C. Garnham. 1969. Aegyptianella pullorum Carpano 1928-fine structure and taxonomy. Parasitology. 59: 745–752.PubMedGoogle Scholar
  209. Birkness, K.A., V.G. George, E.H. White, D.S. Stephens and F.D. Quinn. 1992. Intracellular growth of Afipia felis, a putative etiologic agent of cat scratch disease. Infect. Immun. 60: 2281–2287.PubMedGoogle Scholar
  210. Birtles, R.J. 1995. Differentiation of Bartonella species using restriction endonuclease analysis of PCR-amplified 16S rRNA genes. FEMS Mi-crobiol. Lett. 129: 261–265.Google Scholar
  211. Birtles, R.J., T.G. Harrison, N.A. Saunders and D.H. Molyneux. 1995. Proposals to unify the genera Grahamella and Bartonella, with descriptions of Bartonella talpae comb. nov., Bartonella peromysci comb. nov., and three new species, Bartonella grahamii sp. nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov. Int. J. Syst. Bacteriol. 45: 1–8.PubMedCrossRefGoogle Scholar
  212. Birtles, R.J. and D. Raoult. 1996. Comparison of partial citrate synthase gene (gltA) sequences for phylogenetic analysis of Bartonella species. Int. J. Syst. Bacteriol. 46: 891–897.PubMedCrossRefGoogle Scholar
  213. Birtles, R.J., T.J. Rowbotham, D. Raoult and T.G. Harrison. 1996. Phy-logenetic diversity of intra-amoebal legionellae as revealed by 16S rRNA gene sequence comparison. Microbiology (Reading) 142: 3525–3530.CrossRefGoogle Scholar
  214. Biswas, B., R. Vemulapalli and S.K. Dutta. 1998. Molecular basis for antigenic variation of a protective strain-specific antigen of Ehrlichia risticii. Infect. Immun. 66: 3682–3628.PubMedGoogle Scholar
  215. Blackall, L.L., S. Rossetti, C. Christensson, M. Cunningham, P. Hartman, P. Hugenholtz and V. Tandoi. 1997. The characterization and description of representatives of “G” bacteria from activated sludge plants. Lett. Appl. Microbiol. 25: 63–69.PubMedCrossRefGoogle Scholar
  216. Blakemore, R.P. and R.B. Frankel. 1981. Magnetic navigation in bacteria. Sci. Am. 245: 42–49.CrossRefGoogle Scholar
  217. Blakemore, R.P., D. Maratea and R.S. Wolfe. 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140: 720–729.PubMedGoogle Scholar
  218. Blakemore, R.P., K.A. Short, D.A. Bazylinski, C. Rosenblatt and R.B. Frankel. 1985. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Geomicrobiol. J. 4: 53–71.CrossRefGoogle Scholar
  219. Blatny, J.M., T. Brautaset, H.C. Winther Larsen, K. Haugan and S. Valla. 1997. Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl. Environ. Microbiol. 63: 370–379.PubMedGoogle Scholar
  220. Bock, E., H.-P. Koops, H. Harms and B. Ahlers. 1991. The biochemistry of nitrifying organisms. In Shively and Barton (Editors), Variations in Autotrophic Life, Academic Press, Ltd., London. pp. 171–199.Google Scholar
  221. Bock, E. and H.-P., Koops. 1992. The genus Nitrobacter and related genera. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Pro-karyotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 3, Springer-Verlag, New York. pp. 2302–2309.Google Scholar
  222. Bock, E., H.P. Koops, U.C. Möller and M. Rudert. 1990. A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris, new species. Arch. Microbiol. 153: 105–110.CrossRefGoogle Scholar
  223. Bock, E., H. Sundermeyer-Klinger and E. Stackebrandt. 1983. New facultative lithoautotrophic nitrite-oxidizing bacteria. Arch. Microbiol. 136: 281–284.CrossRefGoogle Scholar
  224. Bock, E., H. Sundermeyer-Klinger and E. Stackebrandt. 2001. In Validation of the publication of new names and new combinations previously effectively published outside the IJSEM. List No. 78. Int. J.Syst. Bacteriol. 51: 1–2.Google Scholar
  225. Bock, E., P.A. Wilderer and A. Freitag. 1988. Growth of Nitrobacter in the absence of dissolved oxygen. Water Res. 22: 245–250.CrossRefGoogle Scholar
  226. Bodrossy, L., E.M. Holmes, A.J. Holmes, K.L. Kovacs and J.C. Murrell. 1997. Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch. Microbiol. 168: 493– 503.PubMedCrossRefGoogle Scholar
  227. Boesch, C. 1998. Nucleotide sequences as a basis to genetic and taxonomic investigations of Acetobacter species isolated from industrial fermentations, Thesis, Swiss Federal Institute of Technology, Zurich (ETHZ), Zurich.Google Scholar
  228. Boesch, C., J. Trcek, M. Sievers and M. Teuber. 1998. Acetobacter inter-medius, sp. nov. Syst. Appl. Microbiol. 21: 220–229.PubMedCrossRefGoogle Scholar
  229. Boivin, C., I. Ndoye, G. Lortet, A. Ndiaye, P. deLajudie and B. Dreyfus. 1997. The Sesbania root symbionts Sinorhizobium saheli and S. teranga biovar sesbanie can form stem nodules on Sesbania rostrata, although they are less adapted to stem nodulation than Azorhizobium caulino-dans. Appl. Environ. Microbiol. 63: 1040–1047.PubMedGoogle Scholar
  230. Bolton, H.J., D.C. Girvin, A.E. Plymale, S.D. Harvey and D.J. Workman. 1996. Degradation of metal-nitrilotriacetate complexes by Chelatobacter heintzii. Environ. Sci. Technol. 30: 931–938.CrossRefGoogle Scholar
  231. Bonam, D., L. Lehman, G.P. Roberts and P.W. Ludden. 1989. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum effects of carbon monoxide and oxygen on synthesis and activity. J. Bacteriol. 171: 3102–3107.PubMedGoogle Scholar
  232. Bonora, P., I. Principi, A. Hochkoeppler, R. Borgheses and D. Zannoni. 1998. The respiratory chain of the halophilic anoxygenic purple bacterium Rhodospirillum sodomense. Arch. Microbiol. 170: 435–441.PubMedCrossRefGoogle Scholar
  233. Boogerd, F.C., H.W. van Verseveld and A.H. Stouthamer. 1981. Respiration-driven proton translocation with nitrite and nitrous oxide in Paracoccus denitrificans. Biochim. Biophys. Acta 638: 181–191.PubMedCrossRefGoogle Scholar
  234. Boogerd, F.C., H.W. van Verseveld and A.H. Stouthamer. 1983. Dissimilatory nitrate uptake in Paracoccus denitrificans via a proton motive force-dependent system and a nitrate-nitrite antiport system. Biochim. Biophys. Acta 723: 415–427.CrossRefGoogle Scholar
  235. Boon, P.I., P. Virtue and P.D. Nichols. 1996. Microbial consortiainwetland sediments—a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Mar. Freshw. Res. 47: 27– 41.CrossRefGoogle Scholar
  236. Booth, A.J., L. Stogdale and J.A. Grigor. 1984. Salmon poisoning disease in dogs on Southern Vancouver Island. Can. Vet. J. 25: 2–6.PubMedGoogle Scholar
  237. Borchsenius, O.N., I.I. Skoblo and D.V. Ossipov. 1983. Holospora curviuscula — a new species of macronuclear symbiotic bacteria of Paramecium bursaria. Tsitologiya 25: 91–97.Google Scholar
  238. Borodina, E., D.P. Kelly, F.A. Rainey, N.L. Ward-Rainey and A.P. Wood. 2000. Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch. Microbiol. 173: 425– 437.PubMedCrossRefGoogle Scholar
  239. Borsodi, A. K., A. Micsinai, G. Kovacs, E. Toth, P. Schumann, A. L. Kovacs, B. Boddi and K. Marialigeti. 2003. Pannonibacter phragmitetus gen. nov., sp nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int. J. Syst. Evol. Microbiol. 53: 555–561.PubMedCrossRefGoogle Scholar
  240. Boschker, H.T.S., S.C. Nold, P. Wellsbury, D. Bos, W. De Graaf, R. Pel, R.J. Parkees and T.E. Cappenberg. 1998. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392: 801–805.CrossRefGoogle Scholar
  241. Boss, A.O.L., O.N. Borchsenius and D.V. Ossipov. 1987. Pseudolyticum multiflagellatum Ng, n. sp. — a new symbiotic bacterium in the cytoplasm of Paramecium caudatum (Ciliata, Protozoa). Tsitologiya 29: 94–99.Google Scholar
  242. Bothe, H., B. Klein, M.P. Stephan and J. Dobereiner. 1981. Transformations of inorganic nitrogen by Azospirillum spp. Arch. Microbiol. 130: 96–100.CrossRefGoogle Scholar
  243. Bothe, H. and M.G. Yates. 1976. The electron transport to nitrogenase in Mycobacterium flavum. Arch. Microbiol. 107: 25–31.PubMedCrossRefGoogle Scholar
  244. Bottini, R., M. Fulchieri, D. Pearce and R.P. Pharis. 1989. Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol. 90: 45–47.PubMedCrossRefGoogle Scholar
  245. Bottomley, P.J., H.H. Cheng and S.R. Strain. 1994. Genetic structure and symbiotic characteristics of a Bradyrhizobium population recovered from a pasture soil. Appl. Environ. Microbiol. 60: 1754–1761.PubMedGoogle Scholar
  246. Bouchon, D., T. Rigaud and P. Juchault. 1998. Evidence for widespread Wolbachia infection in isopod crustaceans: Molecular identification and host feminization. Proc. R. Soc. Lond. B Biol. Sci. 265: 1081– 1090.CrossRefGoogle Scholar
  247. Boulygina, E.S., K.M. Chumakov and A.I. Netrusov. 1993. Systematics of Gram-negative methylotrophic bacteria based on 5S rRNA sequences. In Murrell and Kelly (Editors), Microbial growth on C1 compounds: Proceedings of the 7th International Symposium, Intercept Ltd., Andover, UK. 275–284.Google Scholar
  248. Bousfield, I.J. and P.N. Green. 1985. Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylo-bacterium (Patt, Cole, and Hanson) emend. Green and Bousfield 1983. Int. J. Syst. Bacteriol. 35: 209.CrossRefGoogle Scholar
  249. Bouyer, D.H., J. Stenos, P. Crocquet-Valdes, C.G. Moron, V.L. Popov, J.E. Zavala-Velazquez, L.D. Foil, D.R. Stothard, A.F. Azad and D.H. Walker. 2001. Rickettsia felis: Molecular characterization of a new member of the spotted fever group. Int. J. Syst. Evol. Microbiol. 51: 339–347.PubMedGoogle Scholar
  250. Bouzar, H. 1994. Request for a judicial opinion concerning the type species of Agrobacterium. Int. J. Syst. Bacteriol. 44: 373–374.CrossRefGoogle Scholar
  251. Bouzar, H., W.S. Chilton, X. Nesme, Y. Dessaux, V. Vaudequin, A. Petit, J.B. Jones and N.C. Hodge. 1995. A new Agrobacterium strain isolated from aerial tumors on Ficus benjamina L. Appl. Environ. Microbiol. 61: 65–73.PubMedGoogle Scholar
  252. Bouzar, H., D. Ouadah, Z. Krimi, J.B. Jones, M. Trovato, A. Petit and Y. Dessaux. 1993. Correlative association between resident plasmids and the host chromosome in a diverse Agrobacterium soil population. Appl. Environ. Microbiol. 59: 1310–1317.PubMedGoogle Scholar
  253. Bovarnick, M.R., J.C. Miller and J.C. Snyder. 1950. The influence of certain salts, amino acids, sugars and proteins on the stability of rickettsiae. J. Bacteriol. 59: 509–522.PubMedGoogle Scholar
  254. Bovarnick, M.R. and J.C. Snyder. 1949. Respiration of typhus rickettsiae. J. Exp. Med. 89: 561–565.PubMedCrossRefGoogle Scholar
  255. Bové, J.M. and M. Garnier. 1992. Citrus greening and its bacterial agent. Proc. Int. Soc. Citriculture 3: 1283–1289.Google Scholar
  256. Bowers, T.J., D. Sweger, D. Jue and B. Anderson. 1998. Isolation, sequencing and expression of the gene encoding a major protein from the backteriophage associated with Bartonella henselae. Gene 206: 49– 52.PubMedCrossRefGoogle Scholar
  257. Bowien, B. and H.G. Schlegel. 1981. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu. Rev. Microbiol. 35: 405– 452.PubMedCrossRefGoogle Scholar
  258. Bowman, J.P. 1992. The systematics of methane-utilizing bacteria., Doctoral thesis, University of Queensland, Brisbane, Australia.Google Scholar
  259. Bowman, J.P. and G.S. Sayler. 1994. Optimization and maintenance of soluble methane monooxygenase activity in Methylosinus trichosporium OB3b. Biodegradation 5: 1–11.PubMedGoogle Scholar
  260. Bowser, D.V., R.W. Wheat, J.W. Foster and D. Leong. 1974. Occurrence of quinovosamine in lipopolysaccharides of Brucella species. Infect. Immun. 9: 772–774.PubMedGoogle Scholar
  261. Boyle, L., S.L. O’Neill, H.M. Robertson and T.L. Karr. 1993. Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260: 1796–1799.PubMedCrossRefGoogle Scholar
  262. Bozeman, F.M., B.L. Elisberg, J.W. Humphries, K. Runcik and D.B.J. Palmer. 1970. Serologic evidence of Rickettsia canada infection of man. J. Infect. Dis. 121: 367–371.PubMedCrossRefGoogle Scholar
  263. Bozeman, F.M., J.M. Humphries, J.M. Campbell and P.L. O’Hara. 1960. Laboratory studies of the spotted fever group of rickettsiae. In Wisseman (Editor), Symposium on the Spotted Fever Group of Rickett-siae, Med Sci. Publ. 7, Walter Reed Army Inst. Res., Washington. pp. 7–11.Google Scholar
  264. Bozeman, F.M., S.A. Masiello, M.S. Williams and B.L. Elisberg. 1975. Epidemic typhus rickettsiae isolated from flying squirrels. Nature (Lond.) 255: 545–547.CrossRefGoogle Scholar
  265. Bozeman, F.M., A. Shirai, J.W. Humphries and F. H.S.. 1967. Ecology of Rocky Mountain spotted fever. II. Natural infection of wild mammals and birds in Virginia and Maryland. Am. J. Trop. Med. Hyg. 16: 48– 59.PubMedGoogle Scholar
  266. Bradbury, J.F. 1986. Guide to Plant Pathogenic Bacteria, CAB International Mycological Institute, Kew.Google Scholar
  267. Bradley, D.E. 1967. Ultrastructure of bacteriophages and bacteriocins. Bacteriol. Rev. 31: 230–314.PubMedGoogle Scholar
