Sequence-Dependent Variability of B-DNA

An Update on Bending and Curvature
  • Victor B. Zhurkin
  • Michael Y. Tolstorukov
  • Fei Xu
  • Andrew V. Colasanti
  • Wilma K. Olson
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

DNA bending is universal in biology—both the storage and the retrieval of information encoded in the base-pair sequence require significant deformations, particularly bending, of the double helix. The A-tract curvature, which modulates these processes, has thus been a subject of long-standing interest. Here we describe the ongoing evolution of models developed to account for the sequence-dependent bending and curvature of DNA, namely the AA-wedge, junction, and flexible anisotropic dimer models. We further show that recent high-resolution NMR structures of DNA A-tracts are consistent with crystallographically observed structures, and that the combined data provide a realistic basis for describing the behavior of curved DNA in solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marini JC, Levene SD, Crothers DM et al. Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci USA 1982; 79:7664–7668. Correction ibid 1983; 80:7678.PubMedCrossRefGoogle Scholar
  2. 2.
    Marini JC, Levene SD, Crothers DM et al. A bent helix in kinetoplast DNA. Cold Spring Harb Symp Quant Biol 1983; 47:279–283.PubMedGoogle Scholar
  3. 3.
    Goodsell DS, Kaczor-Grzeskowiak M, Dickerson RE. The crystal structure of C-C-A-T-T-A-A-T-G-G. Implications for bending of B-DNA at T-A steps. J Mol Biol 1994; 239:79–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Dickerson RE, Goodsell DS, Kopka ML. MPD and DNA bending in crystals and in solution. J Mol Biol 1996; 256:108–125.PubMedCrossRefGoogle Scholar
  5. 5.
    Haran TE, Kahn JD, Crothers DM. Sequence elements responsible for DNA curvature. J Mol Biol 1994; 244:135–143.PubMedCrossRefGoogle Scholar
  6. 6.
    Olson WK, Zhurkin VB. Twenty years of DNA bending. In: Sarma RH, Sarma MH, eds. Biological Structure and Dynamics. Vol. 2. Schenectady: Adenine Press, 1996:341–370.Google Scholar
  7. 7.
    Crothers DM, Shakked Z. DNA bending by adenine-thymine tracts. In: Neidle S, ed. Oxford Handbook of Nucleic Acid Structures. London: Oxford University Press, 1999:455–470.Google Scholar
  8. 8.
    Hud NV, Plavec J. A unified model for the origin of DNA sequence-directed curvature. Biopolymers 2003; 69:144–158.PubMedCrossRefGoogle Scholar
  9. 9.
    Ivanov VI, Minchenkova LE, Minyat EE et al. Cooperative transitions in DNA with no separation of strands. Cold Spring Harb Symp Quant Biol 1983; 47:243–250.PubMedGoogle Scholar
  10. 10.
    Gorin AA, Zhurkin VB, Olson WK. B-DNA twisting correlates with base pair morphology. J Mol Biol 1995; 247:34–48.PubMedCrossRefGoogle Scholar
  11. 11.
    Ivanov VI, Minchenkova LE, Schyolkina AK et al. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 1973; 12:89–110.PubMedCrossRefGoogle Scholar
  12. 12.
    Ivanov VI, Lysov YP, Malenkov GG et al. Conformational possibilities of double-helical DNA. Studia Biophys 1976; 55:5–13.Google Scholar
  13. 13.
    Hagerman PJ. Flexibility of DNA. Annu Rev Biophys Biophys Chem 1988; 17:265–286.PubMedCrossRefGoogle Scholar
  14. 14.
    Schellman JA. Flexibility of DNA. Biopolymers 1974; 13:217–226.PubMedCrossRefGoogle Scholar
  15. 15.
    Crick FH, Klug A. Kinky helix. Nature 1975; 255:530–533.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhurkin VB, Lysov YP, Ivanov VI. Anisotropic flexibility of DNA and the nucleosomal structure. Nucleic Acids Res 1979; 6:1081–1096.PubMedCrossRefGoogle Scholar
  17. 17.
    Ulyanov NB, Zhurkin VB. Flexibility of complementary dinucleotide phosphates. A Monte Carlo study. Mol Biol (Engl transl) 1982; 16:857–867.Google Scholar
  18. 18.
