Pseudomonas pp 189-236 | Cite as

Evolution of Catabolic Pathways in Pseudomonas Through Gene Transfer

  • Jan Roelof van der Meer

12. Concluding Remarks

Investigating the molecular archeology of catabolic pathways in pseudomonads and related bacteria and dissecting the different adaptation bacterial mechanisms has given an extremely detailed picture on the ways how environmentally successful mutants developed new genetic structures for pollutant metabolism. Principally, the picture is reinforced of extremely effective mechanisms to capture gene fragments from different sources, recombine them de novo and distribute on whatever mobile conjugative element is at hand.


Pseudomonas Putida Catabolic Pathway Genomic Island Naphthalene Degradation Cupriavidus Necator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aemprapa, S., and Williams, P.A., 1998, Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways. Microbiology, 144:1387–1396.PubMedGoogle Scholar
  2. 2.
    Alonso, S., Bartolome-Martín, D., del Alamo, M., Diáz, E., García, J.L., and Pérera, J., 2003, Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2. Gene, 319:71–83.PubMedGoogle Scholar
  3. 3.
    Arber, W., 2000, Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol. Rev., 24:1–7.PubMedGoogle Scholar
  4. 4.
    Arenghi, F.L., Pinti, M., Galli, E., and Barbieri, P., 1999, Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter. Appl. Environ. Microbiol., 65:4057–4063.PubMedGoogle Scholar
  5. 5.
    Arias-Barrau, E., Olivera, E.R., Luengo, J.M., Fernández, C., Galan, B., García, J.L., Diáz, E., and Minambres, B., 2004, The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J. Bacteriol., 186:5062–5077.PubMedGoogle Scholar
  6. 6.
    Assinder, S.J., De Marco, P., Osborne, D.J., Poh, C.L., Shaw, L.E., Winson, M.K., and Williams, P.A., 1993, A comparison of the multiple alleles of xylS carried by TOL plasmids pWW53 and pDK1 and its implications for their evolutionary relationship. J. Gen. Microbiol., 139:557–568.PubMedGoogle Scholar
  7. 7.
    Assinder, S.J., de Marco, P., Sayers, J.R., Shaw, L.E., Winson, M.K., and Williams, P.A., 1992, Identical resolvases are encoded by Pseudomonas TOL plasmids pWW53 and pDK1. Nucleic Acids Res., 20:5476.PubMedGoogle Scholar
  8. 8.
    Assinder, S.J., and Williams, P.A., 1988, Comparison of the meta pathway operons on NAH plasmid pWW60-22 and TOL plasmid pWW53-4 and its evolutionary significance. J. Gen. Microbiol., 134:2769–2778.PubMedGoogle Scholar
  9. 9.
    Assinder, S.J., and Williams, P.A., 1990, The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv. Microb. Physiol., 31:1–69.PubMedGoogle Scholar
  10. 10.
    Austen, R.A., and Dunn, N.W., 1977, A comparative study of the NAH and TOL catabolic plasmids in Pseudomonas putida. Aust. J. Biol. Sci., 30:357–366.PubMedGoogle Scholar
  11. 11.
    Baldwin, B.R., Mesarch, M.B., and Nies, L., 2000, Broad substrate specificity of naphthaleneand biphenyl-utilizing bacteria. Appl. Microbiol. Biotechnol., 53:748–753.PubMedGoogle Scholar
  12. 12.
    Barbieri, P., Arenghi, F.L., Bertoni, G., Bolognese, F., and Galli, E., 2001, Evolution of catabolic pathways and metabolic versatility in Pseudomonas stutzeri OX1. Antonie van Leeuwenhoek Int. J. Microbiol., 79:135–140.Google Scholar
  13. 13.
    Bartolome-Martín, D., Martińez-García, E., Mascaraque, V., Rubio, J., Perera, J., and Alonso, S., 2004, Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2. Gene, 341:167–179.PubMedGoogle Scholar
  14. 14.
    Basu, A., Dixit, S.S., and Phale, P.S., 2003, Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86. Appl. Microbiol. Biotechnol., 62:579–585.PubMedGoogle Scholar
  15. 15.
    Bayley, S.A., Duggleby, C.J., Worsey, M.J., Williams, P.A., Hardy, K.G., and Broda, P., 1977, Two modes of loss of the Tol function from Pseudomonas putida mt-2. Mol. Gen. Genet., 154:203–204.PubMedGoogle Scholar
  16. 16.
