Functional Connectivity of the Brain: Reconstruction from Static and Dynamic Data

  • Zoltan Nadasdy
  • Gyorgy Buzsaki
  • Laszlo Zaborszky


The central nervous system is a single complex network connecting each neuron through a number of synaptic connections. However, only a small fraction of the total connections functionally link neurons together. If the smallest multineuronal architecture within which functional links are established constitutes circuitry, then what are the basic operating principles of these circuitries from which we can understand both the composition and the dynamics of the larger networks? We argue that a finite class of circuitries, the “basic circuitries,” can be identified as repeating structural motifs tightly associated with specific dynamics. Functional circuitries, however, cannot be derived from the static architecture simply because they do not obey structural borders. Fortunately, since the constituent neurons do act in synergy, we can infer from the dynamics the minimal structural conditions that constitute a circuitry. In this chapter, instead of giving a precise definition of the “basic circuitry,” we outline a set of methods that may elucidate such a definition. We argue that since the concept of circuitry incorporates both dynamic and static features, understanding can be achieved through combining the structural and dynamic aspects of the available data. We review methods of extracting functional information from static data first. Next, we review methods of extracting structural information from dynamic data. Ideally, these two approaches should converge and define circuitry based on the fragile concept of functional connectivity.


cell types circuitry databasing functional connectivity large-scale recording population statistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, M., and Gat, I., 2001, Detecting precise firing sequences in experimental data, J. Neurosci. Methods 107(1–2):141–154; Erratum in J. Neurosci. Methods 112(2):203.PubMedCrossRefGoogle Scholar
  2. Abeles, M., and Gerstein, G. L., 1988, Detecting spatiotemporal firing patterns among simultaneously recorded single neurons, J. Neurophysiol. 60(3):909–924.PubMedGoogle Scholar
  3. Abeles, M., and Goldstein, M. 1977, Multispike train analysis, Proc. IEEE 65:762–773.CrossRefGoogle Scholar
  4. Aertsen, A. M., Gerstein, G. L., Habib, M. K., and Palm, G., 1989, Dynamics of neuronal firing correlation: modulation of “effective connectivity,” J. Neurophysiol. 61(5):900–917.PubMedGoogle Scholar
  5. Aika, Y., Ren, J. Q., Kosaka, K., and Kosaka, T., 1994, Quantitative analysis of GABA-likeimmunoreactive and parvalbumin-containing neurons in the CA1 regions of the rat hippocampus using a stereological method, the dissector, Exp. Brain Res. 99:267–276.PubMedCrossRefGoogle Scholar
  6. Allman, J. M. 1998, Evolving Brains, New York: Scientific American Library, W. H. Freeman and Co.Google Scholar
  7. Alloway, K. D., Crist, J., Mutic, J. J., and Roy, S. A., 1999, Corticostriatal projections from rat barrel cortex have an anisotropic organization that correlates with vibrissal whisking behavior, J. Neurosci. 19(24):10908–10922.PubMedGoogle Scholar
  8. Baker, S. N., Spinks, R., Jackson, A., and Lemon, R. N., 2001, Synchronization in monkey motor cortex during a precision grip task: I. Task-dependent modulation in single-unit synchrony, J. Neurophysiol. 85(2):869–885.PubMedGoogle Scholar
  9. Barbas, H., and Rempel-Clower, N., 1997, Cortical structure predicts the pattern of corticocortical connections, Cereb. Cortex 7(7):635–646.PubMedCrossRefGoogle Scholar
  10. Bartho, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K. D., and Buzsaki, G., 2004, Characterization of neocortical principal cells and interneurons by network interactions and extracellular features, J. Neurophysiol. 92(1):600–608.PubMedCrossRefGoogle Scholar