  268. Braig, H.R., H. Guzman, R.B. Tesh and S.L. O’Neill. 1994. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 367: 453–455.PubMedCrossRefGoogle Scholar
  269. Braker, G., A. Fesefeldt and K.P. Witzel. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64: 3769–3775.PubMedGoogle Scholar
  270. Brandsma, A.R., S.E. Little, J.M. Lockhart, W.R. Davidson, D.E. Stallknecht and J.E. Dawson. 1999. Novel Ehrlichia organism (Rickettsiales: Ehrlichieae) in white-tailed deer associated with lone star tick (Acari: Ixodidae) parasitism. J. Med. Entomol. 36: 190–194.PubMedGoogle Scholar
  271. Bratina, B.J., G.A. Brusseau and R.S. Hanson. 1992. Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int. J. Syst. Bacteriol. 42: 645–648.PubMedCrossRefGoogle Scholar
  272. Brattig, N.W., U. Rathjens, M. Ernst, F. Geisinger, A. Renz and F.W. Tischendorf. 2000. Lipopolysaccharide-like molecules derived from Wolbachia endobacteria of the filaria Onchocerca volvulus are candidate mediators in the sequence of inflammatory and antiinflammatory responses of human monocytes. Microbes Infect. 2: 1147–1157.PubMedCrossRefGoogle Scholar
  273. Braude, A.I. 1951. Studies in the pathology and pathogenesis of experimental brucellosis. I. A comparison of the pathogenicity of Brucella abortus, Brucella melitensis, and Brucella suis for guinea pigs. J. Infect. Dis. 89: 76–86.PubMedCrossRefGoogle Scholar
  274. Breed, R.S. 1957. Genus X. Mycoplana. Gray and Thornton, 1928. In Breed, Murray and Smith (Editors), Bergey’s Manual of Determinative Bacteriology, 7th ed., The Williams & Wilkins Co., Baltimore. pp. 204–206.Google Scholar
  275. Breed, R.S., E.G.D. Murray and N.R. Smith (Editors). 1957. Bergey’s Manual of Determinative Bacteriology, 7th Ed., The Williams & Wil-kins Co., Baltimore.Google Scholar
  276. Breedveld, M.W. and K.J. Miller. 1994. Cyclic β-glucans of members of the family Rhizobiaceae. Microbiol. Rev. 58: 145–161.PubMedGoogle Scholar
  277. Breil, B., J. Borneman and E.W. Triplett. 1996. A newly discovered gene, tfuA, involved in the production of the ribosomally synthesized peptide antibiotic trifolitoxin. J. Bacteriol. 178: 4150–4156.PubMedGoogle Scholar
  278. Breil, B.T., P.W. Ludden and E.W. Triplett. 1993. DNA sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin. J. Bacteriol. 175: 3693–3702.PubMedGoogle Scholar
  279. Breitschwerdt, E., B.C. Hegarty, M.G. Davidson and N.S. Szabados. 1995. Evaluation of the pathogenic potential of Rickettsia canada and Rickettsia prowazekii organisms in dogs. J. Am. Vet. Med. Assoc. 207: 58– 63.PubMedGoogle Scholar
  280. Brenner, D.J., S.P. O’Connor, H.H. Winkler and A.G. Steigerwalt. 1993. Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb. nov., Bartonella vinsonii comb. nov., Bartonella henselae comb. nov., and Bartonella elizabethae comb. nov., and to remove the family Bartonellaceae from the order Rickettsiales. Int. J. Syst. Bacteriol. 43: 777–786.PubMedCrossRefGoogle Scholar
  281. Brenner, S.A., J.A. Rooney, P. Manzewitsch and R.L. Regnery. 1997. Isolation of Bartonella (Rochalimaea) henselae: effects of methods of blood collection and handling. J. Clin. Microbiol. 35: 544–547.PubMedGoogle Scholar
  282. Brew, S.D., L.L. Perrett, J.A. Stack, A.P. MacMillan and N.J. Staunton. 1999. Human exposure to Brucella recovered from a sea mammal. Vet. Rec. 144: 483.PubMedGoogle Scholar
  283. Bricker, B.J., L.B. Tabatabai, B.A. Judge, B.L. Deyoe and J.E. Mayfield. 1990. Cloning, expression, and occurrence of the Brucella Cu-Zn superoxide dismutase. Infect. Immun. 58: 2935–2939.PubMedGoogle Scholar
  284. Bringer, S., R.K. Finn and H. Sahm. 1984. Effect of oxygen on the metabolism of Zymomonas mobilis. Arch. Microbiol. 139: 376–381.CrossRefGoogle Scholar
  285. Bringer, S., T. Hartner, K. Poralla and H. Sahm. 1985. Influence of eth-anol on the hopanoid content and the fatty acid pattern in bath and continuous cultures of Zymomonas mobilis. Arch. Microbiol. 140: 312– 316.CrossRefGoogle Scholar
  286. Bringer-Meyer, S. and H. Sahm. 1988. Metabolic shifts in Zymomonas mobilis in response to growth conditions. FEMS Microbiol. Rev. 54: 131– 142.CrossRefGoogle Scholar
  287. Bringer-Meyer, S. and H. Sahm. 1989. Junctions of catabolic and anabolic pathways in Zymomonas mobilis: phosphoenolpyruvate carboxylase and malic enzyme. Appl. Microbiol. Biotechnol. 31: 529–536.CrossRefGoogle Scholar
  288. Bringer-Meyer, S. and H. Sahm. 1993. Formation of acetyl-CoA in Zymomonas mobilis by a pyruvate dehydrogenase complex. Arch. Microbiol. 159: 197–199.CrossRefGoogle Scholar
  289. Brisbane, P.G. and A. Kerr. 1983. Selective media for 3 biovars of Agrobacterium. J. Appl. Bacteriol. 54: 425–432.CrossRefGoogle Scholar
  290. Britschgi, T.B. and S.J. Giovannoni. 1991. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 57: 1707–1713.PubMedGoogle Scholar
  291. Brock, T.D. 1978. The genus Sulfolobus. In Starr (Editor), Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, Heidelberg. pp. 117–179.CrossRefGoogle Scholar
  292. Brockmann, H., Jr. and G. Knobloch. 1972. Ein neues bacteriochlorophyll aus Rhodospirillum rubrum. Arch. Mikrobiol. 85: 123–126.PubMedCrossRefGoogle Scholar
  293. Brom, S., E. Martínez, G. Dávila and R. Palacios. 1988. Narrow-host-range and broad-host-range symbiotic plasmids of Rhizobium spp. strains that nodulate Phaseolus vulgaris. Appl. Environ. Microbiol. 54: 1280–1283.PubMedGoogle Scholar
  294. Brooke, A.G. and M.M. Attwood. 1983. Regulation of enzyme synthesis during the growth of Hyphomicrobium X on mixtures of methylamine and ethanol. J. Gen. Microbiol. 129: 2399–2404.Google Scholar
  295. Brooke, A.G. and M.M. Attwood. 1984. Methylamine uptake by the facultative methylotroph Hyphomicrobium X. J. Gen. Microbiol. 130: 459– 464.Google Scholar
  296. Brooke, A.G. and M.M. Attwood. 1985. Regulation of enzyme-synthesis in Hyphomicrobium x: growth on mixtures of methylamine and ethanol in continuous cultures. FEMS Microbiol. Lett. 29: 251–256.CrossRefGoogle Scholar
  297. Brooke, A.G., M.G. Duchars and M.M. Attwood. 1987. Nitrogen assimilation in the facultative methylotroph Hyphomicrobium x. FEMS Microbiol. Lett. 41: 41–45.CrossRefGoogle Scholar
  298. Brosius, J., T.J. Dull, D.D. Sleeter and H.F. Noller. 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148: 107–128.PubMedCrossRefGoogle Scholar
  299. Brosius, J., M.L. Palmer, P.J. Kennedy and H.F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 75: 4801–4805.PubMedCrossRefGoogle Scholar
  300. Broughton, E.S. and K.L. Jahans. 1997. The differentiation of Brucella species by substrate specific tetrazolium reduction. Vet. Microbiol. 57: 253–271.PubMedCrossRefGoogle Scholar
  301. Brouqui, P., M.L. Birg and D. Raoult. 1994. Cytopathic effect, plaque formation, and lysis of Ehrlichia chaffeensis grown on continuous cell lines. Infect. Immun. 62: 405–411.PubMedGoogle Scholar
  302. Brouqui, P. and D. Raoult. 1993. Proteinase K-sensitive and filterable phagosome-lysosome fusion inhibiting factor in Afipia felis. Microb. Pathog. 15: 187–195.PubMedCrossRefGoogle Scholar
  303. Brouqui, P. and D. Raoult. 1996. Bartonella quintana invades and multiplies within endothelial cells in vitro and in vivo and forms intracellular blebs. Res. Microbiol. 147: 719–731.PubMedCrossRefGoogle Scholar
  304. Brown, A.J. 1886. On an acetic ferment which forms cellulose. J. Chem. Soc. (London) 49: 432–439.Google Scholar
  305. Brown, CM. and R.A. Herbert. 1977. Ammonia assimilation in members of Rhodospirillaceae. FEMS Microbiol. Lett. 1: 43–45.CrossRefGoogle Scholar
  306. Brown, G.M., C.R. Ranger and D.J. Kelley. 1971. Selective media for the isolation of Brucella ovis. Cornell Vet. 61: 265–280.PubMedGoogle Scholar
  307. Brown, W.C., V Shkap, D. Zhu, T.C. McGuire, W. Tuo, T.F. McElwain and G.H. Palmer. 1998. CD4( + ) T-lymphocyte and immunoglobulin G2 responses in calves immunized with Anaplasma marginale outer membranes and protected against homologous challenge. Infect. Immun. 66: 5406–5413.PubMedGoogle Scholar
  308. Bruce, D. 1893. Sur une nouvelle forme de fièvre rencontrée sur les bords de la Mediterranée. Ann. Inst. Pasteur (Paris) 7: 289–304.Google Scholar
  309. Brumpt, E. 1911. Note sur le parasite des Hematies de la Taupe: Grahamella talpaen. g. n. sp. Bulletin de la Societe de Pathologie Exotique. 4: 514–517.Google Scholar
  310. Brumpt, E. 1922. Précis de parasitologie, 3rd Ed., Masson and Co., Paris.Google Scholar
  311. Brumpt, E. 1932. Longévité de virus de la fiévre boutonneuse (Rickettsia conori n. sp.) chez la tique, Rhipicephalus sanguineus. C.R. Séances Soc. Biol. Filiales. 110: 1199–1209.Google Scholar
  312. Brumpt, E. and G. Lavier. 1935. Sur un piroplasmide nouveau, parasite de tortue Tunetella emydis N.G., N. Sp. Ann. Parasitol. Hum. Comp. 13: 544–550.Google Scholar
  313. Brusseau, G.A., E.S. Bulygina and R.S. Hanson. 1994. Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl. Environ. Microbiol. 60: 626–636.PubMedGoogle Scholar
  314. Brusseau, G.A., H.-C. Tsien, R.S. Hanson and L.P. Wackett. 1990. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19–29.PubMedCrossRefGoogle Scholar
  315. Bruun, B. 1982. Studies on a collection of strains of the genus Flavobac-terium. 1. Biochemical studies. Acta Pathol. Microbiol. Immunol. Scand. [B]. 90: 415–421.Google Scholar
  316. Buchanan, R.E. 1926. What names should be used for the organisms producing nodules on the roots of leguminous plants? Proc. Iowa Acad. Sci. 33: 81–90.Google Scholar
  317. Buchanan, R.E. and W.E. Gibbons (Editors). 1974. Bergey’s Manual of Determinative Bacteriology, 8th Ed., The Williams & Wilkins Co., Baltimore.Google Scholar
  318. Bucheli-Witschel, M. and T. Egli. 2001. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev. 25: 69–106.PubMedCrossRefGoogle Scholar
  319. Buchholz, S.E., M.M. Dooley and D.E. Eveleigh. 1987. Zymomonas - an alcoholic enigma. Trends Biotechnol. 5: 199–204.CrossRefGoogle Scholar
  320. Buchholz, S.E. and D.E. Eveleigh. 1989. Effect of dilution buffers on cell viability of Zymomonas mobilis. J. Microbiol. Meth. 10: 65–69.CrossRefGoogle Scholar
  321. Buchholz, S.E., P. O’Mullan and D.E. Eveleigh. 1988. Growth of Zymo-monas mobilis CP4 on mannitol. Appl. Microbiol. Biotechnol. 29: 275– 281.Google Scholar
  322. Buddle, M.B. 1956. Studies on Brucella ovis (n. sp.), a cause of genital disease of sheep in New Zealand and Australia. J. Hyg. Camb. 54: 351–364.PubMedCrossRefGoogle Scholar
  323. Bulygina, E.S., V.F. Galchenko, N.I. Govorukhina, A.I. Netrusov, D.I. Nikitin, Y.A. Trotsenko and K.M. Chumakov. 1990. Taxonomic studies on methylotrophic bacteria by 5S RNA sequencing. J. Gen. Microbiol. 136: 441–446.PubMedCrossRefGoogle Scholar
  324. Bulygina, E.S., O.M. Gulikova, E.M. Dikanskaya, A.I. Netrusov, T.P. Tourova and K.M. Chumakov. 1992. Taxonomic studies of the genera Acidomonas, Acetobacter and Gluconobacter by 5S ribosomal RNA sequencing. J. Gen. Microbiol. 138: 2283–2286.CrossRefGoogle Scholar
  325. Bundle, D.R., J.W. Cherwonogrodzky, M. Caroff and M.B. Perry. 1987. The lipopolysaccharides of Brucella abortus and B. melitensis. Ann. Inst. Pasteur Microbiol. (Paris) 138: 92–98.CrossRefGoogle Scholar
  326. Bünz, P.V. and A.M. Cook. 1993. Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system. J. Bacteriol. 175: 6467–6475.PubMedGoogle Scholar
  327. Bünz, P.V., R. Falchetto and A.M. Cook. 1993. Purification of two iso-functional hydrolases (EC 3.7.1.8) in the degradative pathway for dibenzofuran in Sphingomonas sp. strain RW1. Biodegradation 4: 171– 178.PubMedCrossRefGoogle Scholar
  328. Buonaurio, R., V.M. Stravato and C. C. Cappelli. 2001. Brown spot caused by Sphingomonas sp. on yellow Spanish melon fruits in Spain. Plant Pathol. (Oxf.) 50: 397–401.CrossRefGoogle Scholar
  329. Burdman, S., E. Jurkevitch, B. Schwartsburd, M. Hampel and Y. Okon. 1998. Aggregation in Azospirillum brasilense: Effects of chemical and physical factors and involvement of extracelullar components. Microbiology (Read.) 144: 1989–1999.CrossRefGoogle Scholar
  330. Burgdorfer, W. 1988. Ecological and epidemiological considerations of Rocky Mountain spotted fever and scrub typhus. In Walker (Editor), Biology of Rickettsial Diseases, CRC Press, Boca Raton. pp. 35–50.Google Scholar
  331. Burgdorfer, W., A. Aeschlimann, O. Peter, S.F. Hayes and R.N. Philip. 1979. Ixodes ricinus: Vector of a hitherto undescribed spotted fever group agent in Switzerland. Acta Trop. 36: 357–367.PubMedGoogle Scholar