    Suzuki M, Yagi N. Stereochemical basis of DNA bending by transcription factors. Nucleic Acids Res 1995; 23:2083–2091.PubMedCrossRefGoogle Scholar
  19. 19.
    Dickerson RE. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res 1998; 26:1906–1926.PubMedCrossRefGoogle Scholar
  20. 20.
    Muthurajan UM, Bao Y, Forsberg LJ et al. Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J 2004; 23:260–271.PubMedCrossRefGoogle Scholar
  21. 21.
    Klug A, Jack A, Viswamitra MA et al. A hypothesis on a specific sequence-dependent conformation of DNA and its relation to the binding of the lac-repressor protein. J Mol Biol 1979; 131:669–680.PubMedCrossRefGoogle Scholar
  22. 22.
    Dickerson RE. Base sequence and helix structure variation in B-and A-DNA. J Mol Biol 1983; 166:419–441.PubMedCrossRefGoogle Scholar
  23. 23.
    Drew HR, Travers AA. DNA bending and its relation to nucleosome positioning. J Mol Biol 1985; 186:773–790.PubMedCrossRefGoogle Scholar
  24. 24.
    Calladine C.R. Mechanics of sequence-dependent stacking of bases in B-DNA. J Mol Biol 1982; 161:343–352.PubMedCrossRefGoogle Scholar
  25. 25.
    Dickerson RE, Drew HR. Structure of a B-DNA dodecamer. Influence of base sequence on helix structure. J Mol Biol 1981; 149:761–786.PubMedCrossRefGoogle Scholar
  26. 26.
    Ulyanov NB, Zhurkin VB. Sequence-dependent anisotropic flexibility of B-DNA. A conformational study. J Biomol Struct Dyn 1984; 2:361–385.PubMedGoogle Scholar
  27. 27.
    Hagerman PJ. Evidence for the existence of stable curvature of DNA in solution. Proc Natl Acad Sci USA 1984; 81:4632–4636.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhurkin VB. Sequence-dependent bending of DNA and phasing of nucleosomes. J Biomol Struct Dyn 1985; 2:785–804.PubMedGoogle Scholar
  29. 29.
    Olson WK, Gorin AA, Lu X-J et al. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci USA 1998; 95:11163–11168.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhurkin VB, Ulyanov NB, Gorin AA et al. Static and statistical bending of DNA evaluated by Monte Carlo simulations. Proc Natl Acad Sci USA 1991; 88:7046–7050.PubMedCrossRefGoogle Scholar
  31. 31.
    Olson WK, Zhurkin VB. Modeling DNA deformations. Curr Opin Struct Biol 2000; 10:286–297.PubMedCrossRefGoogle Scholar
  32. 32.
    Werner MH, Gronenborn AM, Clore GM. Intercalation, DNA kinking, and the control of transcription. Science 1996; 271:778–784.PubMedCrossRefGoogle Scholar
  33. 33.
    Trifonov EN, Sussman JL. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci USA 1980; 77:3816–3820.PubMedCrossRefGoogle Scholar
  34. 34.
    Hagerman PJ. Sequence dependence of the curvature of DNA: a test of the phasing hypothesis. Biochemistry 1985; 24:7033–7037.PubMedCrossRefGoogle Scholar
  35. 35.
    Hagerman PJ. Sequence-directed curvature of DNA. Nature 1986; 321:449–450.PubMedCrossRefGoogle Scholar
  36. 36.
    Diekmann S. Sequence specificity of curved DNA. FEBS Lett 1986; 195:53–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Koo H-S, Wu H-M, Crothers DM. DNA bending at adenine·thymine tracts. Nature 1986; 320:501–506.PubMedCrossRefGoogle Scholar
  38. 38.
    Tan RK, Harvey SC. A comparison of six DNA bending models. J Biomol Struct Dyn 1987; 5:497–512.PubMedGoogle Scholar
  39. 39.
    Sundaralingam M, Sekharudu YC. Sequence directed DNA bending and curvature. An overview. In: Olson WK, Sarma MH, Sarma RH, Sundaralingam M, eds. Structure and Expression. Vol. 3. DNA Bending and Curvature. Schenectady: Adenine Press, 1988:9–23.Google Scholar
  40. 40.
    Ulanovsky LE, Trifonov EN. Estimation of wedge components in curved DNA. Nature 1987; 326:720–722.PubMedCrossRefGoogle Scholar
  41. 41.