  11. Binzegger, T., Douglas, R. J., and Martin, K. A. C., 2004, A quantitative map of the circuit of cat primary visual cortex, J. Neurosci. 24(39):8441–8453.PubMedCrossRefGoogle Scholar
  12. Bower, J. M., and Beeman, D., 1998, The Book of GENESIS: Exploring Realistic Neural Models with the General Neural Simulation System, 2nd ed., New York: Springer-Verlag.Google Scholar
  13. Brecht, M., Fee, M. S., Garaschuk, O., Helmchen, F., Margrie, T. W., Svoboda, K., and Osten, P., 2004, Novel approaches to monitor and manipulate single neurons in vivo, J. Neurosci. 24:9223–9227.PubMedCrossRefGoogle Scholar
  14. Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., and Bressler, S. L., 2004, Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality, Proc. Natl. Acad. Sci. U. S. A. 101(26):9849–9854.PubMedCrossRefGoogle Scholar
  15. Budd, J. M., and Kisvarday, Z. F., 2001, Local lateral connectivity of inhibitory clutch cells in layer 4 of cat visual cortex (area 17), Exp. Brain Res. 140(2):245–250.PubMedCrossRefGoogle Scholar
  16. Buzsaki, G., 2004, Large-scale recording of neuronal ensembles, Nat. Neurosci. 7(5):446–451.PubMedCrossRefGoogle Scholar
  17. Buzsaki, G., Penttonen, M., Nadasdy, Z., and Bragin, A., 1996, Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo, Proc. Natl. Acad. Sci. U. S. A. 93(18):9921–9925.PubMedCrossRefGoogle Scholar
  18. Chen-Bee, C. H., Polley, D. B., Brett-Green, B., Prakash, N., Kwon, M. C., and Frostig, R. D., 2000, Visualizing and quantifying evoked cortical activity assessed with intrinsic signal imaging, J. Neurosci. Methods 97(2):157–173.PubMedCrossRefGoogle Scholar
  19. Chevalier, G., and Mana, S., 2000, Honeycomb-like structure of the intermediate layers of the rat superior colliculus, with additional observations in several other mammals: AChE patterning, J. Comp. Neurol. 419(2):137–153.PubMedCrossRefGoogle Scholar
  20. Claverol, E., and Nadasdy, Z., 2004, Intersection of microwire electrodes with proximal CA1 stratum-pyramidal neurons at insertion for multiunit recordings predicted by a 3-D computer model, IEEE Trans. Biomed. Eng. 51(12):2211–2216.CrossRefGoogle Scholar
  21. Coogan, T. A., and Burkhalter, A., 1993, Hierarchical organization of areas in rat visual cortex, J. Neurosci. 13(9):3749–3772.PubMedGoogle Scholar
  22. Csicsvari, J., Henze, D. A., Jamieson, B., Harris, K. D., Sirota, A., Bartho, P., Wise, K. D., and Buzsaki, G., 2003, Massively parallel recording of unit and local field potentials with siliconbased electrodes, J. Neurophysiol. 90(2):1314–1323.PubMedCrossRefGoogle Scholar
  23. Das, A., and Gilbert, C. D., 1995, Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex, Nature 375(6534):780–784.PubMedCrossRefGoogle Scholar
  24. Das, A., and Gilbert, C. D., 1999, Topography of contextual modulations mediated by shortrange interactions in primary visual cortex, Nature 399(6737):655–661.PubMedCrossRefGoogle Scholar
  25. Destexhe, A., and Babloyantz, A., 1993, A model of the inward current Ih and its possible role in thalamocortical oscillations, Neuroreport 4(2):223–226.PubMedCrossRefGoogle Scholar
  26. Douglas, R., Martin, K., and Witteridge, D., 1989, A canonical microcircuit for neocortex. Neural. Comput. 1:480–488.Google Scholar
  27. Fee, M. S., Mitra, P. P., and Kleinfeld, D., 1996, Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability, J. Neurosci. Methods 69(2):175–188; Erratum in J. Neurosci. Methods 71(2):233.PubMedCrossRefGoogle Scholar
  28. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47.PubMedGoogle Scholar
  29. Fiala, J. C., and Harris, K. M., 2001, Extending unbiased stereology of brain ultrastructure to three-dimensional volumes, J. Am. Med. Inform. Assoc. 8(1):1–16.PubMedGoogle Scholar
  30. Földy, C., Dyhrfjeld-Johnsen, J., and Soltesz, I., 2005, Structure of cortical microcircuit theory, J. Physiol. 562.1:47–54.Google Scholar