  332. Burgdorfer, W. and L.P. Brinton. 1975. Mechanisms of transovarial infection of spotted fever rickettsiae in ticks. Ann. N.Y. Acad. Sci. 266: 61–72.PubMedCrossRefGoogle Scholar
  333. Burgdorfer, W., L.P. Brinton, W.L. Krynski and R.N. Philip. 1978.Rickettsia rhipicephali, a new spotted fever group rickettsia from the brown dog tick, Rhipicephalus sanguineus. In Kazár, Ormsbee and Tarasevich (Editors), Rickettsiae and Rickettsial Diseases, VEDA, Bratislava. pp. 307– 316.Google Scholar
  334. Burgdorfer, W., J.C. Cooney and L.A. Thomas. 1974. Zoonotic potential (Rocky Mountain spotted fever and tularemia) in the Tennessee Valley region. II. Prevalence of Rickettsia rickettsii and Francisella tularensis in mammals and ticks from Land Between the Lakes. Am. J. Trop. Med. Hyg. 23: 109–117.PubMedGoogle Scholar
  335. Burgdorfer, W., S.F. Hayes, T. L.A. and J.L. Lancaster Jr.. 1981. A new spotted fever group Rickettsia from the lone star tick, Amblyomma amer-icanum. In Burgdorfer and Anacker (Editors), Rickettsiae and Rickettsial Diseases, Academic Press, New York. pp. 595–625.Google Scholar
  336. Burgdorfer, W., V.F. Newhouse, E.G. Pickens and D.B. Lackman. 1962. Ecology of Rocky Mountain spotted fever in Western Montana. I. Isolation of Rickettsia rickettsii from wild mammals. Am. J. Hyg. 76: 293–301.PubMedGoogle Scholar
  337. Burgdorfer, W., D.J. Sexton, R.K. Gerloff, R.L. Anacker, R.N. Philip and L.A. Thomas. 1975. Rhipicephalus sanguineus: Vector of a new spotted fever group rickettsia in the United States. Infect. Immun. 12: 205– 210.PubMedGoogle Scholar
  338. Burgess, A.W. and B.E. Anderson. 1998. Outer membrane proteins of Bartonella henselae and their interaction with human endothelial cells. Microb. Pathog. 25: 157–164.PubMedCrossRefGoogle Scholar
  339. Burgess, J.G., R. Kawaguchi, T. Sakaguchi, R.H. Thornhill and T. Matsunaga. 1993. Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rDNA sequences. J. Bacteriol. 175: 6689–6694.PubMedGoogle Scholar
  340. Burkholder, W.H. and M.P. Starr. 1948. The generic and specific characters of phytopathogenic species of Pseudomonas and Xanthomonas. Phytopathology 38: 494–502.Google Scholar
  341. Burr, T.J., A.L. Bishop, B.H. Katz, L.M. Blanchard and C. Bazzi. 1987. A Root-specific decay of grapevine caused by Agrobacterium tumefaciens and Agrobacterium radiobacter biovar 3. Phytopathology 77: 1424–1427.CrossRefGoogle Scholar
  342. Burris, R.H. 1994. Comparative study of the response of Azotobacter vinelandii and Acetobacter diazotrophicus to changes in pH. Protoplasma. 183: 62–66.CrossRefGoogle Scholar
  343. Burrows, K.J., A. Cornish, D. Scott and I.J. Higgins. 1984. Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b. J. Gen. Microbiol. 130: 3327–3333.Google Scholar
  344. Büsing, K.H., W. Döll and K. Freytag. 1953. Die bakterienflora der medizinische blutegel. Arch. Mikrobiol. 19: 52–86.PubMedCrossRefGoogle Scholar
  345. Busse, H.J. and G. Auling. 1988. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 11: 1–8.CrossRefGoogle Scholar
  346. Busse, H.J., P. Kämpfer and E.B.M. Denner. 1999. Chemotaxonomic characterisation of Sphingomonas. J. Ind. Microbiol. Biotechnol. 23: 242–251.PubMedCrossRefGoogle Scholar
  347. Buswell, C.M., Y.M. Herlihy, P.D. Marsh, C.W. Keevil and S.A. Leach. 1997. Coaggregation amongst aquatic biofilm bacteria. J. Appl. Microbiol. 83: 477–484.CrossRefGoogle Scholar
  348. Byng, G.S., R.J. Whitaker, R.L. Gherna and R.A. Jensen. 1980. Variable enzymological patterning in tyrosine biosynthesis as a means of determining natural relatedness among the Pseudomonadaceae. J. Bacteriol. 144: 247–257.PubMedGoogle Scholar
  349. Caballero-Mellado, J., L.E. Fuentes-Ramírez, V.M. Reis and E. Martínez-Romero. 1995. Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl. Environ. Microbiol. 61: 3008–3013.PubMedGoogle Scholar
  350. Caballero-Mellado, J., L. Loópez-Reyes and R. Bustillos-Cristales. 1999. Presence of 16S rRNA genes in multiple replicons in Azospirillum brasilense. FEMS Microbiol. Biol. Lett. 178: 283–288.CrossRefGoogle Scholar
  351. Caballero-Mellado, J. and E. Martínez-Romero. 1994. Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotro-phicus. Appl. Environ. Microbiol. 60: 1532–1537.PubMedGoogle Scholar
  352. Caballero-Mellado, J. and E. Martínez-Romero. 1999. Soil fertilization limits the genetic diversity of Rhizobium in bean nodules. Symbiosis 26: 111–121.Google Scholar
  353. Caldwell, S.R., J.R. Newcomb, K.A. Schlecht and F.M. Raushel. 1991. Limits of diffusion in the hydrolysis of substrates by the phosphotries-terase from Pseudomonas diminuta. Biochemistry 30: 7438–7444.PubMedCrossRefGoogle Scholar
  354. Calhoun, A. and G.M. King. 1998. Characterization of root-associated methanotrophs from three freshwater macrophytes: Pontederia cordata, Sparganium eurycarpum, and Sagittaria latifolia. Appl. Environ. Microbiol. 64: 1099–1105.PubMedGoogle Scholar
  355. Calubiran, O.V., P.E. Schoch and B.A. Cunha. 1990. Pseudomonas paucimobilis bacteraemia associated with haemodialysis. J. Hosp. Infect. 15: 383–388.PubMedCrossRefGoogle Scholar
  356. Camer, A., J. Masangkay, H. Satoh, T. Okabayashi, S. Norizuki, Y. Motoi, H. Ueno and C. Morita. 2000. Prevalence of spotted fever rickettsial antibodies in dogs and rodents in the Philippines. Jpn. J. Infect. Dis. 53: 162–163.PubMedGoogle Scholar
  357. Campbell, R.W. and R. Domrow. 1974. Rickettsioses in Australia: Isolation of Rickettsia tsutsugamushi and R. australis from naturally infected arthropods. Roy. Soc. Trop. Med. Hyg. 68: 397–402.CrossRefGoogle Scholar
  358. Cannon, R.E. and S.M. Anderson. 1991. Biogenesis of bacterial cellulose. Crit. Rev. Microbiol. 17: 435–447.PubMedCrossRefGoogle Scholar
  359. Cao, Y, J. Zhou and H. Chen. 1984. Differentiation and viability of nodule bacteria in host cells. Sci. Sin. Ser. B (Chem. Biol. Agric. Med. Earth Sci.) 27: 593–600.Google Scholar
  360. Capoor, S.P., D.G. Rao and S.M. Viswanath. 1967. Diaphorina citri Kuway, a vector of greening disease of citrus in India. India J. Agric. Sci. 37: 572–576.Google Scholar
  361. Carey, V.C. and L.O. Ingram. 1983. Lipid composition of Zymomonas mobilis: effects of ethanol and glucose. J. Bacteriol. 154: 1291–1300.PubMedGoogle Scholar
  362. Carlson, R.W. 1982. Surface chemistry. In Broughton (Editor),Nitrogen Fixation II: Biology of the nitrogen-fixing organisms, Vol. 2, Oxford University Press, Oxford. 199–234.Google Scholar
  363. Carlson, R.W., J. Sanjuan, U.R. Bhat, J. Glushka, H.P. Spaink, A.H.M. Wijfjes, A.A.N. van Brussel, T.J.W. Stokkermans, N.K Peters and G. Stacey. 1993. The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by type-I and type-II strains of Bradyrhizobium japonicum. J. Biol. Chem. 268: 18372–18381.PubMedGoogle Scholar
  364. Carmichael, L.E. and D.W. Bruner. 1968. Characteristics of a newly recognized species of Brucella responsible for infectious canine abortion. Cornell Vet. 58: 579–592.Google Scholar
  365. Carmichael, L.E., R. Flores-Castro and S. Zoha. 1980. Brucellosis caused by Brucella canis (Br canis): an update of infection in animals and man, World Health Organization Brucellosis document. WHO/ BRUC/80.361.Google Scholar
  366. Carpano, M. 1929. Su di un piroplasma osservato nei polli egitto (Aegyptianella pullorum). Bull. Minist. Agric. Egypt. 86: 1–12.Google Scholar
  367. Carr, J.G. 1958. Acetobacter estunense nov. spec. An addition to Frateur’s ten basic species. Antonie Leeuwenhoek 24: 157–160.PubMedCrossRefGoogle Scholar
  368. Carr, J.G. 1974. Genus Zymomonas Kluyver and van Niel. In Buchanan and Gibbons (Editors), Bergey’s Manual of Determinative Bacteriology, 8th Ed., The Williams & Wilkins Co., Baltimore. 352–353.Google Scholar
  369. Carr, J.G. and S.M. Passmore. 1971. Discovery of the “cider sickness” bacterium Zymomonas anaerobia in apple pulp. J. Inst. Brew. London. 77: 462–466.Google Scholar
  370. Carr, J.G. and S.M. Passmore. 1979. Methods for identifying acetic acid bacteria. In Skinner and Lovelock (Editors), Identification Methods for Microbiologists, 2nd Ed., Academic Press, London. pp. 33–47.Google Scholar
  371. Carter, R.N. and J.M. Schmidt. 1976. Fatty acid composition of selected prosthecate bacteria. Arch. Microbiol. 110: 91–94.PubMedCrossRefGoogle Scholar
  372. Casadevall, A., L.F. Freundlich and L. Pirofski. 1992. Septic shock caused by Pseudomonas paucimobilis. Clin. Infect. Dis. 14: 784.PubMedCrossRefGoogle Scholar
  373. Casao, M.A., J. Leiva, R. Diaz and C. Gamazo. 1998. Anti-phosphatidyl-choline antibodies in patients with brucellosis. J. Med. Microbiol. 47: 49–54.PubMedCrossRefGoogle Scholar
  374. Cascio, A., C. Colomba, D. Di Rosa, L. Salsa, L. di Martino and L. Titone. 2001. Efficacy and safety of clarithromycin as treatment for Mediterranean spotted fever in children: A randomized controlled trial. Clin. Infect. Dis. 33: 409–411.PubMedCrossRefGoogle Scholar
  375. Casida, L.E., Jr. 1980. Bacterial predators of Micrococcus luteus in soil. Appl. Environ. Microbiol. 39: 1035–1041.PubMedGoogle Scholar
  376. Casida, L.E., Jr. 1982. Ensifer adhaerens gen. nov., sp. nov.—a bacterial predator of bacteria in soil. Int. J. Syst. Bacteriol. 32: 339–345.CrossRefGoogle Scholar
  377. Casiraghi, M., J.W. McCall, L. Simoncini, L.H. Kramer, L. Sacchi, C. Genchi, J.H. Werren and C. Bandi. 2002. Tetracycline treatment and sexratio distortion: a role for Wolbachia in the moulting of filarial nematodes? Int. J. Parasitol. 32: 1457–1468.PubMedCrossRefGoogle Scholar
  378. Castañeda, M.R. 1947. A practical method for routine blood cultures in brucellosis. Proc. Soc. Exp. Biol. Med. 64: 114–115.PubMedGoogle Scholar
  379. Castle, M.D. and B.M. Christensen. 1985. Isolation and identification of Aegyptianella pullorum (Rickettsiales, Anaplasmataceae) in wild turkeys form North America. Avian Dis. 29: 437–445.PubMedCrossRefGoogle Scholar
  380. Castro, C.E., S.K. O’Shea, W. Wang and E.W. Bartnicki. 1996. Biodehal-ogenation: oxidative and hydrolytic pathways in the transformations of acetonitrile, chloroacetonitrile, chloroacetic acid, and chloroace-tamide by Methylosinus trichosporium OB-3b. Environ. Sci. Technol. 30: 1180–1184.CrossRefGoogle Scholar
  381. Cech, J.S. and P. Hartman. 1990. Glucose-induced breakdown of enhanced biological phosphate removal. Environ. Technol. 11: 651–656.CrossRefGoogle Scholar
  382. Cech, J.S. and P. Hartman. 1993. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Res. 27: 1219–1225.CrossRefGoogle Scholar
  383. Cervantes, E., S.B. Sharma, F. Maillet, J. Vasse, G. Truchet and C. Rosenberg. 1989. The Rhizobium meliloti host range nodQ gene encodes a protein which shares homology with translation elongation and initiation factors. Mol. Microbiol. 3: 745–755.PubMedCrossRefGoogle Scholar
  384. Cha, J.M., W.S. Cha and J.H. Lee. 1999. Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process Biochem. 34: 659–655.CrossRefGoogle Scholar
  385. Cha, J.-S., C. Pujol and C.I. Kado. 1997. Identification and characterization of a Pantoea citrea gene encoding glucose dehydrogenase that is essential for causing pink disease of pineapple. Appl. Environ. Microbiol. 63: 71–76.PubMedGoogle Scholar
  386. Chae, J.S., N. Pusterla, E. Johnson, E. Derock, S.P. Lawler and J.E. Madigan. 2000. Infection of aquatic insects with trematode metacercariae carrying Ehrlichia risticii, the cause of Potomac horse fever. J. Med. Entomol. 37: 619–625.PubMedCrossRefGoogle Scholar
  387. Chaichanasiriwithaya, W., Y. Rikihisa, S. Yamamoto, S. Reed, T.B. Crawford, L.E. Perryman and G.H. Palmer. 1994. Antigenic, morphologic, and molecular characterization of new Ehrlichia risticii isolates. J. Clin. Microbiol. 32: 3026–3033.PubMedGoogle Scholar
  388. Chakraborty, B. and K.R. Samaddar. 1995. Evidence for the occurrence of an alternative nitrogenase system in Azospirillum brasilense. FEMS Microbiol. Lett. 127: 127–131.CrossRefGoogle Scholar
  389. Chan, C.L., T.A. Lumpkin and C.S. Root. 1988. Characterization of Bradyrhizobium sp. (Astragalus sinicus L.) using serological agglutination, intrinsic antibiotic resistance, plasmid visualization, and field performance. Plant Soil 109: 85–92.CrossRefGoogle Scholar
  390. Chan, H.T.C. and C. Anthony. 1991. The o-type oxidase of the acidophilic methylotroph Acetobacter methanolicus. J. Gen. Microbiol. 137: 693–704.CrossRefGoogle Scholar
  391. Chan, Y.K., L.M. Nelson and R. Knowles. 1980. Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium. Can. J. Microbiol. 26: 1126–1131.PubMedCrossRefGoogle Scholar
  392. Chang, C.C., R.K. Jayaswal, C.M. Chen and S.B. Gelvin. 1989. Altered imino diacid synthesis and transcription in crown gall tumors with transposon Tn5 insertions in the 3’ end of the octopine synthase gene. J. Bacteriol. 171: 5922–5927.PubMedGoogle Scholar
