Advertisement

Quasi-Optimal Resource Allocation in Multispot MFTDMA Satellite Networks

  • Sara Alouf
  • Eitan Altman
  • Jérôme Galtier
  • Jean-François Lalande
  • Corinne Touati
Part of the Combinatorial Optimization book series (COOP, volume 18)

Keywords

Time Slot Active Zone Switching Mode Allocation Criterion Time Slot Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Altman, J. Galtier, and C. Touati. A survey on TDMA satellite systems and slot allocation, June 2002. http://www-sop.inria.fr/maestro/personnel/Eitan.Altman/PAPERS/tdmasurve%y.pdf.Google Scholar
  2. [2]
    J. Ben-Hur. Technology Summary: Project Nemo. Gaiacomm International Corporation, http://www.gaiacomminternational.com, December 2003.Google Scholar
  3. [3]
    G. Bongiovanni, D. Coppersmith, and C. K. Wong. An optimum time slot assignment algorithm for an SS/TDMA system with variable number of transponders. IEEE Transactions on Communications, 29(5):721–726, May 1981.MathSciNetCrossRefGoogle Scholar
  4. [4]
    M. A. Bonuccelli. A fast time slot assignment algorithm for TDM hierarchical switching systems. IEEE Transactions on Communications, 37(8):870–874, August 1989.CrossRefGoogle Scholar
  5. [5]
    M. A. Bonuccelli, I. Gopal, and C. K. Wong. Incremental time-slot assignment in SS/TDMA satellite systems. IEEE Transactions on Communications, 39(7):1147–1156, July 1991.CrossRefGoogle Scholar
  6. [6]
    S. Chalasani and A. Varma. Efficient time-slot assignment algorithms for SS/TDMA systems with variable-bandwidth beams. IEEE Transactions on Communications, 42(2/3/4):1359–1370, Feb/Mar/Apr 1994.CrossRefGoogle Scholar
  7. [7]
    W. Chen, P. Sheu, and J. Yu. Time slot assignment in TDM multicast switching systems. IEEE Transactions on Communications, 42(1):149–165, January 1994.CrossRefGoogle Scholar
  8. [8]
    V. Chvatal. Linear programming. W. H. Freeman, San Francisco, 1983.zbMATHGoogle Scholar
  9. [9]
    G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Research, 8:101–111, 1960.zbMATHCrossRefGoogle Scholar
  10. [10]
    T. ElBatt and A. Ephremides. Frequency reuse impact on the optimum channel partitioning for hybrid wireless systems. In Proceedings of IMSC’ 99, Ottawa, Canada, June 1999.Google Scholar
  11. [11]
    L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ, 1962.zbMATHGoogle Scholar
  12. [12]
    N. Funabiki and Y. Takefuji. A parallel algorithm for time-slot assignment problems in TDM hierarchical switching systems. IEEE Transactions on Communications, 42(10):2890–2898, October 1994.CrossRefGoogle Scholar
  13. [13]
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Franciso, 1979.zbMATHGoogle Scholar
  14. [14]
    H. F. Geerdes and H. Karl. The potential of relaying in cellular networks. In Proceedings of INOC’ 03, Evry/Paris, France, pages 237–242, October 2003.Google Scholar
  15. [15]
    M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115–1145, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    I. S. Gopal, M. A. Bonuccelli, and C. K. Wong. Scheduling in multibeam satellites with interfering zones. IEEE Transactions on Communications, 31(8):941–951, August 1983.zbMATHCrossRefGoogle Scholar
  17. [17]
    I. S. Gopal, D. Coppersmith, and C. K. Wong. Minimizing packet waiting time in a multibeam satellite system. IEEE Transactions on Communications, 30(2):305–316, February 1982.zbMATHCrossRefGoogle Scholar
  18. [18]