  31. Freeman, W. J., 2000, Mesoscopic neurodynamics: from neuron to brain, J. Physiol. (Paris) 94(5–6):303–322.Google Scholar
  32. Freund, T. F., and Buzsaki, G., 1996, Interneurons of the hippocampus, Hippocampus 6(4):347–470.PubMedCrossRefGoogle Scholar
  33. Frostig, R. D., Frostig, Z., and Harper, R. M., 1990, Recurring discharge patterns in multiple spike trains: I. Detection, Biol. Cybern. 62(6):487–493.PubMedCrossRefGoogle Scholar
  34. Fukuda, T., and Kosaka, T., 2000, Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus, J. Neurosci. 20(4):1519–1528.PubMedGoogle Scholar
  35. Gerfen, C. R., 1985, The neostriatal mosaic: I. Compartmental organization of projections from the striatum to the substantia nigra in the rat, J. Comp. Neurol. 236(4):454–476.PubMedCrossRefGoogle Scholar
  36. Gibson, J. R., Beierlein, M., and Connors, B. W., 1999, Two networks of electrically coupled inhibitory neurons in neocortex, Nature 402(6757):75–79.PubMedCrossRefGoogle Scholar
  37. Gilbert, C. D., 1983, Microcircuitry of the visual cortex, Annu. Rev. Neurosci. 6:217–247.PubMedCrossRefGoogle Scholar
  38. Gilbert, C. D., and Wiesel, T. N., 1983, Functional organization of the visual cortex. Prog. Brain Res. 58:209–218.PubMedGoogle Scholar
  39. Goldman, P. S., and Nauta, W. J., 1977, Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey, Brain Res. 122(3):393–413.PubMedCrossRefGoogle Scholar
  40. Goldman-Rakic, P. S., 1984, Modular organization of prefrontal cortex, Trends Neurosci. 7:419–429.CrossRefGoogle Scholar
  41. Granger, C. W. J., 1969, Investigating causal relations by econometric methods and crossspectral methods, Econometrica, 34:424–438.CrossRefGoogle Scholar
  42. Graybiel, A. M., and Ragsdale, C. W., Jr., 1978, Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining, Proc. Natl. Acad. Sci. U. S. A. 75(11):5723–5726.PubMedCrossRefGoogle Scholar
  43. Grinvald, A., and Hildesheim, R., 2004, VSDI: a new era in functional imaging of cortical dynamics, Nat. Rev. Neurosci. 5(11):874–885.PubMedCrossRefGoogle Scholar
  44. Gupta, A., Wang, Y., and Markram, H., 2000, Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex, Science 287(5451):273–278.PubMedCrossRefGoogle Scholar
  45. Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsaki, G., 2003, Organization of cell assemblies in the hippocampus, Nature 424(6948):552–556.PubMedCrossRefGoogle Scholar
  46. Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., and Buzsaki, G., 2000, Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements, J. Neurophysiol. 84(1):401–414.PubMedGoogle Scholar
  47. He, W., Hamilton, T. A., Cohen, A. R., Holmes, T. J., Pace, C., Szarowski, D. H., Turner, J. N., and Roysam, B., 2003, Automated three-dimensional tracing of neurons in confocal and brightfield images, Microsc. Microanal. 9(4):296–310.PubMedCrossRefGoogle Scholar
  48. Hebb, D. O., 1949, Organization of Behavior, New York: Wiley.Google Scholar
  49. Henze, D. A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K. D., and Buzsaki, G., 2000, Intracellular features predicted by extracellular recordings in the hippocampus in vivo, J. Neurophysiol. 84(1):390–400.PubMedGoogle Scholar
  50. Hines, M. L., and Carnevale, N.T., 1997, The NEURON simulation environment, Neural Comput. 9:1179–1209.PubMedCrossRefGoogle Scholar
  51. Hubel, D. H., and Wiesel, T. N., 1959, Receptive fields of single neurones in the cat’s striate cortex, J. Physiol. 148:574–591.PubMedGoogle Scholar
  52. Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol. 146(4):421–450.PubMedCrossRefGoogle Scholar
  53. Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., and Yuste, R., 2004, Synfire chains and cortical songs: temporal modules of cortical activity, Science 304(5670):559–564.PubMedCrossRefGoogle Scholar
  54. Isseroff, A., Schwartz, M. L., Dekker, J. J., and Goldman-Rakic, P. S., 1984, Columnar organization of callosal and associational projections from rat frontal cortex, Brain Res. 293(2):213–223.PubMedCrossRefGoogle Scholar