    Beaber, J.W., Burrus, V., Hochhut, B., and Waldor, M.K., 2002, Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cell Mol. Life Sci., 59:2065–2070.PubMedGoogle Scholar
  17. 17.
    Beaber, J.W., Hochhut, B., and Waldor, M.K., 2002, Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J. Bacteriol., 184:4259–4269.PubMedGoogle Scholar
  18. 18.
    Beil, S., Happe, B., Timmis, K.N., and Pieper, D.H., 1997, Genetic and biochemical characterization of the broad spectrum chlorobenzene dioxygenase from Burkholderia sp. strain PS12: dechlorination of 1,2,4,5-tetrachlorobenzene. Eur. J. Biochem., 247:190–199.PubMedGoogle Scholar
  19. 19.
    Beil, S., Timmis, K.N., and Pieper, D.H., 1999, Genetic and biochemical analyses of the tec operon suggest a route for evolution of chlorobenzene degradation genes. J. Bacteriol., 181:341–346.PubMedGoogle Scholar
  20. 20.
    Benjamin, R.C., Voss, J.A., and Kunz, D.A., 1991, Nucleotide sequence of xylE from the TOL pDK1 plasmid and structural comparison with isofunctional catechol-2,3-dioxygenase genes from TOL, pWW0 and NAH7. J. Bacteriol., 173:2724–2728.PubMedGoogle Scholar
  21. 21.
    Bhat, M.A., Tsuda, M., Horiike, K., Nozaki, M., Vaidyanathan, C.S., and Nakazama, T., 1994, Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90. Appl. Environ. Microbiol., 60:307–312.PubMedGoogle Scholar
  22. 22.
    Bolognese, F., Di Lecce, C., Galli, E., and Barbieri, P., 1999, Activation and inactivation of Pseudomonas stutzeri methylbenzene catabolism pathways mediated by a transposable element. Appl. Environ. Microbiol., 65:1876–1882.PubMedGoogle Scholar
  23. 23.
    Bosch, R., Garcí-Valdes, E., and Moore, E.R., 2000, Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene, 245:65–74.PubMedGoogle Scholar
  24. 24.
    Boucher, Y., Douady, C.J., Papke, R.T., Walsh, D.A., Boudreau, M.E.R., Nesbø, C.L., Case, R.J., and Doolittle, W.F., 2003, Lateral gene transfer and the origins of prokaryotic groups. Annu. Rev. Genet., 37:283–328.PubMedGoogle Scholar
  25. 25.
    Buchrieser, C., Brosch, R., Bach, S., Guiyoule, A., and Carniel, E., 1998, The highpathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol. Microbiol., 30:965–978.PubMedGoogle Scholar
  26. 26.
    Burrus, V., Pavlovic, G., Decaris, B., and Guédon, G., 2002, Conjugative transposons: the tip of the iceberg. Mol. Microbiol., 46:601–610.PubMedGoogle Scholar
  27. 27.
    Burrus, V., and Waldor, M.K., 2003, Control of SXT integration and excision. J. Bacteriol., 185:5045–5054.PubMedGoogle Scholar
  28. 28.
    Burrus, V., and Waldor, M.K., 2004, Shaping bacterial genomes with integrative and conjugative elements. Res. Microbiol., 155:376–386.PubMedGoogle Scholar
  29. 29.
    Campos-García, J., Esteve, A., Vaźquez-Duhalt, R., Ramos, J.L., and Soberoń-Chavez, G., 1999, The branched-chain dodecylbenzene sulfonate degradation pathway of Pseudomonas aeruginosa W51D involves a novel route for degradation of the surfactant lateral alkyl chain. Appl. Environ. Microbiol., 65:3730–3734.PubMedGoogle Scholar
  30. 30.
    Canchaya, C., Fournous, G., Chibani-Chenoufi, S., Dillmann, M.L., and Brüssow, H., 2003, Phage as agents of lateral gene transfer. Curr. Opin. Microbiol., 6:417–424.PubMedGoogle Scholar
  31. 31.
    Carl, B., Arnold, A., Hauer, B., and Fetzner, S., 2004, Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation. Gene, 331:177–188.PubMedGoogle Scholar
  32. 32.
    Carrington, B., Lowe, A., Shaw, L.E., and Williams, P.A., 1994, The lower pathway operon for benzoate catabolism in biphenyl-utilizing Pseudomonas sp. strain IC and the nucleotide sequence of the bphE gene for catechol 2,3-dioxygenase. Microbiology, 140:499–508.PubMedGoogle Scholar
  33. 33.