  393. Chang, J.P. and J.G. Morris. 1962. Studies of the utilization of nitrate by Micrococcus denitrificans. J. Gen. Microbiol. 29: 301–310.PubMedCrossRefGoogle Scholar
  394. Chang, W.L. and M.J. Pan. 1996. Specific amplification of Ehrlichia platys DNA from blood specimens by two-step PCR. J. Clin. Microbiol. 34: 3142–3146.PubMedGoogle Scholar
  395. Chang, Y.F. and D.S. Feingold. 1970. D-Glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens. J. Bacteriol. 102: 85–96.PubMedGoogle Scholar
  396. Chen, D.-Q., B.C. Campbell and A.H. Purcell. 1996. A new rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum (Harris). Curr. Microbiol. 33: 123–128.PubMedCrossRefGoogle Scholar
  397. Chen, H.K., F.D. Li and Y.Z. Cao. 1992. Characteristics, distribution, ecology, and utilization of Astrogalus sinicus-rhizobia symbiosis. In Hong (Editor), Nitrogen Fixation in China, Shanghai Scientific and Technical Publishers, Shanghai. pp. 439–445.CrossRefGoogle Scholar
  398. Chen, H.K. and M.K. Shu. 1944. Notes on the root nodule bacteria of Astrogalus sinicus L. Soil Sci. 58: 291–293.CrossRefGoogle Scholar
  399. Chen, S.M., J.S. Dumler, J.S. Bakken and D.H. Walker. 1994. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J. Clin. Microbiol. 32: 589–595.PubMedGoogle Scholar
  400. Chen, X.-Y. and W.-N. Xiang. 1986. A strain of Agrobacterium radiobacter inhibits growth and gall formation by biotype III strains of A. tume-faciens from grapvine (English translation). Acta Microbiol. Sin. 26: 193–199.CrossRefGoogle Scholar
  401. Chen, Y.P., G. Lopezdevictoria and C.R. Lovell. 1993. Utilization of aromatic compounds as carbon and energy sources during growth and N2 fixation by free living nitrogen fixing bacteria. Arch. Microbiol. 159: 207–212.CrossRefGoogle Scholar
  402. Cherwonogrodzky, J., G. Dubray, E. Moreno and H. Mayer. 1990. Antigens of Brucella. In Nielsen and Duncan (Editors), Animal Brucellosis, CRC Press, Boca Raton. pp. 19–64.Google Scholar
  403. Chilton, M.-D., R.K. Saiki, N. Yadav, M.P. Gordon and Q. F.. 1980. T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc. Natl. Acad. Sci. U. S. A. 77: 4060–4064.PubMedCrossRefGoogle Scholar
  404. Chilton, W.S., A.M. Stomp, V. Beringue, H. Bouzar, V. Vaudequindransart, A. Petit and Y. Dessaux. 1995. The chrysopine family of amadori-type crown gall opines. Phytochemistry (Oxf) 40: 619–628.CrossRefGoogle Scholar
  405. Ching, W.M., G.A. Dasch, M. Carl and M.E. Dobson. 1990. Structural analyses of the 120-kDa serotype protein antigens of typhus group rickettsiae. Comparison with other S-layer proteins. Ann. N. Y. Acad. Sci. 590: 334–351.PubMedCrossRefGoogle Scholar
  406. Ching, W.M., H. Wang, J. Davis and G.A. Dasch. 1993. Amino acid analysis and multiple methylation of lysine residues in the surface protein antigen of Rickettsia prowazeki. In Angeletti (Editor), Techniques in Protein Chemistry IV, Academic Press Inc., San Diego. pp. 307–314.Google Scholar
  407. Cho, K.S., M. Hirai and M. Shoda. 1992. Enhanced removability of odorous sulfur-containing gases by mixed cultures of purified bacterial from peat biofilters. J. Ferment. Bioeng. 73: 219–224.CrossRefGoogle Scholar
  408. Chomel, B.B., R.W. Kasten, K. Floyd Hawkins, B. Chi, K. Yamamoto, J. Roberts Wilson, A.N. Gurfield, R.C. Abbott, N.C. Pedersen and J.E. Koehler. 1996. Experimental transmission of Bartonella henselae by the cat flea. J. Clin. Microbiol. 34: 1952–1956.PubMedGoogle Scholar
  409. Chow, T.C. and J.M. Schmidt. 1974. Fatty acid composition of Caulobacter crescentus. J. Gen. Microbiol. 83: 369–373.CrossRefGoogle Scholar
  410. Christofferson, F.A. and H.E. Ottosen. 1941. Recent staining methods. Skand. Vettidskr. 31: 599–607.Google Scholar
  411. Chyi, Y.S., R.A. Jorgensen, D. Goldstein, S.D. Tanksley and F. Loaizafigueroa. 1986. Locations and stability of Agrobacterium-mediated transfer DNA insertions in the Lycopersicon genome. Mol. Gen. Genet. 204: 64–69.CrossRefGoogle Scholar
  412. Clark, A.G. 1969. A selective medium for the isolation of Agrobacterium species. J. Appl. Bacteriol. 32: 348–351.CrossRefGoogle Scholar
  413. Clark, W.A., D.G. Hollis, R.E. Weaver and P. Riley. 1984. Identification of unusual pathogenic gram-negative aerobic and facultatively anaerobic bacteria, U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control, Atlanta.Google Scholar
  414. Claus, G. and H.J. Kutzner. 1985. Denitrification of nitrate and nitric acid with methanol as carbon source. Appl. Microbiol. Biotechnol. 22: 378–381.CrossRefGoogle Scholar
  415. Clavareau, C., V. Wellemans, K. Walravens, M. Tryland, J.M. Verger, M. Grayon, A. Cloeckaert, J.J. Letesson and J. Godfroid. 1998. Phenotypic and molecular characterization of a Brucella strain isolated from a minke whale (Balaenoptera acutorostrata). Microbiology 144: 3267–3273.PubMedCrossRefGoogle Scholar
  416. Cleton-Jansen, A.M., S. Dekker, P. van de Putte and N. Goosen. 1991. A single amino acid substitution changes the substrate specificity of quinoprotein glucose dehydrogenase in Gluconobacter oxydans. Mol. Gen. Genet. 229: 206–212.PubMedCrossRefGoogle Scholar
  417. Cloeckaert, A., A. Tibor and M.S. Zygmunt. 1999. Brucella outer membrane lipoproteins share antigenic determinants with bacteria of the family Rhizobiaceae. Clin. Diagn. Lab. Immunol. 6: 627–629.PubMedGoogle Scholar
  418. Cloeckaert, A., J.M. Verger, M. Grayon and O. Grepinet. 1995. Restriction site polymorphism of the genes encoding the major 25 kDa and 36 kDa outer-membrane proteins of Brucella. Microbiology 141: 2111–2121.PubMedCrossRefGoogle Scholar
  419. Cloeckaert, A., V. Weynants, J. Godfroid, J.M. Verger, M. Grayon and M.S. Zygmunt. 1998. O-Polysaccharide epitopic heterogeneity at the surface of Brucella spp. studied by enzyme linked immunosorbent assay and flow cytometry. Clin. Diagn. Lab. Immunol. 5: 862–870.PubMedGoogle Scholar
  420. Cloeckaert, A., M.S. Zygmunt, J.C. Nicolle, G. Dubray and J.N. Limet. 1992. O-chain expression in the rough Brucella melitensis strain B115: induction of O-polysaccharide specific monoclonal antibodies and intracellular localization demonstrated by immunoelectron microscopy. J. Gen. Microbiol. 138: 1211–1219.PubMedCrossRefGoogle Scholar
  421. Close, T.J., R.C. Tait and C.I. Kado. 1985. Regulation of Ti plasmid virulence genes by a chromosomal locus of Agrobacterium tumefaciens. J. Bacteriol. 164: 774–781.PubMedGoogle Scholar
  422. Coenye, T., J. Goris, T. Spilker, P. Vandamme and J.J. LiPuma. 2002. Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp nov. J. Clin. Microbiol. 40: 2062–2069.PubMedCrossRefGoogle Scholar
  423. Cohen-Bazire, G., W.R. Sistrom and R.Y. Stanier. 1957. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell. Comp. Physiol. 49: 25–68.CrossRefGoogle Scholar
  424. Cojho, E.H., V.M. Reis, A.C.G. Schenberg and J. Döbereiner. 1993. Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture. FEMS Microbiol. Lett. 106: 341–346.Google Scholar
  425. Colby, J., H. Dalton and R. Whittenbury. 1979. Biological and biochemical aspects of microbial growth on C1 compounds. Annu. Rev. Microbiol. 33: 481–517.PubMedCrossRefGoogle Scholar
  426. Cole, M.A. and G.H. Elkan. 1973. Transmissible resistance to penicillin G, neomycin, and chloramphenicol in Rhizobium japonicum. Anti-microb. Agents Chemother. 4: 248–253.CrossRefGoogle Scholar
  427. Collin, B. 1913. Sur en ensemble de protistes parasites des bactraciens (note préliminaire). Arch. Zool. Exp. Gen. Notes Rev. 51: 59–76.Google Scholar
  428. Collins, M.D. and P.N. Green. 1985. Isolation and characterization of a novel coenzyme Q from some methane-oxidizing bacteria. Biochem. Biophys. Res. Commun. 133: 1125–1131.PubMedCrossRefGoogle Scholar
  429. Collins, M.D. and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45: 316–354.PubMedGoogle Scholar
  430. Colores, G.M., P.M. Radehaus and S.K. Schmidt. 1995. Use of a penta-chlorophenol degrading bacterium to bioremediate highly contaminated soil. Appl. Biochem. Biotechnol. 54: 271–275.PubMedCrossRefGoogle Scholar
  431. Condon, C.R., R.J. Fitzgerald and F. O’Gara. 1991. Conjugation and heterologous gene expression in Gluconobacter oxydans subsp. suboxydans. FEMS Microbiol. Lett. 80: 173–178.CrossRefGoogle Scholar
  432. Condon, C., C. Squires and C.L. Squires. 1995. Control of rRNA transcription in Escherichia coli. Microbiol. Rev. 59: 623–645.PubMedGoogle Scholar
  433. Conn, H.J. 1938. Taxonomic relationships of certain non-sporeforming rods in soil. J. Bacteriol. 36: 320–321.Google Scholar
  434. Conn, H.J. 1942. Validity of the genus Alcaligenes. J. Bacteriol. 44: 353–360.PubMedGoogle Scholar
  435. Conti, S.F. and P. Hirsch. 1965. Biology of budding bacteria: III. Fine structure of Rhodomicrobium and Hyphomicrobium spp. J. Bacteriol. 89: 503–512.PubMedGoogle Scholar
  436. Conway, T. 1992. The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol. Rev. 9: 1–27.PubMedGoogle Scholar
  437. Conway, T., M.O.K. Byun and L.O. Ingram. 1987. Expression vector for Zymomonas mobilis. Appl. Environ. Microbiol. 53: 235–241.PubMedGoogle Scholar
  438. Cook, J.M. and R.D.J. Butcher. 1999. The transmission and effects of Wolbachia bacteria in parasitoids. Res. Popul. Ecol. 41: 15–28.CrossRefGoogle Scholar
  439. Corbel, M.J. 1982. International committee on nomenclature of bacteria subcommittee on the taxonomy of Brucella. Minutes of meeting, 4 and 5 September, 1978. Int. J. Syst. Bacteriol. 32: 260–261.CrossRefGoogle Scholar
  440. Corbel, M.J. 1985. Recent advances in the study of Brucella antigens and their serological cross reactions. Vet. Bull. 54: 927–942.Google Scholar
  441. Corbel, M.J. 1987. Brucella phages: advances in the development of a reliable phage typing system for smooth and non-smooth Brucella isolates. Ann. Inst. Pasteur. Microbiol. 138: 70–75.PubMedCrossRefGoogle Scholar
  442. Corbel, M.J. 1989a. Brucellosis: epidemiology and prevalence worldwide. In Young and Corbel (Editors), Brucellosis: Clinical and Laboratory Aspects, CRC Press, Boca Raton. pp. 25–40.Google Scholar
  443. Corbel, M.J. 1991. Identification of dye sensitive strains of Brucella melitensis. J. Clin. Microbiol. 29: 1066–1068.PubMedGoogle Scholar
  444. Corbel, M.J., C.D. Bracewell, E.L. Thomas and K.P.W. Gill. 1979. Techniques in the identification and classification of Brucella species. In Skinner and Lovelock (Editors), Identification Methods for Microbiologists, Technical Series No. 14, Academic Press, London. pp. 71–122.Google Scholar
  445. Corbel, M.J. and W.J. Brinley-Morgan. 1984. Genus Brucella Meyer and Shaw. In Krieg, N.R. and Holt, J.G. (Editors), Bergey’s Manual of Systematic Bacteriology, Vol. 1, The Williams & Wilkins Co., Baltimore. pp. 377–388.Google Scholar
  446. Corbel, M.J., K.P.W. Gill and E.L. Thomas. 1978. Methods for the identification of Brucella, Ministry of Agriculture, Fisheries and Food, Pinner, Middlesex.Google Scholar
  447. Corbel, M.J. and J.A. Morris. 1974. Studies on a smooth phage resistant variant of Brucella abortus. I. Immunological properties. Br. J. Exp. Pathol. 55: 78–87.PubMedGoogle Scholar
  448. Corbel, M.J., A.C. Scott and H.M. Ross. 1980. Properties of a cell wall defective variant of Brucella abortus of bovine origin. J. Hyg. Camb. 85: 103–113.PubMedCrossRefGoogle Scholar
  449. Corbel, M.J. and E.L. Thomas. 1976. Properties of some new Brucella phage isolates: evidence for lysogeny within the genus. Develop. Biol. Stand. 31: 38–45.Google Scholar
  450. Corbel, M.J., F. Tolari and V.K. Yadava. 1988. Characterisation of a new phage lytic for both smooth and non-smooth Brucella species. Res. Vet. Sci. 44: 45–49.PubMedGoogle Scholar
  451. Costerton, J.W., R.T. Irvin and K.J. Cheng. 1981. The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 35: 299–324.PubMedCrossRefGoogle Scholar
  452. Coty, V.F. 1967. Atmospheric nitrogen fixation by hydrocarbon-oxidizing bacteria. Biotechnol. Bioengin. 9: 25–32.CrossRefGoogle Scholar
  453. Coucheron, D.H. 1991. An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production. J. Bacteriol. 173: 5723–5731.PubMedGoogle Scholar
  454. Coucheron, D.H. 1993. A family of IS1031 elements in the genome of Acetobacter xylinum: nucleotide sequences and strain distribution. Mol. Microbiol. 9: 211–218.PubMedCrossRefGoogle Scholar
  455. Coucheron, D.H. 1997. Acetobacter strains contain DNA modified at GAATTC and GANTC. Can. J. Microbiol. 43: 456–460.CrossRefGoogle Scholar