    Koo H-S, Crothers DM. Calibration of DNA curvature and a unified description of sequence-directed bending. Proc Natl Acad Sci USA 1988; 85:1763–1767.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu H-M, Crothers DM. The locus of sequence-directed and protein-induced DNA bending. Nature 1984; 308:509–513.PubMedCrossRefGoogle Scholar
  43. 43.
    Seising E, Wells RD, Alden CJ et al. Bent DNA: visualization of a base-paired and stacked A-B conformational junction. J Biol Chem 1979; 254:5417–5422.Google Scholar
  44. 44.
    Bolshoy A, McNamara P, Harrington RE et al. Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc Natl Acad Sci USA 1991; 88:2312–2316.PubMedCrossRefGoogle Scholar
  45. 45.
    Kabsch W, Sander S, Trifonov EN. The ten helical twist angles of B-DNA. Nucleic Acids Res 1982; 10:1097–1104.PubMedCrossRefGoogle Scholar
  46. 46.
    Koo HS, Drak J, Rice JA et al. Determination of the extent of DNA bending by an adenine-thymine tract. Biochemistry 1990; 29:4227–4234.PubMedCrossRefGoogle Scholar
  47. 47.
    Rivetti C, Walker C, Bustamante C. Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J Mol Biol 1998; 280:41–59.PubMedCrossRefGoogle Scholar
  48. 48.
    Ulanovsky L, Bodner M, Trifonov EN et al. Curved DNA: design, synthesis, and circularization. Proc Natl Acad Sci USA 1986; 83:862–866.PubMedCrossRefGoogle Scholar
  49. 49.
    Tchernaenko V, Radlinska M, Drabik C et al. Topological measurement of an A-tract bend angle: comparison of the bent and straightened states. J Mol Biol 2003; 326:737–749.PubMedCrossRefGoogle Scholar
  50. 50.
    Maroun RC, Olson WK. Base sequence effects in double-helical DNA. III. Average properties of curved DNA. Biopolymers 1988; 27:585–603.PubMedCrossRefGoogle Scholar
  51. 51.
    Calladine CR, Drew HR, McCall MJ. The intrinsic curvature of DNA in solution. J Mol Biol 1988; 201:127–137.PubMedCrossRefGoogle Scholar
  52. 52.
    Tjandra N, Bax A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 1997; 278:1111–1114.PubMedCrossRefGoogle Scholar
  53. 53.
    Tjandra N, Tate S-I, Ono A et al. The NMR structure of a DNA dodecamer in an aqueous dilute liquid crystalline phase. J Am Chem Soc 2000; 122:6190–6200.CrossRefGoogle Scholar
  54. 54.
    Wu Z, Delaglio F, Tjandra N et al. Overall structure and sugar dynamics of a DNA dodecamer from homo-and heteronudear dipolar couplings and 31P chemical shift anisotropy. J Biomolec NMR 2003; 26:297–315.CrossRefGoogle Scholar
  55. 55.
    MacDonald D, Herbert K, Zhang XL et al. Solution structure of an A-tract DNA bend. J Mol Biol 2001; 306:1081–1098.PubMedCrossRefGoogle Scholar
  56. 56.
    Barbic A, Zimmer DP, Crothers DM. Structural origins of adenine-tract bending. Proc Natl Acad Sci USA 2003; 100:2369–2373.PubMedCrossRefGoogle Scholar
  57. 57.
    DiGabriele AD, Sanderson MR, Steitz TA. Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. Proc Natl Acad Sci USA 1989; 86:1816–1920.PubMedCrossRefGoogle Scholar
  58. 58.
    Dlakic M, Park K, Griffith JD et al. The organic crystallizing agent 2-methyl-2,4-pentanediol reduces DNA curvature by means of structural changes in A-tracts. J Biol Chem 1996; 271:17911–17919.PubMedCrossRefGoogle Scholar
  59. 59.
    Trifonov EN. Sequence-dependent deformational anisotropy of chromatin DNA. Nucleic Acids Res 1980; 8:4041–4053.PubMedCrossRefGoogle Scholar
  60. 60.
    Olson WK, Marky NL, Jernigan RL et al. Influence of fluctuations on DNA curvature. A comparison of flexible and static wedge models of intrinsically bent DNA. J Mol Biol 1993; 232:530–554.PubMedCrossRefGoogle Scholar
  61. 61.
    Geanacopoulos M, Vasmatzis G, Zhurkin VB et al. Gal repressosome contains an antiparallel DNA loop. Nat Struct Biol 2001; 8:432–436.PubMedCrossRefGoogle Scholar
  62. 62.
    Mehta RA, Kahn JD. Designed hyperstable Lac repressor. DNA loop topologies suggest alternative loop geometries. J Mol Biol 1999; 294:67–77.PubMedCrossRefGoogle Scholar
  63. 63.