    Chablain, P.A., Zgoda, A.L., Sarde, C.O., and Truffaut, N., 2001, Genetic and molecular organization of the alkylbenzene catabolism operon in the psychrotrophic strain Pseudomonas putida 01G3. Appl. Environ. Microbiol., 67:453–458.PubMedGoogle Scholar
  34. 34.
    Chakrabarty, A.M., Friello, D.A., and Bopp, L.H., 1978, Transposition of plasmid DNA segments specifying hydrocarbon degradation and their expression in various microorganisms. Proc. Natl. Acad. Sci. U.S.A., 75:3109–3112.PubMedGoogle Scholar
  35. 35.
    Chatfield, L.K., and Williams, P.A., 1986, Naturally occurring TOL plasmids in Pseudomonas strains carry either two homologous or two nonhomologous catechol 2,3-oxygenase genes. J. Bacteriol., 168:878–885.PubMedGoogle Scholar
  36. 36.
    Cheng, Q., Paszkiet, B.J., Shoemaker, N.B., Gardner, J.F., and Salyers, A.A., 2000, Integration and excision of a Bacteroides conjugative transposon, CTnDOT. J. Bacteriol., 182:4035–4043.PubMedGoogle Scholar
  37. 37.
    Choi, E.N., Cho, M.C., Kim, Y., Kim, C.K., and Lee, K., 2003, Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology, 149:795–805.PubMedGoogle Scholar
  38. 38.
    Christensen, B.B., Sternberg, C., Andersen, J.B., Eberl, L., Moller, S., Givskov, M., and Molin, S., 1998, Establishment of newgenetic traits in a microbial biofilm community. Appl. Environ. Microbiol., 64:2247–2255.PubMedGoogle Scholar
  39. 39.
    Clarke, P.H., 1982, The metabolic versatility of pseudomonads. Antonie van Leeuwenhoek Int. J. Microbiol., 48:105–130.Google Scholar
  40. 40.
    Clarke, P.H., 1984, The evolution of degradative pathways, pp. 11–27. In D.T. Gibson (ed.), Microbial Degradation of Organic Compounds. Marcel Dekker Inc., New York.Google Scholar
  41. 41.
    Corbella, M.E., Garrido-Pertierra, A., and Puyet, A., 2001, Induction of the halobenzoate catabolic pathway and cometabolism of ortho-chlorobenzoates in Pseudomonas aeruginosa 142 grown on glucose-supplemented media. Biodegradation, 12:149–157.PubMedGoogle Scholar
  42. 42.
    Dagher, F., Deziel, E., Lirette, P., Paquette, G., Bisaillon, J.G., and Villemur, R., 1997, Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can. J. Microbiol., 43:368–377.PubMedGoogle Scholar
  43. 43.
    Dahlberg, C., Bergström, M., and Hermansson, M., 1998, In situ detection of high levels of horizontal plasmid transfer in marine bacterial communities. Appl. Environ. Microbiol., 64:2670–2675.PubMedGoogle Scholar
  44. 44.
    Davis, J.K., Paoli, G.C., He, Z., Nadeau, L.J., Somerville, C.C., and Spain, J.C., 2000, Sequence analysis and initial characterization of two isozymes of hydroxylaminobenzene mutase from Pseudomonas pseudoalcaligenes JS45. Appl. Environ. Microbiol., 66:2965–2971.PubMedGoogle Scholar
  45. 45.
    Dejonghe, W., Goris, J., El Fantroussi, S., Höfte, M., De Vos, P., Verstraete, W., and Top, E.M., 2000, Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl. Environ. Microbiol., 66:3297–3304.PubMedGoogle Scholar
  46. 46.
    de Lipthay, J.R., Barkay, T., Vekova, J., and Sörensen, S.J., 1999, Utilization of phenoxyacetic acid, by strains using either the ortho or meta cleavage of catechol during phenol degradation, after conjugal transfer of tfdA, the gene encoding a 2,4-dichlorophenoxyacetic acid/2-oxoglutarate dioxygenase. Appl. Microbiol. Biotechnol., 51:207–214.Google Scholar
  47. 47.
    Dennis, J.J., and Zylstra, G.J., 2004, Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NICB 9816-4. J. Mol. Biol., 341:753–768.PubMedGoogle Scholar
  48. 48.
    Denome, S.A., Stanley, D.C., Olson, E.S., and Young, K.D., 1993, Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J. Bacteriol., 175:6890–6901.PubMedGoogle Scholar
  49. 49.