  456. Couso, R.O., L. Ielpi and M.A. Dankert. 1987. A xantham-gum-like polysaccharide from Acetobacter xylinum. J. Gen. Microbiol. 133: 2123–2135.Google Scholar
  457. Cowdry, E.V. 1925. Studies on the etiology of heartwater. I. Observation of a rickettsia, Rickittsia ruminantium (n. sp.) in the tissues of infected animals. J. Exp. Med. 42: 231–252.PubMedCrossRefGoogle Scholar
  458. Cox, H.R. 1941. Cultivation of rickettsia of Rocky Mountain spotted fever, typhus and Q-fever groups in the embryonic tissues of developing chicks. Science 94: 399–403.PubMedCrossRefGoogle Scholar
  459. Cox, T.L. and L.I. Sly. 1997. Phylogenetic relationships and uncertain taxonomy of Pedomicrobium species. Int. J. Syst. Bacteriol. 47: 377–380.PubMedCrossRefGoogle Scholar
  460. Craig, A.S., R.M. Greenwood and K.I. Williamson. 1973. Ultrastructural inclusions of rhizobial bacteroids of Lotus nodules and their taxonomic significance. Arch Mikrnhinl. 89: 22.Google Scholar
  461. Crane, L.R., L.C. Tagle and W.A. Palutke. 1981. Outbreak of Pseudomonas paucimobilis in an intensive care facility. JAMA. 246: 985–987.PubMedCrossRefGoogle Scholar
  462. Creaven, M., R.J. Fitzgerald and F. O’Gara. 1994. Transformation of Gluconobacter oxydans subsp. suboxydans by electroporation. Can. J. Microbiol. 40: 491–494.CrossRefGoogle Scholar
  463. Cremers, H.C.J.C., C.A. Wijffelman, E. Pees, B.G. Rolfe, M.A. Djordievic and B.J.J. Lugtenberg. 1988. Host specific nodulation of plants of the pea cross-inoculation group is influenced by genes in fast growing Rhizobium downstream nodC. J. Plant Physiol. 132: 398–404.CrossRefGoogle Scholar
  464. Cripps, R.E. and A.S. Noble. 1973. The metabolism of nitrilotriacetate by a pseudomonad. Biochem. J. 136: 1059–1068.PubMedGoogle Scholar
  465. Cross, T. and M. Goodfellow. 1973. Taxonomy and classification of the actinomycetes. In Sykes and Skinner (Editors), Actinomycetales: characteristics and practical importance, Academic Press, London, New York,. pp. 11–112.Google Scholar
  466. Crossman, L.C., J.W.B. Moir, J.M. Wehrfritz, A. Keech, A. Thomson, S. Spiro and D.J. Richardson. 1995. Heterotrophic nitrification in Par-acoccus denitrificans. In Scheffers and Dijken (Editors), Proceedings Beijerinck Centennial Symposium. Microbial physiology and gene regulation. Emerging principles and applications, Delft University Press, Delft, The Netherlands. pp. 44–45..Google Scholar
  467. Croucher, S.C. and E.M. Barnes. 1983. The occurrence and properties of Gemmiger formicilis and related anaerobic budding bacteria in the avium caecum. J. Appl. Bacteriol. 54: 7–22.CrossRefGoogle Scholar
  468. Cruden, D.L. and A.J. Markovetz. 1981. Relative numbers of selected bacterial forms in different regions of the cockroach Eublaberus posticus hind gut. Arch. Microbiol. 129: 129–134.CrossRefGoogle Scholar
  469. Crutzen, P.J. 1991. Methane’s sinks and sources. Nature 350: 380–381.CrossRefGoogle Scholar
  470. Cuadra, M. and J. Takano. 1969. The relationship of Bartonella bacilliformis to the red blood cell as revealed by electron microscopy. Blood. 33: 708–716.PubMedGoogle Scholar
  471. Curasson, G. 1938. Notes sur la piroplasmose aviaire en E.O.F. Bull. Serv. Zootech. Epiz. A.O.F. 1: 33–35.Google Scholar
  472. Curasson, G. and P. Andrjesky. 1929. Sur les “corps de Balfour” du sang de la poule. Bulletin de la Societe de Pathologie Exotique. 22: 316– 317.Google Scholar
  473. Currier, T.C. and E.W. Nester. 1976. Evidence for diverse types of large plasmids in tumor-inducing strains of Agrobacterium. J. Bacteriol. 126: 157–165.PubMedGoogle Scholar
  474. Cypionka, H., O. Meyer and H.G. Schlegel. 1980. Physiological characteristics of various species of strains of carboxydobacteria. Arch. Microbiol. 127: 301–307.CrossRefGoogle Scholar
  475. Czurda, V. and E. Maresch. 1937. Beitrag zur Kenntnis der Atiorhodo-bakterien-Gesellschaften. Archiv Mikrobiol. 8: 99–124.CrossRefGoogle Scholar
  476. da Rocha-Lima, H. 1916. Zür Aetiologie des Fieck-fiebers. Berlin Klin. Wochenschr. 53: 567–569.Google Scholar
  477. Dadds, M.J.S. 1971. The detection of Zymomonas anaerobia. In Shapton and Board (Editors), Isolation of Anaerobes, Academic Press, Inc., New York. 219–222.Google Scholar
  478. Dadds, M.J.S., P.A. Martin and J.G. Carr. 1973. The doubtful status of the species Zymomonas anaerobia and Z. mobilis. J. Appl. Bacteriol. 36: 531–539.CrossRefGoogle Scholar
  479. Dagasan, L. and R.M. Weiner. 1986. Contribution of the electrophoretic pattern of cell envelope protein to the taxonomy of Hyphomonas spp. Int. J. Syst. Bacteriol. 36: 192–196.CrossRefGoogle Scholar
  480. Dagher, F., E. Deziel, P. Lirette, G. Paquette, J.G. Bisaillon and R.Villemur. 1997. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can. J. Microbiol. 43: 368–377.PubMedCrossRefGoogle Scholar
  481. Dahm, H., H. Rozycki, E. Strzelczyk and C.Y. Li. 1993. Production of B-group vitamins by Azospirillum spp. grown in media of different pH at different temperatures. Zentbl. Mikrobiol. 148: 195–203.Google Scholar
  482. Dalton, H. 1992. Methane oxidation by methanotrophs: physiologicaland mechanistic implications. In Murrell and Dalton (Editors), Methane and Methanol Utilizers, Plenum Press, New York. pp. 85–114.Google Scholar
  483. Daly, J.S., M.G. Worthington, D.J. Brenner, C.W. Moss, D.G. Hollis, R.S. Weyant, A.G. Steigerwalt, R.E. Weaver, M.I. Daneshvar and S.P. O’Connor. 1993. Rochalimaea elizabethae sp. nov. isolated from a patient with endocarditis. J. Clin. Microbiol. 31: 872–881.PubMedGoogle Scholar
  484. Dangeard, P.A. 1926. Recherches sur les tubercles radicaux des Légumineuses. Botaniste (Paris) 16: 1–275.Google Scholar
  485. Daniel, R.M., A.W. Limmer, K.W. Steele and I.M. Smith. 1982. Anaerobic growth, nitrate reduction and denitrification in 46 Rhizobium strains. J. Gen. Microbiol. 128: 1811–1815.Google Scholar
  486. Das, S.K. and A.K. Mishra. 1996. Transposon mutagenesis affecting thiosulfate oxidation in Bosea thiooxidans, a new chemolithoheterotrophic bacterium. J. Bacteriol. 178: 3628–3633.PubMedGoogle Scholar
  487. Das, S.K., A.K. Mishra, B.J. Tindall, F.A. Rainey and E. Stackebrandt. 1996. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: Analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int. J. Syst. Bacteriol. 46: 981–987.PubMedCrossRefGoogle Scholar
  488. Dasch, G.A. 1981. Isolation of species-specific protein antigens of Rickettsia typhi and Rickettsia prowazekii for immunodiagnosis and immunopro-phylaxis. J. Clin. Microbiol. 14: 333–341.PubMedGoogle Scholar
  489. Dasch, G.A., A.L. Bourgeois and F.M. Rollwagen. 1999. The surface protein antigen of Rickettsia typhi: In vitro and in vivo immunogenicity and protective efficacy in mice. In Raoult and Brouqui (Editors), Rickettsiae and Rickettsial Diseases at the Turn of the Third Millenium, Elsevier, Paris. pp.116–122.Google Scholar
  490. Dasch, G.A., J.R. Samms and E. Weiss. 1978. Biochemical characteristics of typhus group rickettsiae with special attention to the Rickettsia prowazekii strains isolated from flying squirrels. Infect. Immun. 19: 676– 685.PubMedGoogle Scholar
  491. Davies, G., C.N. Hébert and A.D. Casey. 1973. Preservation of Brucella abortus (Strain 544) in liquid nitrogen and its virulence when subsequently used as a challenge. J. Biol. Stand. 1: 165–170.CrossRefGoogle Scholar
  492. Davis, D.H., M. Doudoroff, R.Y. Stanier and M. Mandel. 1969. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int. J. Syst. Bacteriol. 19: 375–390.CrossRefGoogle Scholar
  493. Davis, E.P., R. Boopathy and J. Manning. 1997. Use of trinitrobenzene as a nitrogen source by Pseudomonas vesicularis isolated from soil. Curr. Microbiol. 34: 192–197.PubMedCrossRefGoogle Scholar
  494. Davis, E.O., I.J. Evans and A.W. Johnston. 1988. Identification of nodX, a gene that allows Rhizobium leguminosarum biovar viciae strain TOM to nodulate Afghanistan peas. Mol. Gen. Genet. 212: 531–535.PubMedCrossRefGoogle Scholar
  495. Davis, M.J., Z. Ying, B.R. Brunner, A. Pantoja and F.H. Ferwerda. 1998. Rickettsial relative associated with papaya bunchy top disease. Curr. Microbiol. 36: 80–84.PubMedCrossRefGoogle Scholar
  496. Davis, R.J. 1962. The resistance of rhizobia to antimicrobial agents. J. Bacteriol. 84: 187–188.PubMedGoogle Scholar
  497. Davison, A.D., P. Karuso, D.R. Jardine and D.A. Veal. 1996. Halopicolinic acids, novel products arising through the degradation of chloro- and bromo-biphenyl by Sphingomonas paucimobilis BPSI-3. Can. J. Microbiol. 42: 66–71.PubMedCrossRefGoogle Scholar
  498. Davydov, N.N. 1961. Properties of Brucella isolated from reindeer (In Russian). Trudy Vsyesoyuz Inst. Eksp. Vet. 27: 24–31.Google Scholar
  499. Dawes, E.A., M. Midgley and M. Ishaq. 1970. The endogenous metabolism of anaerobic bacteria, European Research Office, U.S. Army.Google Scholar
  500. Dawson, J.E., B.E. Anderson, D.B. Fishbein, J.L. Sanchez, C.S. Goldsmith, K.H. Wilson and C.W. Duntley. 1991. Isolation and characterization of an Ehrlichia sp. from a patient diagnosed with human ehrlichiosis. J. Clin. Microbiol. 29: 2741–2745.PubMedGoogle Scholar
  501. Dawson, J.E., F.J. Candal, V.G. George and E.W. Ades. 1993. Human endothelial cells as an alternative to DH82 cells for isolation of Ehrlichia chaffeensis, E. canis, and Rickettsia rickettsii. Pathobiology 61: 293–296.PubMedCrossRefGoogle Scholar
  502. Dawson, J.E., M. Ristic, C.J. Holland, R.H. Whitlock and J. Sessions. 1987. Isolation of Ehrlichia risticii, the causative agent of Potomac horse fever, from the fetus of an experimentally infected mare. Vet. Rec. 121: 232.PubMedCrossRefGoogle Scholar
  503. Dawson, J.E., C.K. Warner, V. Baker, S.A. Ewing, D.E. Stallknecht, W.R. Davidson, A.A. Kocan, J.M. Lockhart and J.G. Olson. 1996. Ehrlichia-like 16S rDNA sequence from wild white-tailed deer (Odocoileus virginianus). J. Parasitol. 82: 52–58.PubMedCrossRefGoogle Scholar
  504. de Beer, R., J.A. Duine, J. Frank and J. Westerling. 1983. The role of pyrrolo-quinoline semiquinone forms in the mechanism of action of methanol dehydrogenase. Eur. J. Biochem. 130: 105–109.PubMedCrossRefGoogle Scholar
  505. De Bont, J.A.M. and M.W.M. Leijten. 1976. Nitrogen fixation by hydrogen-utilizing bacteria. Arch. Microbiol. 107: 235–240.PubMedCrossRefGoogle Scholar
  506. De Cleene, M. 1979. Crown gall: economic importance and control. Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. II Abt. 134: 551–554.Google Scholar
  507. de Gier, J.-W., M. Lübben, W.N. Reijnders, C.A. Tipker, D.J. Slotboom, R.J.M. van Spanning, A.H. Stouthamer and J. van der Oost. 1994. The terminal oxidases of Paracoccus denitrificans. Mol. Microbiol. 13: 183–196.PubMedCrossRefGoogle Scholar
  508. De Groot, M.J.A., P. Bundock, P.J.J. Hooykaas and A.G.M. Beijersbergen. 1998. Agrobacterium tumefaciens mediated transformation of filamentous fungi. Nat. Biotechnol. 16: 839–842.PubMedCrossRefGoogle Scholar
  509. De Iannino, N.I., G. Briones, M. Tolmasky and R.A. Ugalde. 1998. Molecular cloning and characterization of cgs, the Brucella abortus cyclic beta(1–2) glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J. Bacteriol. 180: 4392–4400.Google Scholar
  510. de Lajudie, P., A. Willems, B. Pot, D. Dewettinck, G. Maestrojuan, M. Neyra, M.D. Collins, B. Dreyfus, K. Kersters and M. Gillis. 1994. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int. J. Syst. Bacteriol. 44: 715–733.CrossRefGoogle Scholar
  511. De Ley, J. 1961. Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol. 24: 31–50.CrossRefGoogle Scholar
  512. De Ley, J. 1968. DNA base composition and hybridization in the taxonomy of the phytopathogenic bacteria. Annu. Rev. Phytopathol. 6: 63–90.CrossRefGoogle Scholar
  513. De Ley, J. 1969. Compositional nucleotide distribution and the theoretical prediction of homology in bacterial DNA. J. Theoret. Biol. 22: 89–116.CrossRefGoogle Scholar
  514. De Ley, J. 1972. Agrobacterium: intrageneric relationships and evolution. Proc 3rd Int. Con. Plant Path. Bact, Wageningen, The Netherlands: Pudoc. pp. 251–259.Google Scholar
  515. De Ley, J. 1992. The Proteobacteria ribosomal RNA cistron similarities and bacterial taxonomy. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 2, Springer-Verlag, New York. pp. 2111–2140.Google Scholar
  516. De Ley, J., M. Bernaerts, A. Rassel and J. Guilmot. 1966. Approach to an improved taxonomy of the genus Agrobacterium. J. Gen. Microbiol. 43: 7–17.PubMedCrossRefGoogle Scholar
  517. De Ley, J. and J. Frateur. 1974. Acetobacter. In Buchanan and Gibbons (Editors), Bergey’s Manual of Determinative Bacteriology, 8th Ed., The Williams & Wilkins Co., Baltimore. pp. 251–253.Google Scholar
