Advertisement

Partial Differential Equations for Morphological Operators

  • Frederic Guichard
  • Petros Maragos
  • Jean-Michel Morel
Part of the Lecture Notes in Statistics book series (LNS, volume 183)

Abstract

Two of G. Matheron’s seminal contributions have been his development of size distributions (else called ‘granulometries’) and his kernel representation theory. The first deals with semigroups of multiscale openings and closings of binary images (shapes) by compact convex sets, a basic ingredient of which are the multiscale Minkowski dilations and erosions. The second deals with representing increasing and translation-invariant set operators as union of erosions by its kernel sets or as an intersection of dilations.

Keywords

Viscosity Solution Lipschitz Function Scale Space Curve Evolution Entropy Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel, “Axiomatisation et nouveaux opérateurs de la morphologie mathématique,” C. R. Acad. Sci. Paris, pp. 265–268, t. 315, Série I, 1992.zbMATHMathSciNetGoogle Scholar
  2. 2.
    L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel, “Axioms and Fundamental Equations of Image Processing,” Archiv. Rat. Mech., vol. 123(3), pp. 199–257, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    L. Alvarez and J.M. Morel, “Formalization and computational aspects of image analysis,” Acta Numerica, pp. 1–59, 1994.Google Scholar
  4. 4.
    A. Arehart, L. Vincent and B. Kimia, “Mathematical Morphology: The Hamilton-Jacobi Connection,” in Proc. Int’l Conf. Comp. Vision, pp. 215–219, 1993.Google Scholar
  5. 5.
    G. Barles, “Solutions de viscosité des équations de Hamilton-Jacobi. (Viscosity Solutions of Hamilton-Jacobi Equations)”, Mathématiques & Applications, Springer-Verlag, vol. 194, 1994.Google Scholar
  6. 6.
    G. Barles and C. Georgelin, “A simple proof of convergence for an approximation scheme for computing motions by mean curvature”, SIAM Journal of numerical analysis, vol. 32, pp. 454–500, 1995.CrossRefMathSciNetGoogle Scholar
  7. 7.
    H. Blum, “A Transformation for Extracting New Descriptors of Shape,” in Proceedings of the Symposium on Models for the Perception of Speech and Visual Forms, Boston, Nov. 1964, MIT Press, Cambridge, MA, 1967.Google Scholar
  8. 8.
    R. W. Brockett and P. Maragos, “Evolution Equations for Continuous-Scale Morphology,” Proc. IEEE Int’l Conf. Acoust., Speech, Signal Processing, San Francisco, CA, March 1992.Google Scholar
  9. 9.
    R. Brockett and P. Maragos, “Evolution Equations for Continuous-Scale Morphological Filtering,” IEEE Trans. Signal Processing, vol. 42, pp. 3377–3386, Dec. 1994.CrossRefGoogle Scholar
  10. 10.
    F. Cao, “Geometric Curve Evolution and Image Processing”, Lecture Notes in Mathematics, vol. 1805, Springer Verlag, February 2003.Google Scholar
  11. 11.
    F. Catté, F. Dibos and G. Koepfler, “A Morphological Scheme for Mean Curvature Motion and Applications to Anisotropic Diffusion and Motion of Level Sets,” SIAM J. of Num. Analysis, vol. 32–6, pp. 1895–1909, décembre 1995.CrossRefGoogle Scholar
  12. 12.
    Y.-G. Chen, Y. Giga and S. Goto”, “Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations.”, J. Differ Geom. 33, No.3 p 749–786, 1991.zbMATHMathSciNetGoogle Scholar
  13. 13.
    M. G. Crandall, “Viscosity Solutions: a primer”, pp. 1–43, in M. Bardi, M.G. Crandall, L.C. Evans, H.M. Soner and P.E. Souganidis, “Viscosity Solutions and Applications”, Montecatini Terme, 1995, edited by I.C. Dolcetta and P.L. Lions, Lecture Notes in Mathematics vol. 1660, Springer.Google Scholar
  14. 14.
    M. G. Crandall, H. Ishii and P.-L. Lions, “User’s Guide to Viscosity Solutions of Second Order Partial Differential Equations,” Bull. Amer. Math. Soc., vol. 27, pp. 1–66, July 1992.zbMATHMathSciNetGoogle Scholar
  15. 15.
    L. Dorst and R. van den Boomgaard, “Morphological Signal Processing and the Slope Transform,” Signal Processing, vol. 38, pp. 79–98, July 1994.CrossRefGoogle Scholar
  16. 16.
    L. C. Evans, “Convergence of an algorithm for mean curvature motion”, Indiana University Mathematics Journal, vol. 42, pp. 553–557, 1993.CrossRefGoogle Scholar
  17. 17.
    L. C. Evans and J. Spruck, “Motion of Level Sets by Mean Curvature. I,” J. Diff. Geom., vol. 33, pp. 635–681, 1991.zbMATHMathSciNetGoogle Scholar