    Dobrindt, U., Hochhut, B., Hentschel, U., and Hacker, J., 2004, Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol., 2:414–424.PubMedGoogle Scholar
  50. 50.
    Dogra, C., Raina, V., Pal, R., Suar, M., Lal, S., Gartemann, K.-H., Holliger, C., van der Meer, J.R., and Lal, R., 2004, Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis-evidence for horizontal gene transfer. J. Bacteriol., 186:2225–2235.PubMedGoogle Scholar
  51. 51.
    Don, R.H., and Pemberton, J.M., 1981, Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bacteriol., 145:681–686.PubMedGoogle Scholar
  52. 52.
    Dorn, E., Hellwig, M., Reineke, W., and Knackmuss, H.-J., 1974, Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch. Microbiol., 99:61–70.PubMedGoogle Scholar
  53. 53.
    Drake, J.W., 1991, Spontaneous mutation. Annu. Rev. Genet., 25:124–146.Google Scholar
  54. 54.
    Eaton, R.W., 1997, p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J. Bacteriol., 179:3171–3180.PubMedGoogle Scholar
  55. 55.
    Eaton, R.W., and Timmis, K.N., 1986, Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. J. Bacteriol., 168:123–131.PubMedGoogle Scholar
  56. 56.
    Echols, H., and Goodman, M.F., 1991, Fidelity mechanisms in DNA replication. Annu. Rev. Biochem., 60:477–511.PubMedGoogle Scholar
  57. 57.
    Eggink, G., Lageveen, R.G., Altenburg, B., and Witholt, B., 1987, Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J. Biol. Chem., 262:17712–17718.PubMedGoogle Scholar
  58. 58.
    Fowler, R.G., and Schaaper, R.M., 1997, The role of the mutT gene of Escherichia coli in maintaining replication fidelity. FEMS Microbiol. Rev., 21:43–54.PubMedGoogle Scholar
  59. 59.
    Franklin, F.C., Lehrbach, P.R., Lurz, R., Rueckert, B., Bagdasarian, M., and Timmis, K.N., 1983, Localization and functional analysis of transposon mutations in regulatory genes of the TOL catabolic pathway. J. Bacteriol., 154:676–685.PubMedGoogle Scholar
  60. 60.
    Franklin, F.C.H., Bagdasarian, M., Bagdasarian, M.M., and Timmis, K.N., 1981, Molecular and functional analysis of the TOL plasmid pWW0 from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring-cleavage pathway. Proc. Natl. Acad. Sci. U.S.A., 78:7458–7462.PubMedGoogle Scholar
  61. 61.
    Fulthorpe, R.R., McGowan, C., Maltseva, O.V., Holben, W.E., and Tiedje, J.M., 1995, 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Appl. Environ. Microbiol., 61:3274–3281.PubMedGoogle Scholar
  62. 62.
    Fulthorpe, R.R., Rhodes, A.N., and Tiedje, J.M., 1996, Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations. Appl. Environ. Microbiol., 62:1159–1166.PubMedGoogle Scholar
  63. 63.
    Genin, S., and Boucher, C., 2004, Lessons learned from the genome analysis of Ralstonia solanacearum. Annu. Rev. Phytopathol., 42:107–134.PubMedGoogle Scholar
  64. 64.
    Gerischer, U., D’Argenio, D.A., and Ornston, L.N., 1996, IS1236, a newly discovered member of the IS3 family, exhibits varied patterns of insertion into the Acinetobacter calcoaceticus chromosome. Microbiology, 142:1825–1831.PubMedGoogle Scholar
  65. 65.
    Gerischer, U., and Ornston, L.N., 1995, Spontaneous mutations in pcaH and-G, structural genes for protocatechuate 3,4-dioxygenase in Acinetobacter calcoaceticus. J. Bacteriol., 177:1336–1347.PubMedGoogle Scholar
  66. 66.
    Göbel, M., Kranz, O.H., Kaschabek, S.R., Schmidt, E., Pieper, D.H., and Reineke, W., 2004, Microorganisms degrading chlorobenzene via a meta-cleavage pathway harbor highly similar chlorocatechol 2,3-dioxygenase-encoding gene clusters. Arch. Microbiol., 182:147–156.PubMedGoogle Scholar
  67. 67.
    Greated, A., Lambertsen, L., Williams, P.A., and Thomas, C.M., 2002, Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ. Microbiol., 4:856–871.PubMedGoogle Scholar
  68. 68.
    Greub, G., Collyn, F., Guy, L., and Roten, C.A., 2004, A genomic island present along the bacterial chromosome of the ParachlamydiaceaeUWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system. BMC Microbiol., 4:48.PubMedGoogle Scholar
  69. 69.