  55. Johnson, R. R., and Burkhalter, A., 1997, A polysynaptic feedback circuit in rat visual cortex, J. Neurosci. 17(18):7129–7140.PubMedGoogle Scholar
  56. Kalisman, N., Silberberg, G., and Markram, H., 2005, The neocortical microcircuit as a tabula rasa, Proc. Natl. Acad. Sci. U. S. A. 102(3):880–885.PubMedCrossRefGoogle Scholar
  57. Kaminski, M., Ding, M., Truccolo, W. A., and Bressler, S. L., 2001, Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance, Biol. Cybern. 85(2):145–157.PubMedCrossRefGoogle Scholar
  58. Kaminski, M. J., and Blinowska, K. J., 1991, A new method of the description of the information flow in the brain structures, Biol. Cybern. 65:203–210.PubMedCrossRefGoogle Scholar
  59. Kemere, C., Shenoy, K. V., and Meng, T. H., 2004, Model-based neural decoding of reaching movements: a maximum likelihood approach, IEEE Trans. Biomed. Eng. 51(6):925–932.PubMedCrossRefGoogle Scholar
  60. Kisvarday, Z. F., Ferecsko, A. S., Kovacs, K., Buzas, P., Budd, J. M., and Eysel, U. T., 2002, One axon-multiple functions: specificity of lateral inhibitory connections by large basket cells, J. Neurocytol. 31(3–5):255–264.PubMedCrossRefGoogle Scholar
  61. Koralek, K. A., Olavarria, J., and Killackey, H. P., 1990, Areal and laminar organization of corticocortical projections in the rat somatosensory cortex, J. Comp. Neurol. 299(2):133–150.PubMedCrossRefGoogle Scholar
  62. Kötter, R., Hilgetag, C. C., and Stephan, K. E., 2001, Connectional characteristics of areas in Walker’s map of prefrontal cortex, Neurocomputing 38–40:741–746.CrossRefGoogle Scholar
  63. Lee, A. K., and Wilson, M. A., 2002, Memory of sequential experience in the hippocampus during slow wave sleep, Neuron 36(6):1183–1194.PubMedCrossRefGoogle Scholar
  64. Leergaard, T. B., Alloway, K. D., Mutic, J. J., and Bjaalie, J. G., 2000, Three-dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization, J. Neurosci. 20(22):8474–8484.PubMedGoogle Scholar
  65. Leise, E. M. 1990, Modular construction of nervous system: a basic principle of design for invertebrates and vertebrates, Brain Res. Rev. 15:1–23.PubMedCrossRefGoogle Scholar
  66. Lewicki, M. S., 1998, A review of methods for spike sorting: the detection and classification of neural action potentials, Network 9(4):R53–R78 (Review).PubMedCrossRefGoogle Scholar
  67. Li, W., and Gilbert, C. D., 2002, Global contour saliency and local collinear interactions, J. Neurophysiol. 88(5):2846–2856.PubMedCrossRefGoogle Scholar
  68. Lubke, J., Egger, V., Sakmann, B., and Feldmeyer, D., 2000, Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex, J. Neurosci. 20(14):5300–5311.PubMedGoogle Scholar
  69. Maccaferri, G., and Lacaille, J. C., 2003, Interneuron diversity series: hippocampal interneuron classifications—making things as simple as possible, not simpler, Trends Neurosci. 26:564–571.PubMedCrossRefGoogle Scholar
  70. Malach, R., 1994, Cortical columns as devices for maximizing neuronal diversity, Trends Neurosci. 17(3):101–104 (Review).PubMedCrossRefGoogle Scholar
  71. Malmierca, M. S., Leergaard, T. B., Bajo, V. M., Bjaalie, J. G., and Merchan, M. A., 1998, Anatomic evidence of a three-dimensional mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat, J. Neurosci. 18(24):10603–10618.PubMedGoogle Scholar
  72. Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J. Neurophysiol. 20(4):408–434.PubMedGoogle Scholar
  73. Mountcastle, V. B., 1998, Perceptual Neuroscience: The Cerebral Cortex, Harvard University Press, Cambridge, MA.Google Scholar
  74. Musallam, S., Corneil, B. D., Greger, B., Scherberger, H., and Andersen, R. A., 2004, Cognitive control signals for neural prosthetics, Science, 305(5681):258–262.PubMedCrossRefGoogle Scholar
  75. Nadasdy, Z., 2000, Time sequences and their consequences, J. Physiol. (Paris) 94:505–524.CrossRefGoogle Scholar