    Young MA, Beveridge DL. Molecular dynamics simulations of an oligonudeotide duplex with adenine tracts phased by a full helix turn. J Mol Biol 1998; 281:675–687.PubMedCrossRefGoogle Scholar
  64. 64.
    Beveridge DL, Dixit SB, Barreiro G et al. Molecular dynamics simulations of DNA curvature and flexibility: helix phasing and premelting. Biopolymers 2004; 73:380–403.PubMedCrossRefGoogle Scholar
  65. 65.
    Ulyanov NB, James TL. Statistical analysis of DNA duplex structural features. Methods Enzymol 1995; 261:90–120.PubMedCrossRefGoogle Scholar
  66. 66.
    Beutel BA, Gold L. In vitro evolution of intrinsically bent DNA. J Mol Biol 1992; 228:803–812.PubMedCrossRefGoogle Scholar
  67. 67.
    Nagaich AK, Bhattacharyya D, Brahmachari SK et al. CA/TG sequence at the 5′ end of oligo(A)-tracts strongly modulates DNA curvature. J Biol Chem 1994; 269:7824–7833.PubMedGoogle Scholar
  68. 68.
    Zhou N, Manogaran S, Zon G et al. Deoxyribose ring conformation of [d(GGTATACC)]2: an analysis of vicinal proton-proton coupling constants from two-dimensional proton nuclear magnetic resonance. Biochemistry 1988; 27:6013–6020.PubMedCrossRefGoogle Scholar
  69. 69.
    Ojha RP, Dhingra MM, Sarma MH et al. DNA bending and sequence-dependent backbone conformation NMR and computer experiments. Eur J Biochem 1999; 265:35–53.PubMedCrossRefGoogle Scholar
  70. 70.
    Gorin AA, Ulyanov NB, Zhurkin VB. S-N transition of the sugar ring in B-form DNA. Mol Biol (Engl transl) 1990; 24:1036–1047.Google Scholar
  71. 71.
    Foloppe N, MacKerell AD. Intrinsic conformational properties of deoxyribonucleosides: implicated role for cytosine in the equilibrium among the A, B, and Z forms of DNA. Biophys J 1999; 76:3206–3218.PubMedCrossRefGoogle Scholar
  72. 72.
    Berman HM, Olson WK. The many twists of DNA. In: Balaban M, ed. DNA50: The Secret of Life. London: Faircount LLC, 2003:104–124.Google Scholar
  73. 73.
    Kamath S, Sarma MH, Zhurkin VB et al. DNA bending and sugar switching. J Biomol Struct Dyn 2000; Conversation 11:317–325.Google Scholar
  74. 74.
    Hagerman P. Straightening out the bends in curved DNA. Biochim Biophys Acta 1992, 1131:125–132.PubMedGoogle Scholar
  75. 75.
    Haran TE, Cohen I, Spasic A et al. Dynamics of curved DNA molecules: prediction and experiment. J Am Chem Soc 2003; 125:11160–11161.PubMedCrossRefGoogle Scholar
  76. 76.
    Haran TE, Cohen I, Spasic A et al. Characteristics of migration patterns of DNA oligomers in gels and the relationship to the question of intrinsic DNA bending. J Am Chem Soc 2004;126:2372–2377.PubMedCrossRefGoogle Scholar
  77. 77.
    Tolstorukov M, Virnik K, Adhya S et al. Genome-wide A-tract distribution and DNA packaging in pro-and eukaryotes. J Biomol Struct Dyn 2003; 20:869–870.Google Scholar
  78. 78.
    Bolshoy A, Nevo E. Ecologic genomics of DNA: upstream bending in prokaryotic promoters. Genome Res 2000; 10:1185–1193.PubMedCrossRefGoogle Scholar
  79. 79.
    Luger K, Mader AW, Richmond RK et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389:251–260.PubMedCrossRefGoogle Scholar
  80. 80.
    Dickerson RE, Bansal M, Calladine CR et al. Definitions and nomenclature of nucleic acid structure parameters. J Mol Biol 1989; 205:787–791.CrossRefGoogle Scholar
  81. 81.
    Lu XJ, Olson WK. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 2003; 31:5108–5121.PubMedCrossRefGoogle Scholar

Copyright information

© Eurekah.com and Springer Science+Business Media 2005

Authors and Affiliations

  • Victor B. Zhurkin
    • 1
  • Michael Y. Tolstorukov
    • 1
  • Fei Xu
    • 2
  • Andrew V. Colasanti
    • 2
  • Wilma K. Olson
    • 2
  1. 1.Laboratory of Experimental and Computational BiologyNational Cancer Institute, NIHBethesdaUSA
  2. 2.Wright-Rieman LaboratoriesRutgers UniversityPiscatawayUSA

Personalised recommendations