  518. De Ley, J., M. Gillis, C.F. Pootjes, K. Kersters, R. Tytgat and M. Van Braekel. 1972. Relationship among temperate Agrobacterium phage genomes and coat proteins. J. Gen. Virol. 16: 199–214.PubMedCrossRefGoogle Scholar
  519. De Ley, J., W. Mannheim, P. Segers, A. Lievens, M. Denijn, M. Vanhoucke and M. Gillis. 1987. Ribosomal ribonucleic acid cistron similarities and taxonomic neighborhood of Brucella and CDC group Vd. Int. J. Syst. Bacteriol. 37: 35–42.CrossRefGoogle Scholar
  520. De Ley, J. and I.W. Park. 1966. Molecular biological taxonomy of some free living nitrogen-fixing bacteria. Antonie Leeuwenhoek J. Microbiol. Serol. 32: 6–16.CrossRefGoogle Scholar
  521. De Ley, J. and A. Rassel. 1965. DNA base composition, flagellation and taxonomy of the genus Rhizobium. J. Gen. Microbiol. 41: 85–91.PubMedCrossRefGoogle Scholar
  522. De Ley, J. and J. Swings. 1976. Phenotypic description, numerical analysis and a proposal for an improved taxonomy and nomenclature of the genus Zymomonas Kluyver and van Niel 1936. Int. J. Syst. Bacteriol. 26: 146–157.CrossRefGoogle Scholar
  523. De Ley, J., J. Swings and F. Gosselé. 1984. Genus I. Acetobacter Beijerinck. In Krieg and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 1, The Williams & Wilkins Co., Baltimore. pp. 268–274.Google Scholar
  524. De Ley, J., R. Tijtgat, J. De Smedt and M. Michiels. 1973. Thermal stability of DNA:DNA hybrids within the genus Agrobacterium. J. Gen. Microbiol. 78: 241–252.CrossRefGoogle Scholar
  525. De Maagd, R.A., H.P. Spaink, E. Pees, I.H. Mulders, A. Wijfjes, C.A. Wijffelman, R.J. Okker and B.J. Lugtenberg. 1989. Localization and symbiotic function of a region on the Rhizobium leguminosarum Sym plasmid pRL1JI responsible for a secreted, flavonoid- inducible 50-kilodalton protein. J. Bacteriol. 171: 1151–1157.PubMedGoogle Scholar
  526. de Man, J.C., M. Rogosa and M.E. Sharpe. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130–135.CrossRefGoogle Scholar
  527. De Marco, P., J.C. Murrell, A.A. Bordalo and P. Moradas-Ferreira. 2000. Isolation and characterization of two new methanesulfonic acid-degrading bacterial isolates from a Portuguese soil sample. Arch. Microbiol. 173: 146–153.PubMedCrossRefGoogle Scholar
  528. De Petris, S., K. G. and R.W.I. Kessel. 1964. Ultra structure of S and R variants of Brucella abortus grown on a lifeless medium. J. Gen. Microbiol. 35: 373–382.CrossRefGoogle Scholar
  529. De Polli, H., B.B. Bohlool and J. Doebereiner. 1980. Serological differentiation of Azospirillum spp. belonging to different host-plant specificity groups. Arch. Microbiol. 126: 217–222.CrossRefGoogle Scholar
  530. De Smedt, J., M. Banwens, R. Tijtgat and J. De Ley. 1980. Intra- and intergeneric similarities of ribosomal ribonucleic acid cistrons of free living, nitrogen-fixing bacteria. Int. J. Syst. Bacteriol. 30: 106–122.CrossRefGoogle Scholar
  531. De Vos, P., A. Van Landschoot, P. Segers, R. Tytgat, M. Gillis, M. Bauwens, R. Rossau, M. Goor, B. Pot, K. Kersters, P. Lizzaraga and J. De Ley. 1989. Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid: ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39: 35–49.CrossRefGoogle Scholar
  532. Deanda, K., M. Zhang, C. Eddy and S. Picataggio. 1996. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62: 4465–4470.PubMedGoogle Scholar
  533. Debellé, F., C. Rosenberg, J. Vasse, F. Maillet, E. Martinez, J. Dénarié and G. Truchet. 1986. Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti. J. Bacteriol. 168: 1075–1086.PubMedGoogle Scholar
  534. Decker, C.F., R.E. Hawkins and G.L. Simon. 1992. Infections with Pseudomonas paucimobilis. Clin. Infect. Dis. 14: 783–784.PubMedCrossRefGoogle Scholar
  535. Dedeine, F., F. Vavre, F. Fleury, B. Loppin, M.E. Hochberg and M. Bouletreau. 2001. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc. Natl. Acad. Sci. U.S.A. 98: 6247–6252.PubMedCrossRefGoogle Scholar
  536. Dedysh, S.N., M. Derakshani and W. Liesack. 2001. Detection and enumeration of methanotrophs in acidic sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl. Environ. Microbiol. 67: 4850–4857.PubMedCrossRefGoogle Scholar
  537. Dedysh, S.N., V.N. Khmelenina, N.E. Suzina, Y.A. Trotsenko, J.D. Semrau, W. Liesack and J.M. Tiedje. 2002. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int. J. Syst. Evol. Microbiol. 52: 251–261.PubMedGoogle Scholar
  538. Dedysh, S.N., W. Liesack, V.N. Khmelenina, N.E. Suzina, Y.A. Trotsenko, J.D. Semrau, A.M. Bares, N.S. Panikov and J.M. Tiedje. 2000. Methylocella palustris gen. nov., sp. nov., a new methane oxidizing acidophilic bacterium from peat bags, representing a novel subtype of serine pathway methanotrophs. Int. J. Syst. Evol. Microbiol. 50: 955–969.PubMedCrossRefGoogle Scholar
  539. Defives, C., D. Ochin, J.P. Hornez and M. Werquin. 1990. Accidents de fabrication du vinaigre causes par un bacteriophage. Microbiol. Alim. Nutrit. 8: 77–79.Google Scholar
  540. Degli-Innocenti, F., E. Ferdani, B. Pesenti-Barili, M. Dani, L. Giovanetti and S. Ventura. 1990. Identification of microbial isolates by DNA fingerprinting: analysis of ATCC Zymomonas strains. J. Biotechnol. 13: 335–346.CrossRefGoogle Scholar
  541. Delaporte, B. 1964. Etude comparee de grands spirilles format des spores: Sporospirillum (Spirillum) praeclarum (Collie) n. g., Sporospirillum gyrini n sp. et Sporospirillum bisporum n. sp. Ann. Inst. Pasteur (Paris) 107: 246–262.Google Scholar
  542. Delmer, D.P. and Y. Amor. 1995. Cellulose biosynthesis. Plant Cell 7: 987– 1000.PubMedGoogle Scholar
  543. DelVecchio, V.G., V. Kapatral, R.J. Redkar, G. Patra, C. Mujer, T. Los, N. Ivanova, I. Anderson, A. Bhattacharyya, A. Lykidis, G. Reznik, L. Jablonski, N. Larsen, M. D’Souza, A. Bernal, M. Mazur, E. Goltsman, E. Selkov, P.H. Elzer, S. Hagius, D. O’Callaghan, J.J. Letesson, R. Haselkorn, N. Kyrpides and R. Overbeek. 2002. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl. Acad. Sci. U.S.A. 99: 443–448.PubMedCrossRefGoogle Scholar
  544. Dénarié, J., F. Debellé and J.C. Promé. 1996. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65: 503–535.PubMedCrossRefGoogle Scholar
  545. Dénarié, J., F. Debellé and C. Rosenberg. 1992. Signaling and host range variation in nodulation. Annu. Rev. Microbiol. 46: 497–531.PubMedCrossRefGoogle Scholar
  546. Dénarié, J., G. Truchet and B. Bergeron. 1976. Effects of some mutations on symbiotic properties of Rhizobium. In Nutman (Editor), Symbiotic nitrogen fixation in plants: International Biological Programme 7, Cambridge University Press, Cambridge [Eng.]; New York. 47–61.Google Scholar
  547. Denner, E.B., P. Kämpfer, H.J. Busse and E.R. Moore. 1999. Reclassification of Pseudomonas echinoides Heumann 1962, 343AL, in the genus Sphingomonas as Sphingomonas echinoides comb. nov. Int. J. Syst. Bacteriol. 49: 1103–1109.PubMedCrossRefGoogle Scholar
  548. Denner, E.B., S. Paukner, P. Kämpfer, E.R. Moore, W.R. Abraham, H.J. Busse, G. Wanner and W. Lubitz. 2001. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int. J. Syst. Evol. Microbiol. 51: 827–841.PubMedCrossRefGoogle Scholar
  549. Dennis, R.T. and T.W. Young. 1982. A simple, rapid method for the detection of subspecies of Zymomonas mobilis. J. Inst. Brew. 88: 25–29.Google Scholar
  550. Denoel, P.A., M.S. Zygmunt, V. Weynants, A. Tibor, B. Lichtfouse, P. Briffeuil, J.N. Limet and J.J. Letesson. 1995. Cloning and sequencing of the bacterioferritin gene of Brucella melitensis 16M strain. FEBS Lett. 361: 238–242.PubMedCrossRefGoogle Scholar
  551. Derrick, E.H. and H.E. Brown. 1949. Isolation of the Karp strain of R. tsutsugamushi. Lancet 2: 150–151.PubMedCrossRefGoogle Scholar
  552. Dessaux, Y., A. Petit, S.K. Ferrand and P.J. Murphy. 1998. Opines and opine like compounds in plant-Rhizoiaceae interactions. In Spaink, Kondorosi and Hooykaas (Editors), The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria, Kluwer Academic, Dordrecht ; Boston. 173–197.Google Scholar
  553. Dessaux, Y., A. Petit and J. Tempé. 1992. Opines in Agrobacterium biology. In Verma (Editor), Molecular Signals in Plant-Microbe Communications, CRC Press, Boca Raton, Fla. 109–136.Google Scholar
  554. Desser, S.S. 1987. Aegyptianella ranarum sp. n. (Rickettsiales, Anaplasmataceae): ultrastructure and prevalence in frogs from Ontario. J. Wildlife Dis. 23: 52–59.Google Scholar
  555. Devine, T.E.,, L.D. Kuykendall and J.J. O’Neill. 1988. DNA homology group and the identity of bradyrhizobial strains producing rhizobitoxine-induced foliar chlorosis on soybean. Crop Sci. 28: 939–941.CrossRefGoogle Scholar
  556. Devine, T.E. and L.D. Kuykendall. 1996. Host genetic control of symbiosis in soybean (Glycine max L). Plant Soil 186: 173–187.CrossRefGoogle Scholar
  557. Devries, J.T. and H.G. Derx. 1953. On the occurance of Mycoplana rubra and its identity with Protaminobacter rubrum. Ann. Bogor. 1: 53–60.Google Scholar
  558. Diaz, R., L.M. Jones and J.B. Wilson. 1968. Antigenic relationship of the Gram negative organism causing canine abortion to smooth and rough brucellae. J. Bacteriol. 95: 618–624.PubMedGoogle Scholar
  559. Dijkhuizen, L., W. Harder, L. De Boer, A. Van Boven, W. Clement, S. Bron and G. Venema. 1984. Genetic manipulation of the restricted facultative methylotroph Hyphomicrobium X by the R-plasmid-mediated introduction of the Escherichia coli pdh genes. Arch. Microbiol. 139: 311–318.PubMedCrossRefGoogle Scholar
  560. Dijkstra, M., J.J. Frank and A. Duine. 1989. Studies on electron transfer from methanol dehydrogenase to cytochrome c L, both purified from Hyphomicrobium X. Biochem. J. 257: 87–94.PubMedGoogle Scholar
  561. Dilts, J.A. 1976. Covalently closed, circular DNA in kappa endosymbionts of Paramecium. Genet. Res. 27: 161–170.PubMedCrossRefGoogle Scholar
  562. Dippell, R.V. 1950. Mutation of the killer cytoplasmic factor in Paramecium aurelia. Heredity 4: 165–187.PubMedCrossRefGoogle Scholar
  563. Ditzelmüller, G., M. Loidl and F. Streichsbier. 1989. Isolation and characterization of a 2,4-dichlorophenoxyacetic acid degrading soil bacterium. Appl. Microbiol. Biotechnol. 31: 93–96.CrossRefGoogle Scholar
  564. Döbereiner, J. and V.L. Baldani. 1979. Selective infection of maize roots by streptomycin-resistant Azospirillum lipoferum and other bacteria. Can. J. Microbiol. 25: 1264–1269.PubMedCrossRefGoogle Scholar
  565. Döbereiner, J., V.L.D. Baldani and J.I. Baldani. 1995. Como isolar e identificar bacterias diazotroficas de plants nao-leguminosas, Embrapa-SPI: Itaguai, RJ: Embrapa-CNPAB, Brasilia.Google Scholar
  566. Döbereiner, J. and J.M. Day. 1976. Associative symbioses in tropical grasses: Characterization of microorganisms and dinitrogen fixing sites. In Newton and Nymans (Editors), Symposium on Nitrogen Fixation, Washington State University Press, Pullman, Washington. 518– 538.Google Scholar
  567. Döbereiner, J. and F.O. Pedrosa. 1987. Nitrogen-Fixing Bacteria in Non-Leguminous Crop Plants. Brock/Springer Series in Contemporary Bioscience, Springer-Verlag, New York.Google Scholar
  568. Döbereiner, J. and A.P. Ruschel. 1958. Uma nova espécie de Beijerinckia. Rev. Biol. 1: 261–272.Google Scholar
  569. Dobson, S.J. and P.D. Franzmann. 1996. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int. J. Syst. Bacteriol. 46: 550–558.CrossRefGoogle Scholar
  570. Dockendorff, T.C., A.J. Sharma and G. Stacey. 1994. Identification and characterization of the nolYZ genes of Bradyrhizobium japonicum. Mol. Plant-Microbe Interact. 7: 173–180.PubMedCrossRefGoogle Scholar
  571. Doelle, H.W., L. Kirk, R. Crittenden, H. Toh and M.B. Doelle. 1993. Zymomonas mobilis—science and industrial application. Crit. Rev. Bio-technol. 13: 57–98.CrossRefGoogle Scholar
  572. Doetsch, R.N. 1981. Determinative methods of light microscopy. In Gerhardt (Editor), Manual of Methods for General Microbiology, American Society for Microbiology, Washington, D.C. pp. 21–33.Google Scholar
  573. Dohra, H. and M. Fujishima. 1999. Cell structure of the infectious form of Holospora, an endonuclear symbiotic bacterium of the ciliate Paramecium. Zool. Sci. 16: 93–98.CrossRefGoogle Scholar
  574. Dohra, H., M. Fujishima and K. Hoshide. 1994. Monoclonal antibodies specific for periplasmic materials of the macronuclear specific bacterium Holospora obtusa of the ciliate Paramecium caudatum. Eur. J. Protistol. 30: 288–294.CrossRefGoogle Scholar
  575. Dohra, H., M. Fujishima and H. Ishikawa. 1998. Structure and expression of a GroE-homologous operon of a macronucleus-specific symbiont Holospora obtusa of the ciliate Paramecium caudatum. J. Eukaryot. Microbiol. 45: 71–79.PubMedCrossRefGoogle Scholar