  76. Nadasdy, Z., Csicsvari, J., Penttonen, M., Hetke, J., Wise, K., and Buzsáki, G., 1998, Extracellular recording and analysis of neuronal activity: from single cells to ensembles, In: Eichenbaum, H. B., and Davis, J. L. (eds.), Neuronal Ensembles: Strategies for Recording and Decoding, New York: Wiley.Google Scholar
  77. Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J., and Buzsaki, G., 1999, Replay and time compression of recurring spike sequences in the hippocampus, J. Neurosci. 19(21):9497–9507.PubMedGoogle Scholar
  78. Nadasdy, Z., and Zaborszky, L., 2001, Visualization of density relations in large-scale neural networks, Anat. Embryol. (Berl.) 204(4):303–317.CrossRefGoogle Scholar
  79. Nordhausen, C.T., Maynard, E. M., and Normann, R. A., 1996, Single unit recording capabilities of a 100 microelectrode array, Brain Res. 726(1–2):129–140.PubMedCrossRefGoogle Scholar
  80. Ohki, K., Chung, S., Ch’ng Y. H., Kara, P., and Reid, R. C., 2005, Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex, Nature 433(7026):597–603.PubMedCrossRefGoogle Scholar
  81. Palm, G., Aertsen, A. M., and Gerstein, G. L., 1988, On the significance of correlations among neuronal spike trains, Biol. Cybern. 59(1):1–11.PubMedCrossRefGoogle Scholar
  82. Paperna, T., and Malach, R., 1991, Patterns of sensory intermodality relationships in the cerebral cortex of the rat, J. Comp. Neurol. 308(3):432–456.PubMedCrossRefGoogle Scholar
  83. Peters, A., and Feldman, M. L., 1976, The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex: I. General description, J. Neurocytol. 5:63–84.PubMedCrossRefGoogle Scholar
  84. Peters, A., and Payne, B. R., 1993, Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3:69–78.PubMedGoogle Scholar
  85. Pouille, F., and Scanziani, M., 2004, Routing of spike series by dynamic circuits in the hippocampus, Nature 429(6993):717–723.PubMedCrossRefGoogle Scholar
  86. Prinz, A. A., Bucher, D., and Marder, E., 2004, Similar network activity from disparate circuit parameters, Nat. Neurosci. 7(12):1287–1288.CrossRefGoogle Scholar
  87. Pucak, M. L., Levitt, J. B., Lund, J. S., and Lewis, D. A., 1996, Patterns of intrinsic and associational circuitry in monkey prefrontal cortex, J. Comp. Neurol. 376(4):614–630.PubMedCrossRefGoogle Scholar
  88. Quian-Quiroga, R., Nadasdy, Z., and Ben-Shaul, Y., 2004, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering, Neural Comput. 16(8):1661–1687.CrossRefGoogle Scholar
  89. Rakic, P., 1995, Radial versus tangential migration of neuronal clones in the developing cerebral cortex, Proc. Natl. Acad. Sci. U. S. A. 92(25):11323–11327.PubMedCrossRefGoogle Scholar
  90. Rempel-Clower, N. L., and Barbas, H., 2000, The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function, Cereb. Cortex 10(9):851–865.PubMedCrossRefGoogle Scholar
  91. Rockland, K. S., 1998, Complex microstructures of sensory cortical connections, Curr. Opin. Neurobiol. 8(4):545–551 (Review).PubMedCrossRefGoogle Scholar
  92. Rodriguez, A., Ehlenberger, D., Kelliher, K., Einstein, M., Henderson, S. C., Morrison, J. H., Hof, P. R., and Wearne, S. L., 2003, Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images, Methods 30(1):94–105.PubMedCrossRefGoogle Scholar
  93. Somogyi, P., and Klausberger, T., 2005, Defined types of cortical interneurone structure space and spike timing in the hippocampus, J. Physiol. (London) 562:9–26.CrossRefGoogle Scholar
  94. Somogyi, P., Tamas, G., Lujan, R., and Buhl, E. H., 1998, Salient features of synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev. 26(2–3):113–135.PubMedCrossRefGoogle Scholar
  95. Sporns, O., and Kötter, R., 2004, Motifs in brain networks, PLoS Biol. 2(11):e369.PubMedCrossRefGoogle Scholar
  96. Stepanyants, A., Hof, P. R., and Chklovskii, D. B., 2002, Geometry and structural plasticity of synaptic connectivity, Neuron 34(2):275–288.PubMedCrossRefGoogle Scholar