  18. 18.
    M. Grayson, “The heat equation shrinks embedded plane curves to round points”, J. Differential Geometry, vol. 26, pp. 285–314, 1987.zbMATHMathSciNetGoogle Scholar
  19. 19.
    M. Gage, and R. S. Hamilton, “The heat equation shrinking convex plane curves”, J. Differ. Geom., vol. 23, pp. 69–96, 1986.zbMATHMathSciNetGoogle Scholar
  20. 20.
    F. Guichard “Axiomatization of images and movies scale-space”, PhD Thesis, University Paris Dauphine, 1994.Google Scholar
  21. 21.
    F. Guichard and J.-M. Morel, “Partial differential equations and image iterative filtering”, in The State of the Art in Numerical Analysis, Duff. I.S. (ed.), 1996Google Scholar
  22. 22.
    F. Guichard and J.-M. Morel, “Geometric Partial Differential Equations and Iterative Filtering,” in Mathematical Morphology and Its Applications to Image and Signal Processing (H. Heijmans and J. Roerdink, Eds.), Kluwer Acad. Publ., 1998, pp. 127–138.Google Scholar
  23. 23.
    F. Guichard and J.-M. Morel, Image Analysis and P.D.E.s, book to be published.Google Scholar
  24. 24.
    F. Guichard and J.-M. Morel, “A Note on Two Classical Enhancement Filters and Their Associated PDE’s”, International Journal of Computer Vision, vol. 52(2), pp. 153–160, May 2003.CrossRefGoogle Scholar
  25. 25.
    H.J.A.M. Heijmans and P. Maragos, “Lattice Calculus and the Morphological Slope Transform,” Signal Processing, vol. 59, pp. 17–42, 1997.zbMATHCrossRefGoogle Scholar
  26. 26.
    H.J.A.M. Heijmans and R. van den Boomgaard, “Algebraic Framework for Linear and Morphological Scale-Spaces”, J. Vis. Commun. and Image Repres., vol.13, pp.269–301, 2002.CrossRefGoogle Scholar
  27. 27.
    B.K.P. Horn, Robot Vision, MIT Press, Cambridge, MA, 1986.Google Scholar
  28. 28.
    H. Ishii, “A generalization of the Bence, Merriman and Osher algorithm for motion by mean curvature.”, Proceedings of the international conference on curvature flows and related topics held in Levico, Italy””, GAKUTO Int. Ser., Math. Sci. Appl., vol. 5, pp. 111–127, 1994.Google Scholar
  29. 29.
    B. Kimia, A. Tannenbaum, and S. Zucker, “Shapes, Shocks and Deformations I: The components of Two-dimensional Shape and the Reaction-Diffusion Space”, Int’l J. Comp. Vision, vol. 15(3), pp. 189–224, 1995.CrossRefGoogle Scholar
  30. 30.
    R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Sub-Pixel Distance Maps and Weighted Distance Transforms,” J. Math. Imaging and Vision, vol. 6, pp. 223–233, 1996.CrossRefMathSciNetGoogle Scholar
  31. 31.
    J. J. Koenderink, “The Structure of Images,” Biol. Cybern., vol. 50, pp. 363–370, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    P. D. Lax, “Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,” SIAM Press, Philadelphia, 1973.zbMATHGoogle Scholar
  33. 33.
    T. Lindeberg, Scale-Space Theory in Computer Vision, Kluwer Academic Publishers, 1994.Google Scholar
  34. 34.
    J-L. Lisani, P. Monasse, L. Moisan, and J-M. Morel. “On the theory of planar shape”. SIAM J. on Multiscale Modeling and Simulation, vol. 1(1):1–24, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    P. Maragos, A Unified Theory of Translation-Invariant Systems with Applications to Morphological Analysis and Coding of Images, Ph.D. Thesis, Georgia Inst. Technology, Atlanta, June 1985.Google Scholar
  36. 36.
    P. Maragos, “A Representation Theory for Morphological Image and Signal Processing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, pp. 586–599, June 1989.zbMATHCrossRefGoogle Scholar
  37. 37.
    P. Maragos, “Morphological Systems: Slope Transforms and Max-Min Difference and Differential Equations,” Signal Processing, vol. 38, pp. 57–77, July 1994.zbMATHCrossRefGoogle Scholar
  38. 38.
    P. Maragos, “Differential Morphology and Image Processing”, IEEE Trans. Image Processing, vol.5, pp.922–937, June 1996.CrossRefGoogle Scholar
  39. 39.
    P. Maragos, “Algebraic and PDE Approaches for Lattice Scale-Spaces with Global Constraints”, Int’l J. Comp. Vision, vol.52(2/3), pp.121–137, May 2003.CrossRefGoogle Scholar
  40. 40.
    P. Maragos and M. A. Butt, “Curve Evolution, Differential Morphology and Distance Transforms as Applied to Multiscale and Eikonal Problems”, Fundamentae Informatica, vol.41, pp.91–129, Jan. 2000.zbMATHMathSciNetGoogle Scholar
  41. 41.