  576. Dohra, H., K. Yamamoto, M. Fujishima and H. Ishikawa. 1997. Cloning and sequencing of gene coding for a periplasmic 5.4 kDa peptide of the macronucleus-specific symbiont Holospora obtusa of the ciliate Paramecium caudatum. Zool. Sci. 14: 69–75.PubMedCrossRefGoogle Scholar
  577. Donatien, A. and F. Lestoquard. 1935. Existence en Algérie d’une Rickettsia du chien. Bull. Soc. Pathol. Exot. 28: 418–419.Google Scholar
  578. Dorfer, J., G. Layh, J. Eberspächer and F. Lingens. 1985. Relationships of Phenylobacterium immobile and purple nonsulfur bacteria on the basis of surface antigens. FEMS Microbiol. Lett. 28: 151–155.CrossRefGoogle Scholar
  579. Doronina, N.V. 1985. The properties of a new Hyphomicrobium vulgare strain. Mikrobiologiya 54: 538–544.Google Scholar
  580. Doronina, N.V., S.A. Braus-Stromeyer, T. Leisinger and Y.A. Trotsenko. 1995. Isolation and characterization of a new facultatively methylotrophic bacterium: Description of Methylorhabdus multivorans, gen. nov., sp. nov. Syst. Appl. Microbiol. 18: 92–98.CrossRefGoogle Scholar
  581. Doronina, N.V., N.I. Govorukhina and Y.A. Trotsenko. 1983. Blastobacter aminooxidans, a new species of bacteria growing autotrophically on methylated amines. Microbiology 52: 547–553.Google Scholar
  582. Doronina, N.V. and Y.A. Trotsenko. 1992. Method for storage of methylotrophic and heterotrophic microorganisms. Appl. Biochem. Microbiol. 28: 476–479.Google Scholar
  583. Doronina, N.V. and Y.A. Trotsenko. 2000. A novel plant-associated thermotolerant alkaliphilic methylotroph of the genus Paracoccus. Microbiology 69: 593–598.CrossRefGoogle Scholar
  584. Doronina, N.V. and Y.A. Trotsenko. 2003. Reclassification of ‘Blastobacter viscosus’ 7d and ‘Blastobacter aminooxidans’ 14a as Xanthobacter viscosus sp. nov. and Xanthobacter aminoxidans sp. nov. Int. J. Syst. Evol. Microbiol. 53: 179–182.PubMedCrossRefGoogle Scholar
  585. Doronina, N.V., Y.A. Trotsenko, T.P. Tourova, B.B. Kuznetsov and T. Leisinger. 2001. Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane. Int. J. Syst. Evol. Microbiol. 51: 1051–1058.PubMedCrossRefGoogle Scholar
  586. Dorsch, M., E. Moreno and E. Stackebrandt. 1989. Nucleotide sequence of the 16S rRNA from Brucella abortus. Nucleic Acids Res. 17: 1765.PubMedCrossRefGoogle Scholar
  587. Doudoroff, M. and N.J. Palleroni. 1974. Genus I. Pseudomonas. In Buchanan and Gibbons (Editors), Bergey’s Manual of Determinative Bacteriology, 8th Ed., The Williams & Wilkins Co., Baltimore. pp. 217–243.Google Scholar
  588. Douglas, J.T. and S.S. Elberg. 1976. Isolation of Brucella melitensis phage of broad biotype and species specificity. Infect. Immun. 14: 306–308.PubMedGoogle Scholar
  589. Douglas, J.T., E.Y. Rosenberg, H. Nikaido, D.R. Verstreate and A.J. Winter. 1984. Porins of Brucella species. Infect. Immun. 44: 16–21.PubMedGoogle Scholar
  590. Dowdle, S.F. and B.B. Bohlool. 1985. Predominance of fast-growing Rhizobium japonicum in a soybean field in the People’s Republic of China. Appl. Environ. Microbiol. 50: 1171–1176.PubMedGoogle Scholar
  591. Downs, J. and D.E.F. Harrison. 1974. Studies on the production of pink pigment in Pseudomonas extorquens NCIB 9399 growing in continuous culture. J. Appl. Bacteriol. 37: 65–74.PubMedCrossRefGoogle Scholar
  592. Drescher, N. and S. Otto. 1969. Über den abbau von 1-phenyl-4-amino-5-chloro-pyridazon-6 (pyrazon) im boden. Z Pflanzenkr. Pflanzenschutz. 76: 27–33.Google Scholar
  593. Drews, G. 1981. Rhodospirillum salexigens sp. nov., an obligatory halophilic phototrophic bacterium. Arch. Microbiol. 130: 325–327.CrossRefGoogle Scholar
  594. Drews, G. 1982. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 9. Int. J. Syst. Bacteriol. 32: 384–385.CrossRefGoogle Scholar
  595. Drews, G. 1983. Mikrobiologisches Praktikum (4. Aufl.), Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  596. Drews, G. and P. Giesbrecht. 1966. Rhodopseudomonas viridis, n. sp., a newly isolated, obligate phototrophic bacterium. Arch. Mikrobiol. 53: 255–262.PubMedCrossRefGoogle Scholar
  597. Dreyfus, B.L. and Y.R. Dommergues. 1981. Nodulation of Acacia species by fast- and slow-growing tropical strains of Rhizobium. Appl. Environ. Microbiol. 41: 97–99.PubMedGoogle Scholar
  598. Dreyfus, B.L., C. Elmerich and Y.R. Dommergues. 1983. Free-living Rhizobium strains able to grow on N2 as the sole nitrogen source. Appl. Environ. Microbiol. 45: 711–713.PubMedGoogle Scholar
  599. Dreyfus, B., J.L. Garcia and M. Gillis. 1988. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 38: 89–98.CrossRefGoogle Scholar
  600. Du Plessis, L., F Reyers and K. Stevens. 1997. Morphological evidence for infection of impala, Aepyceros melampus, platelets by a rickettsia-like organism. Onderstepoort J. Vet. Res. 64: 317–318.PubMedGoogle Scholar
  601. DuBow, M.S. and T. Ryan. 1977. Host Factor for coliphage QbRNA replication as an aid in elucidating phylogenetic relationships: the genus Pseudomonas.J. Gen. Microbiol. 102: 263–268.PubMedCrossRefGoogle Scholar
  602. Dubray, G. 1972. Etude ultrastructurale des bactéries de colonies lisses (S) et rugueuses (R) du genre Brucella. Ann. Inst. Pasteur (Paris) 123: 171–193.Google Scholar
  603. Dubray, G. 1976. Localization cellulaire des polyosides des bactéries des genres Brucella et Escherichia en phase lisse (S) ou rugueuse (R). Ann. Microbiol. (Paris) 1276: 133–140.Google Scholar
  604. Dubray, G. and J.N. Limet. 1987. Evidence of heterogeneity of lipopo-lysaccharides among Brucella biovars in relation to A and M specificities. Ann. Inst. Pasteur (Paris) 138: 84–87.CrossRefGoogle Scholar
  605. Dubray, G. and M. Plommet. 1976. Structure et constituents des Brucella. Characterization des fractions et propriétés biologiques. Develop. Biol. Stand. 31: 68–91.Google Scholar
  606. Duchars, M.G. and M.M. Attwood. 1987. NADP+ dependent glutamate-dehydrogenase from the facultative methylotroph Hyphomicrobium X. FEMS Microbiol. Lett. 48: 133–137.CrossRefGoogle Scholar
  607. Duchars, M.G. and M.M. Attwood. 1991. Purification, localization, properties and regulation of glutamine synthetase from Hyphomicrobium X. J. Gen. Microbiol. 137: 1345–1354.CrossRefGoogle Scholar
  608. Duchow, E. and H.C. Douglas. 1949. Rhodomicrobium vannielii, a new photoheterotrophic bacterium. J. Bacteriol. 58: 409–416.PubMedGoogle Scholar
  609. Dudman, W.F. 1976. The extracellular polysaccharides of Rhizobium japonicum: compositional studies. Carbohydr. Res. 46: 97–110.CrossRefGoogle Scholar
  610. Dudman, W.F. 1978. Structural studies of the extracellular polysaccharides of Rhizobium japonicum strain 71A, CC708 and CB1795. Carbohydr. Res. 66: 9–23.CrossRefGoogle Scholar
  611. Dufresne, C. and E. Farnworth. 2000. Tea, Kombucha, and health: a review. Food Res. Int. 33: 409–421.CrossRefGoogle Scholar
  612. Duine, J.A. 1990. NAD-linked, factor-independent, and glutathione-independent aldehyde dehydrogenase from Hyphomicrobium X. Method Enzymol. 188: 327–330.CrossRefGoogle Scholar
  613. Duine, J.A. and J. Frank. 1979. Purification and properties of methanol dehydrogenase from Hyphomicrobium X. Antonie Van Leeuwenhoek 45: 151–152.CrossRefGoogle Scholar
  614. Duine, J.A., J. Frank and P.E.J. Verwiel. 1980. Structure and activity of the prosthetic group of methanol dehydrogenase. Eur. J. Biochem. 108: 187–192.PubMedCrossRefGoogle Scholar
  615. Duine, J.A., J. Frank and J. Westerling. 1978. Purification and properties of methanol dehydrogenase from Hyphomicrobium X. Biochim. Biophys. Acta 524: 277–287.PubMedCrossRefGoogle Scholar
  616. Duma, R.J., D.E. Sonenshine, F.M. Bozeman, J. Veazey, M. Jr., B.L. Elisberg, D.P. Chadwick, N.I. Stocks, T.M. McGill, G.B. Miller and J.N. MacCormack. 1981. Epidemic typhus in the United States associated with flying squirrels. J. Amer. Med. Assoc. 245: 2318–2323.CrossRefGoogle Scholar
  617. Dumler, J.S., K.M. Asanovich, J.S. Bakken, P. Richter, R. Kimsey and J.E. Madigan. 1995. Serologic cross-reactions among Ehrlichia equi, Ehrlichia phagocytophila, and human granulocytic Ehrlichia. J. Clin. Microbiol. 33: 1098–1103.PubMedGoogle Scholar
  618. Dumler, J.S., A.F. Barbet, C.P.J. Bekker, G.A. Dasch, G.H. Palmer, S.C. Ray, Y. Rikihisa and F.R. Rurangirwa. 2001. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 51: 2145–2165.PubMedCrossRefGoogle Scholar
  619. Duncan, M.J. 1979. L-arabinose metabolism in Rhizobium. J. Gen. Microbiol. 113: 177–179.CrossRefGoogle Scholar
  620. Dupuy, N., A. Willems, B. Pot, D. Dewettinck, I. Vandenbruaene, G. Maestrojuan, B. Dreyfus, K. Kersters, M.D. Collins and M. Gillis. 1994. Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int. J. Syst. Bacteriol. 44: 461– 473.PubMedCrossRefGoogle Scholar
  621. Dutta, S.K., A.C. Myrup, R.M. Rice, M.G. Robl and R.C. Hammond. 1985. Experimental reproduction of Potomac horse fever in horses with a newly isolated Ehrlichia organism. J. Clin. Microbiol. 22: 265–269.PubMedGoogle Scholar
  622. Dutta, S.K., R. Vemulapalli and B. Biswas. 1998. Association of deficiency in antibody response to vaccine and heterogeneity of Ehrlichia risticii strains with Potomac horse fever vaccine failure in horses. J. Clin. Microbiol. 36: 506–512.PubMedGoogle Scholar
  623. Dutton, P.L. and W.C. Evans. 1969. The metabolism of aromatic compounds by Rhodopseudomonas palustris. Biochem. J. 113: 525–536.PubMedGoogle Scholar
  624. Dye, D.W., J.F. Bradbury, M. Goto, A.C. Hayward, R.A. Lelliott and M.N. Schroth. 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev. Plant Pathol. 59: 153–168.Google Scholar
  625. Eardly, B.D., L.A. Materon, N.H. Smith, D.A.Johnson, M.D. Rumbaugh and R.K. Selander. 1990. Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti. Appl. Environ. Microbiol. 56: 187–194.PubMedGoogle Scholar
  626. Eardly, B.D., F.S. Wang and P. vanBerkum. 1996. Corresponding 16S rRNA gene segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186: 69–74.CrossRefGoogle Scholar
  627. Eberhardt, U. 1971. The cell wall as the site of carotenoid in the “Knallgas” bacterium 12/60/x. Arch. Mikrobiol. 80: 32–37.PubMedCrossRefGoogle Scholar
  628. Eckersley, K. and C.S. Dow. 1980. Rhodopseudomonas blastica sp. nov.—a member of the Rhodospirillaceae. J. Gen. Microbiol. 119: 465–473.Google Scholar
  629. Eckersley, K. and C.S. Dow. 1981. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 6. Int. J. Syst. Bacteriol. 31: 216.Google Scholar
  630. Eckert, B., O.B. Weber, G. Kirchhof, A. Halbritter, M. Stoffels and A. Hartmann. 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int. J. Syst. Evol. Bacteriol. 51: 17–26.Google Scholar
  631. Eckhardt, F.E.W., P. Roggentin and P. Hirsch. 1979. Fatty-acid composition of various hyphal budding bacteria. Arch. Microbiol. 120: 81– 85.CrossRefGoogle Scholar
  632. Eckhardt, M.M., I.R. Baldwin and E.B. Fred. 1931. Studies on the root nodule bacteria of Lupinus. J. Bacteriol. 21: 273–285.PubMedGoogle Scholar
  633. Economou, A., W.D. Hamilton, A.W. Johnston andJ.A. Downie. 1990. The Rhizobium nodulation gene nodOencodes a Ca2+-binding protein that is exported without N-terminal cleavage and is homologous to haemolysin and related proteins. Eur. Mol. Biol. Organ. J. 9: 349– 354.Google Scholar
  634. Edelman, D.C. and J.S. Dumler. 1996. Evaluation of an improved PCR diagnostic assay for human granulocytic ehrlichiosis. Mol. Diagn. 1: 41–49.PubMedCrossRefGoogle Scholar
  635. Ederer, M.M., R.L. Crawford, R.P. Herwig and C.S. Orser. 1997. PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol. Ecol. 6: 39–49.PubMedCrossRefGoogle Scholar
  636. Egelhoff, TT, R.F. Fisher, TW Jacobs, J.T. Mulligan and S.R. Long. 1985. Nucleotide sequence of Rhizobium meliloti 1021 nodulation genes: nodD is read divergently from nodABC. DNA. 4: 241–248.PubMedCrossRefGoogle Scholar
  637. Egelhoff, T.T. and S.R. Long. 1985. Rhizobium meliloti nodulation genes: identification of nodDABC gene products, purification of nodA protein, and expression of nodA in Rhizobium meliloti. J. Bacteriol. 164: 591–599.PubMedGoogle Scholar
  638. Egert, M., A. Hamann, R. Kömen and C.G. Friedrich. 1993. Methanol and methylamine utilization result from mutational events in Thiosphaera pantotropha. Arch. Microbiol. 159: 364–371.CrossRefGoogle Scholar
  639. Egli, T. 1988. (An)aerobic breakdown of chelating agents used in household detergents. Microbiol. Sci. 5: 36–41.PubMedGoogle Scholar
  640. Egli, T. 1994. Biochemistry and physiology of the degradation of nitrilotriacetic acid and other metal complexing agents. In Ratledge (Editor), Biochemistry of Microbial Degradation, Kluwer Academic Publishers, Dordrecht. pp. 179–195.CrossRefGoogle Scholar