  97. Stepanyants, A., Tamas, G., and Chklovskii, D. B., 2004, Class-specific features of neuronal wiring, Neuron 43(2):251–259.PubMedCrossRefGoogle Scholar
  98. Szentagothai, J., 1978, The neuron network of the cerebral cortex: a functional interpretation. Proc. R. Soc. Lond. B. 201:219–248.PubMedCrossRefGoogle Scholar
  99. Szentagothai, J., 1983, The modular architectonic principle of neural centers, Rev. Physiol. Biochem. Pharmacol. 98:11–61.PubMedGoogle Scholar
  100. Tamas, G., Buhl, E. H., Lorincz, A., and Somogyi, P., 2000, Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons, Nat. Neurosci. 3(4):366–371.PubMedCrossRefGoogle Scholar
  101. Tamas, G., Buhl, E. H., and Somogyi, P., 1997, Massive autaptic self-innervation of GABAergic neurons in cat visual cortex, J. Neurosci. 17(16):6352–6364.PubMedGoogle Scholar
  102. Traub, R. D., Jefferys, J. G. R., and Whittington, M. A., 1999, Fast Oscillations in Cortical Circuits, Bradford Books, MIT Press, Cambridge, MA.Google Scholar
  103. Vetter, R. J., Williams, J. C., Hetke, J. F., Nunamaker, E. A., and Kipke, D. R., 2004, Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex, IEEE Trans. Biomed. Eng. 51(6):896–904.PubMedCrossRefGoogle Scholar
  104. Vreeswijk, C. V., 1996, Partial synchronization in populations of pulse-coupled oscillators, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5):5522–5537.PubMedGoogle Scholar
  105. Wang, X. J., and Rinzel, J., 1993, Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons, Neuroscience 53(4):899–904.PubMedCrossRefGoogle Scholar
  106. Watts, J., and Thomson, A. M., 2005, Excitatory and inhibitory connections show selectivity in the neocortex, J. Physiol. (London) 562:89–97.CrossRefGoogle Scholar
  107. Wickelgren, W. A., 1999, Webs, cell assemblies, and chunking in neural nets: introduction, Can. J. Exp. Psychol. 53(1):118–131.PubMedGoogle Scholar
  108. Yoshimura, Y., Dantzker, J. L., and Callaway, E. M., 2005, Excitatory cortical neurons form fine-scale functional networks, Nature 433(7028):868–873.PubMedCrossRefGoogle Scholar
  109. Yuste, R., and Denk, W., 1995, Dendritic spines as basic functional units of neuronal integration, Nature 375(6533):682–684.PubMedCrossRefGoogle Scholar
  110. Zaborszky, L., 2002, The modular organization of brain systems. Basal forebrain: the last frontier, Prog. Brain Res. 136:359–372.PubMedCrossRefGoogle Scholar
  111. Zaborszky, L., Buhl, D. L., Pobalashingham, S., Bjaalie, J. G., and Nadasdy, Z., 2005b, Three-dimensional chemoarchitecture of the basal forebrain: spatially specific association of cholinergic and calcium binding protein-containing neurons, Neuroscience, 136(3):697–713.PubMedCrossRefGoogle Scholar
  112. Zaborszky, L., Csordas, A., Buhl, D. L., Duque, A., Somogyi, J., and Nadasdy, Z., 2002, Computational anatomical analysis of the basal forebrain corticopetal system, In: Ascoli, G. A. (ed.), Computational Neuroanatomy: Principles and Methods, New Jersey: Humana Press.Google Scholar
  113. Zaborszky, L., Varsanyi, P., Mc Donnell, N. C., and Howell, F.W., 2005a, 3D cellular database of the rat brain: integrated anatomical data, Soc. Neurosci. Abstr. 31. Program No. 570.3. 2005 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005.Online.Google Scholar
  114. Zaborszky, L., and Wolff, J. R., 1982, Distribution patterns and individual variations of callosal connections in the albino rat, Anat. Embryol. (Berlin) 165(2):213–232.CrossRefGoogle Scholar
  115. Zhang, K., Ginzburg, I., McNaughton, B. L., and Sejnowski, T. J., 1998, Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells, J. Neurophysiol. 79(2):1017–1044.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Zoltan Nadasdy
    • 1
  • Gyorgy Buzsaki
    • 2
  • Laszlo Zaborszky
    • 2
  1. 1.California Institute of TechnologyPasadena
  2. 2.Rutgers, The State University of New JerseyNewark

Personalised recommendations