    P. Maragos and R. W. Schafer, “Morphological Filters-Part II: Their Relations to Median, Order-Statistic, and Stack Filters,” IEEE Trans. Acoust., Speech, and Signal Processing, vol. 35, pp. 1170–1184, Aug. 1987. “Corrections,” IEEE Trans. ASSP, vol. 37, no. 4, p. 597, Apr. 1989.CrossRefMathSciNetGoogle Scholar
  42. 42.
    D. Marr, Vision, Freeman, San Francisco, 1982.Google Scholar
  43. 43.
    G. Matheron, Random Sets and Integral Geometry, Wiley, New York, 1975.zbMATHGoogle Scholar
  44. 44.
    J. Mattioli, “Differential Relations of Morphological Operators,” Proc. Int’l Workshop on Math. Morphology and its Application to Signal Processing, J. Serra and P. Salembier, Eds., Univ. Polit. Catalunya, Barcelona, Spain, May 1993.Google Scholar
  45. 45.
    B. Merriman, J. Bence, and S. Osher, “Diffusion generated motion by mean curvature”, American Mathematical Society”, Computational Crystal Growers Workshop, pp. 73–83, 1992.Google Scholar
  46. 46.
    F. Meyer, “Topographic Distance and Watershed Lines,” Signal Processing, vol. 38, pp. 113–125, July 1994.zbMATHCrossRefGoogle Scholar
  47. 47.
    F. Meyer and P. Maragos, “Nonlinear Scale-Space Representation with Morphological Levelings”, J. Visual Communic. and Image Representation, vol.11, pp.245–265, 2000.CrossRefGoogle Scholar
  48. 48.
    L. Moisan, “Affine Plane Curve Evolution: a Fully Consistent Scheme”, IEEE Transactions On Image Processing, vol. 7,3, pp. 411–420, March 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    L. Najman and M. Schmitt, “Watershed of a Continuous Function,” Signal Processing, vol. 38, pp. 99–112, July 1994.CrossRefGoogle Scholar
  50. 50.
    S. Osher and J. Sethian, “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Physics, vol. 79, pp. 12–49, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    P. Perona and J. Malik, “Scale-Space and Edge Detection Using Anisotropic Diffusion,” IEEE Trans. Pattern Anal. Mach. Intellig., vol. 12, pp. 629–639, July 1990.CrossRefGoogle Scholar
  52. 52.
    E. Rouy and A. Tourin, “A Viscosity Solutions Approach to Shape from Shading,” SIAM J. Numer. Anal., vol. 29(3), pp. 867–884, June 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    P. Salembier and J. Serra, “Flat Zones Filtering, Connected Operators, and Filters by Reconstruction”, IEEE Trans. Image Processing, vol. 4, pp.1153–1160, Aug. 1995.CrossRefGoogle Scholar
  54. 54.
    G. Sapiro, R. Kimmel, D. Shaked, B. Kimia, and A. Bruckstein, “Implementing Continuous-scale Morphology via Curve Evolution,” Pattern Recognition, vol. 26, pp. 1363–1372, 1993.CrossRefGoogle Scholar
  55. 55.
    G. Sapiro and A. Tannenbaum, “Affine Invariant Scale-Space,” Int’l J. Comp. Vision, vol. 11, pp. 25–44, 1993.CrossRefGoogle Scholar
  56. 56.
    J. Serra, Image Analysis and Mathematical Morphology, Acad. Press, NY, 1982.zbMATHGoogle Scholar
  57. 57.
    J. Serra, editor, Image Analysis and Mathematical Morphology. Vol. 2, Acad. Press, NY, 1988.Google Scholar
  58. 58.
    J. A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge Univ. Press, 1999.Google Scholar
  59. 59.
    R. van den Boomgaard, Mathematical Morphology: Extensions towards Computer Vision, Ph.D. Thesis, Univ. of Amsterdam, The Netherlands, 1992.Google Scholar
  60. 60.
    R. van den Boomgaard and A. Smeulders, “The Morphological Structure of Images: The Differential Equations of Morphological Scale-Space,” IEEE Trans. Pattern Anal. Mach. Intellig., vol.16, pp.1101–1113, Nov. 1994.CrossRefGoogle Scholar
  61. 61.
    P. Verbeek and B. Verwer, “Shading from shape, the eikonal equation solved by grey-weighted distance transform,” Pattern Recogn. Lett., vol.11, pp.618–690, 1990.CrossRefGoogle Scholar
  62. 62.
    M. Wertheimer, “Untersuchungen zur Lehre der Gestalt, II”, Psychologische Forschung, vol4. p 301–350, 1923.CrossRefGoogle Scholar
  63. 63.
    A. P. Witkin, “Scale-Space Filtering,” Proc. Int’l Joint Conf. Artif. Intellig., Karlsruhe, Germany, 1983.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Frederic Guichard
    • 1
  • Petros Maragos
    • 2
  • Jean-Michel Morel
    • 3
  1. 1.DO LabsBoulogneFrance
  2. 2.School of ECENational Technical University of AthensAthensGreece
  3. 3.CMLAEcole Normale Superieure de CachanCachanFrance

Personalised recommendations