  641. Egli, T. 1995. The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv. Microb. Ecol. 14: 305–386.CrossRefGoogle Scholar
  642. Egli, T., M. Bally and T. Uetz. 1990. Microbial degradation of chelating agents used in detergents with special reference to nitrilotriacetic acid (NTA). Biodegradation 1: 121–132.PubMedCrossRefGoogle Scholar
  643. Egli, T. and H.-U. Weilenmann. 1989. Isolation, characterization, and physiology of bacteria able to degrade nitrilotriacetate. Toxic. Assess. 4: 23–34.CrossRefGoogle Scholar
  644. Egli, T., H.-U. Weilenmann, T. El-Banna and G. Auling. 1988. Gramnegative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Syst. Appl. Microbiol. 10: 297–305.CrossRefGoogle Scholar
  645. Egyed, Z., T. Sreter, Z. Szell, G. Nyiro, K. Marialigeti and I. Varga. 2002. Molecular phylogenetic analysis of Onchocerca lupi and its Wolbachia endosymbiont. Vet. Parasitol. 108: 153–161.PubMedCrossRefGoogle Scholar
  646. Ehrich, S., D. Behrens, E. Lebedeva, W. Ludwig and E. Bock. 1995. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch. Microbiol. 164: 16–23.PubMedCrossRefGoogle Scholar
  647. Eidels, L., P.L. Edelmann and J. Preiss. 1970. Biosynthesis of bacterial glycogen. VIII. Activation and inbibition of the adenosine diphos-phoglucose pyrophosphorylases of Rhodopseudomonas capsulata and of Agrobacterium tumefaciens. Arch. Biochem. Biophys. 140: 60–74.PubMedCrossRefGoogle Scholar
  648. Eikelboom, D.H. 1975. Filamentous organisms observed in activated sludge. Water Res. 9: 365–388.CrossRefGoogle Scholar
  649. El-Banna, T. 1989. Characterization of some unclassified Pseudomonas species, Thesis, University of Hannover, Germany University of Tanta, Egypt, Hannover Tanta.Google Scholar
  650. Elkan, G.H. and J.R. Kuykendall. 1982. Carbohydrate metabolism in Rhizobium. In Broughton (Editor), Nitrogen Fixation II: Biology of the Nitrogen Fixing Organisms, Oxford University Press, Oxford, UK. 147–167.Google Scholar
  651. Elkan, G.H. and I. Kwik. 1968. Nitrogen, energy and vitamin nutrition of Rhizobium japonicum. J. Appl. Bacteriol. 31: 399–404.PubMedCrossRefGoogle Scholar
  652. Ellis, J.G., A. Kerr, M. Van Montagu and J. Schell. 1979. Agrobacterium: genetic studies on agrocin 84 production and the biological control of crown gall. Physiol. Plant Pathol. 15: 311–319.CrossRefGoogle Scholar
  653. Elmerich, C. 1983. Azospirillum genetics. In Puhler (Editor), Molecular Genetics of the Bacteria–Plant Interaction, Springer-Verlag, Berlin. 367–372.CrossRefGoogle Scholar
  654. Elmerich, C., M. De Zamaroczy, F. Arsene, L. Pereg, A. Paquelin and A. Kaminski. 1997. Regulation of nif gene expression and nitrogen metabolism in Azospirillum. Soil Biol. Biochem. 29: 847–852.CrossRefGoogle Scholar
  655. Elmerich, C., B. Quiviger, C. Rosenberg, C. Franche, P. Laurent and J. Dobereiner. 1982. Characterization of a temperate bacteriophage for Azospirillum. Virology 122: 29–37.PubMedCrossRefGoogle Scholar
  656. Elmerich, C., W. Zimmer and C. Vieille. 1991. Associative nitrogen fixing bcteria. In Stacey, Evans and Burris (Editors), Biological Nitrogen Fixation, Chapman and Hill, New York. 212–258.Google Scholar
  657. Ely, B., A.B.C. Amarasinghe and R.A. Bender. 1978. Ammonia assimilation and glutamate formation in Caulobacter crescentus. J. Bacteriol. 133: 225–230.PubMedGoogle Scholar
  658. Embuscado, M.E., J.N. BeMiller and J.S. Marks. 1996. Isolation and partial characterization of cellulose produced by Acetobacter xylinum. Food Hydrocolloid. 10: 75–82.CrossRefGoogle Scholar
  659. Embuscado, M.E., J.S. Marks and J.N. Bemiller. 1994. Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocolloid. 8: 407–418.CrossRefGoogle Scholar
  660. Enatsu, T., H. Urakami and A. Tamura. 1999. Phylogenetic analysis of Orientia tsutsugamushi strains based on the sequence homologies of 56-kDa type-specific antigen genes. FEMS Microbiol. Lett. 180: 163– 169.PubMedCrossRefGoogle Scholar
  661. Engelhardt, H. and J.H. Klemme. 1978. Characterization of an allosteric, nucleotide-unspecific glutamate dehydrogenase from Rhodopseudomonas sphaeroides. FEMS Microbiol. Lett. 3: 287–290.CrossRefGoogle Scholar
  662. English, C.K., D.J. Wear, A.M.Margileth, C.R.Lissner and G.P. Walsh. 1988. Cat-scratch disease: isolation and culture of the bacterial agent. J. Med. Am. Soc. 259: 1347–1352.Google Scholar
  663. Engvild, K.C. and H.L. Jensen. 1969. Microbial decomposition of the herbicide Pyrazon. Soil Biol. Biochem. 1: 295–300.CrossRefGoogle Scholar
  664. Entani, E., S. Ohmori, H. Masai and K.I. Suzuki. 1985. Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J. Gen. Appl. Microbiol. 31: 475– 490.CrossRefGoogle Scholar
  665. Eremeeva, M.E., G.A. Dasch and D.J. Silverman. 2001. Quantitative analyses of variations in the injury of endothelial cells elicited by11 isolates of Rickettsia rickettsii. Clin. Diagn. Lab. Immunol. 8: 788–796.PubMedGoogle Scholar
  666. Eremeeva, M.E., A. Madan, J. Malek, J. Wierzbowski and G.A. Dasch. 2002. The genome sequences of Rickettsia akari, R. sibirica, and R.rickettsii: Analysis and implications for functional proteomics. International Conference on Rickettsiae and Rickettsial Diseases Joint Meeting with ASR Conference 2002, Ljubljana, Slovenia. p. 64.Google Scholar
  667. Eremeeva, M.E., V. Roux and D. Raoult. 1993. Determination of genome size and restriction pattern polymorphism of Rickettsia prowazekii and Rickettsia typhi by pulsed field gel electrophoresis. FEMS Microbiol. Lett. 112: 105–112.PubMedCrossRefGoogle Scholar
  668. Escalante-Semerena, J.C., R.P. Blakemore and R.S. Wolfe. 1980. Nitrate dissimilation under microaerophilic conditions by a magnetic spirillum. Appl. Environ. Microbiol. 40: 429–430.PubMedGoogle Scholar
  669. Eskew, D.L., D.D. Focht and I.P. Ting. 1977. Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl. Environ. Microbiol. 34: 582–585.PubMedGoogle Scholar
  670. Esmarch, E. 1887. Uber die Reinkultur eines Spirillum. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig. 1: 225–230.Google Scholar
  671. Euzéby, J.P. 1997. Revised nomenclature of specific or subspecific epithets that do not agree in gender with generic names that end in -bacter. Int. J. Syst. Bacteriol. 47: 585.CrossRefGoogle Scholar
  672. Evans, I.J. and J.A. Downie. 1986. The nodI gene product of Rhizobium leguminosarum is closely related to ATP-binding bacterial transport proteins; nucleotide sequence analysis of the nodI and nodJ genes. Gene 43: 95–101.PubMedCrossRefGoogle Scholar
  673. Ewing, E.P., A. Takeuchi, A. Shirai and J.V. Osterman. 1978. Experimental infection of mouse peritoneal mesothelium with scrub typhus rickettsiae: An ultrastructural study. Infect. Immun. 19: 1068–1075.PubMedGoogle Scholar
  674. Ewing, S.A., U.G. Munderloh, E.F. Blouin, K.M. Kocan and T.J. Kurtti. 1995. Ehrlichia canis in tick cell culture. Proceedings of the 76th Conference of Research Workers in Animal Diseases, Chicago. Iowa State University Press.Google Scholar
  675. Fåhraeus, G. 1957. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16: 374– 381.PubMedCrossRefGoogle Scholar
  676. Falcao de Morais, J.O., E.M. Rios, G.M. Calazans and C.E. Lopes. 1993. Zymomonas mobilis research in the Pernambuco Federal University. J. Biotechnol. 31: 75–91.CrossRefGoogle Scholar
  677. Falk, E.C.,J. Dobreiner, J.L. Johnson and N.R. Krieg. 1985. Deoxyribonucleic acid homology of Azospirillum amazonense Magalhaes et. al., 1984 and emendation of the description of the genus Azospirillum. Int. J. Syst. Bacteriol. 35: 117–118.CrossRefGoogle Scholar
  678. Falk, E.C., J.L. Johnson, V.L.D. Baldani, J. Döbereiner and N.R. Krieg. 1986. Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and Conglomeromonas. Int. J. Syst. Bacteriol. 36: 80–85.CrossRefGoogle Scholar
  679. Fallik, E. and Y. Okon. 1996. Inoculants of Azospirillum brasilense: biomass production, survival and growth promotion of Setaria italica and Zea mays. Soil Biol. Biochem. 21: 123–126.CrossRefGoogle Scholar
  680. Fallik, E., Y. Okon, E. Epstein, A. Goldman and M. Fischer. 1989. Identification and quantification of IAA and IBA in Azospirillum brasilense inoculated maize roots. Soil Biol. Biochem. 21: 147–154.CrossRefGoogle Scholar
  681. Famureva, O., H.G. Sonntag and P. Hirsch. 1983. Avirulence of 27 bacteria that are budding, prosthecate or both. Int. J. Syst. Bacteriol. 33: 565–572.CrossRefGoogle Scholar
  682. Fang, J.S., M.J. Barcelona and J.D. Semrau. 2000. Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiol. Lett. 189: 67–72.PubMedCrossRefGoogle Scholar
  683. Fani, R., M. Bazzicalupo, P. Coianiz and M. Polsinelli. 1986. Plasmid transformation of Azospirillum brasilense. FEMS Microbiol. Lett. 35: 23–27.CrossRefGoogle Scholar
  684. Farrar, J.A., A.J. Thomson, M.R. Cheesman, D.M. Dooley and W.G. Zumft. 1994. A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri). Evidence from optical, EPR and MCD spectroscopy. FEBS Lett. 294: 11–15.CrossRefGoogle Scholar
  685. Farrell, I.D. 1974. The development of a new selective medium for the isolation of Brucella abortus from contaminated sources. Res. Vet. Sci. 16: 280–286.PubMedGoogle Scholar
  686. Faure, D., M.L. Bouillant, C. Jacoud and R. Bally. 1996. Phenolic derivatives related to lignin metabolism as substrates for Azospirillum laccase activity. Phytochemistry. 42: 357–359.CrossRefGoogle Scholar
  687. Favinger, J., R. Stadtwald and H. Gest. 1989. Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Leeuwenhoek 55: 291–296.PubMedCrossRefGoogle Scholar
  688. Favinger, J., R. Stadtwald and H. Gest. 1994. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 48. Int. J. Syst. Bacteriol. 44: 182–183.CrossRefGoogle Scholar
  689. Federov, M.V. and T.A. Kalininskaya. 1961. A new species of a nitrogen-fixing mycobacterium and its physiological peculiarities. Mikrobiologiya 30: 9–14.Google Scholar
  690. Fein, J.E., R.C. Charley, K.A. Hopkins, B. Lavers and H.G. Lawford. 1983. Development of a simple defined medium for continuous ethanol production by Zymomonas mobilis. Biotechnol. Lett. 5: 1–6.Google Scholar
  691. Feldmann, S., H. Sahm and G.A. Sprenger. 1992. Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl. Microbiol. Biotechnol. 38: 354–361.CrossRefGoogle Scholar
  692. Fell, J.W. 1966. Sterigmatomyces, a new fungal genus from marine areas. Antonie Van Leeuwenhoek J. Microbiol. Serol. 32: 99–104.CrossRefGoogle Scholar
  693. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39: 783–791.CrossRefGoogle Scholar
  694. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package), Version 3.5c. Department of Genetics, University of Washington, Seattle.Google Scholar
  695. Felzenberg, E.R., G.A. Yang, J.G. Hagenzieker and J.S. Poindexter. 1996. Physiologic, morphologic and behavioral responses of perpetual cultures of Caulobacter crescentus to carbon, nitrogen and phosphorus limitations. J. Indust. Microbiol. 17: 235–252.CrossRefGoogle Scholar
  696. Feng, H.M., T.S. Chen, B.H. Lin, Y.Z. Lin, P.F. Wang, Q.H. Su, H.B. Xia, K. Kumano and T. Uchida. 1991. Serologic survey of spotted fever group rickettsiosis on Hainan Island of China. Microbiol. Immunol. 35: 687–694.PubMedGoogle Scholar
  697. Fensom, A.H., W.M. Kurowski and S.J. Pirt. 1974. The use of ferricyanide for the production of 3-ketosugars by non-growing suspensions of Agrobacterium tumefaciens. J. Appl. Chem. Biotechnol. 24: 457–467.CrossRefGoogle Scholar
  698. Ferreira, M.C.B., M.S. Fernandes and J. Dobereiner. 1987. Role of Azospirillum brasilense nitrate reductase in nitrate assimilation by wheat plants. Biol. Fertil. Soils 4: 47–54.Google Scholar
  699. Fesefeldt, A. 1998. Molekularbiologische charakterisieruing einer methylotrophen bakteriengattung und untersuchung der spezifischen genexpression der methanol-dehydrogenase, University of Kiel. Kiel, Germany.. p. 164.Google Scholar
  700. Fesefeldt, A. and C.G. Gliesche. 1997. Identification of Hyphomicrobium spp. using PCR-amplified fragments of the mxaFgene as a molecular marker. Syst. Appl. Microbiol. 20: 387–396.CrossRefGoogle Scholar
  701. Fesefeldt, A., M. Poetsch and C.G. Gliesche. 1997. Development of a species-specific gene probe for Hyphomicrobium facilis with the inverse PCR. Appl. Environ. Microbiol. 63: 335–337.PubMedGoogle Scholar
  702. Ficht, T.A., S.W. Bearden, B.A. Sowa and H. Marquis. 1990. Genetic variation at the omp2 porin locus of the brucellae: species-specific markers. Mol. Microbiol. 4: 1135–1142.PubMedCrossRef