    M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1:169–197, 1981.zbMATHMathSciNetGoogle Scholar
  19. [19]
    T. Inukai. An efficient SS/TDMA time slot assignment algorithm. IEEE Transactions on Communications, 27(10):1449–1455, October 1979.MathSciNetCrossRefGoogle Scholar
  20. [20]
    Y. Ito, Y. Urano, T. Muratani, and M. Yamaguchi. Analysis of a switch matrix for an SS/TDMA system. Proceedings of the IEEE, 65(3):411–419, March 1977.MathSciNetCrossRefGoogle Scholar
  21. [21]
    D. J. Kennedy et al. TDMA burst scheduling within the INTELSAT system. In Proceedings of GLOBECOM’ 82, Miami, Florida, pages 1263–1267, November 1982.Google Scholar
  22. [22]
    C. King, P. Trusty, J. Jankowski, R. Duesing, and P. Roach. INTELSAT TDMA/DSI burst time plan development. International Journal of Satellite Communications, 3(1–2):35–43, 1985.Google Scholar
  23. [23]
    J. L. Lewandowski, J. W. S. Liu, and C. L. Liu. SS/TDMA time slot assignment with restricted switching modes. IEEE Transactions on Communications, 31(1):149–154, January 1983.CrossRefGoogle Scholar
  24. [24]
    K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, pages 96–115, 1927.Google Scholar
  25. [25]
    M. Minoux and C. Brouder. Models and algorithms for optimal traffic assignment in SS/TDMA switching systems. International Journal of Satellite Communications, 5(1):33–47, 1987.Google Scholar
  26. [26]
    T. Mizuike, Y. Ito, D. J. Kennedy, and L. N. Nguyen. Burst scheduling algorithms for SS/TDMA systems. IEEE Transactions on Communications, 39(4):533–539, April 1991.CrossRefGoogle Scholar
  27. [27]
    T. Mizuike, Y. Ito, L. N. Nguyen, and E. Maeda. Computer-aided planning of SS/TDMA network operation. IEEE Journal on Selected Areas in Communications, 9(1):37–47, January 1991.CrossRefGoogle Scholar
  28. [28]
    R. Ramaswamy and P. Dhar. Comments on “An efficient SS/TDMA time slot assignment algorithm”. IEEE Transactions on Communications, 32(9):1061–1065, September 1984.CrossRefGoogle Scholar
  29. [29]
    A. K. Sinha. A model for TDMA burst assignment and scheduling. COMSAT Technical Review, 6:219–251, November 1976.Google Scholar
  30. [30]
    Y. K. Tham. Burst assignment for satellite-switched and Earth-station frequency-hopping TDMA networks. Communications, Speech and Vision, IEE Proceedings I, 137(4):247–255, August 1990.Google Scholar
  31. [31]
    Y. K. Tham. On fast algorithms for TDM switching assignments in terrestrial and satellite networks. IEEE Transactions on Communications, 43(8):2399–2404, August 1995.CrossRefGoogle Scholar
  32. [32]
    B. Toft. Coloring, stable sets and perfect graphs. In R. L. Graham, M. Grötschel, and L. Lovász, editors, Handbook of combinatorics, volume 1, chapter 4, pages 233–288. North Holland, Amsterdam, 1995.Google Scholar
  33. [33]
    K. L. Yeung. Efficient time slot assignment algorithms for TDM hierarchical and nonhierarchical switching systems. IEEE Transactions on Communications, 49(2):351–359, February 2001.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Sara Alouf
    • 1
  • Eitan Altman
    • 1
  • Jérôme Galtier
    • 1
    • 2
  • Jean-François Lalande
    • 1
  • Corinne Touati
    • 3
  1. 1.INRIA, the National Institute for Research in Computer Science and ControlSophia AntipolisFrance
  2. 2.France Telecom Research and DevelopmentSophia AntipolisFrance
  3. 3.Institute of Information Sciences and ElectronicsUniversity of TsukubaJapan

Personalised recommendations