    Hacker, J., Blum-Oehler, G., Muhldorfer, I., and Tschape, H., 1997, Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol., 23:1089–1097.PubMedGoogle Scholar
  70. 70.
    Haigler, B.E., Nishino, S.F., and Spain, J.C., 1988, Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol., 54:294–301.PubMedGoogle Scholar
  71. 71.
    Hall, R.M., and Stokes, H.W., 1993, Integrons: novel DNA elements which capture genes by site-specific recombination. Genetica, 90:115–132.PubMedGoogle Scholar
  72. 72.
    Harayama, S., 1994, Codon usage patterns suggest independent evolution of two catabolic operons on toluene-degradative plasmid TOL pWW0 of Pseudomonas putida. J. Mol. Evol., 38:328–335.PubMedGoogle Scholar
  73. 73.
    Harayama, S., Lehrbach, P.R., and Timmis, K.N., 1984, Transposon mutagenesis analysis of meta-cleavage pathway operon genes of the TOL plasmid of Pseudomonas putida mt-2. J. Bacteriol., 160:251–255.PubMedGoogle Scholar
  74. 74.
    Harayama, S., Leppik, R.A., Rekik, M., Mermod, N., Lehrbach, P.R., Reineke, W., and Timmis, K.N., 1986, Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and benzyl alcohol by the xylA product. J. Bacteriol., 167:455–461.PubMedGoogle Scholar
  75. 75.
    Harayama, S., Mermod, N., Rekik, M., Lehrbach, P.R., and Timmis, K.N., 1987, Roles of the divergent branches of the meta-cleavage pathway in the degradation of benzoate and substituted benzoates. J. Bacteriol., 169:558–564.PubMedGoogle Scholar
  76. 76.
    Harayama, S., and Rekik, M., 1990, The meta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes. Mol. Gen. Genet., 221:113–120.PubMedGoogle Scholar
  77. 77.
    Harayama, S., and Rekik, M., 1993, Comparison of the nucleotide sequences of the meta-cleavage pathway genes of TOL plasmid pWW0 from Pseudomonas putida with other meta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution. Mol. Gen. Genet., 239:81–89.PubMedGoogle Scholar
  78. 78.
    Harayama, S., Rekik, M., Wasserfallen, A., and Bairoch, A., 1987, Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7 plasmids. Mol. Gen. Genet., 210:241–247.PubMedGoogle Scholar
  79. 79.
    Harwood, C.S., and Parales, R.E., 1996, The β-ketoadipate pathway and the biology of selfidentity. Annu. Rev. Microbiol., 50:553–590.PubMedGoogle Scholar
  80. 80.
    Hayase, N., Taira, K., and Furukawa, K., 1990, Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacteria. J. Bacteriol., 172:1160–1164.PubMedGoogle Scholar
  81. 81.
    Herrick, J.B., Stuart-Keil, K.G., Ghiorse, W.C., and Madsen, E.L., 1997, Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl. Environ. Microbiol., 63:2330–2337.PubMedGoogle Scholar
  82. 82.
    Heuer, H., Szczepanowski, R., Schneiker, S., Pühler, A., Top, E.M., and Schlüter, A., 2004, The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1 β group without any accessory genes. Microbiology, 150:3591–3599.PubMedGoogle Scholar
  83. 83.
    Hoffmann, D., Kleinsteuber, S., Müller, R.H., and Babel, W., 2003, A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Microbiology, 149:2545–2556.PubMedGoogle Scholar
  84. 84.
    Hong, H.B., Nam, I.H., Murugesan, K., Kim, Y.M., and Chang, Y.S., 2004, Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. Biodegradation, 15:303–313.PubMedGoogle Scholar
  85. 85.
    Hooper, S.W., Dockendorff, T.C., and Sayler, G.S., 1989, Characteristics and restriction analysis of the 4-chlorobiphenyl catabolic plasmid, pSS50. Appl. Environ. Microbiol., 55:1286–1288.PubMedGoogle Scholar
  86. 86.
    Hughes, E.J., Bayly, R.C., and Skurray, R.A., 1984, Characterization of a TOL-like plasmid from Alcaligenes eutrophus that controls expression of a chromosomally encoded p-cresol pathway. J. Bacteriol., 158:73–78.PubMedGoogle Scholar
  87. 87.
    Inouye, S., Nakazawa, A., and Nakazawa, T., 1983, Molecular cloning of regulatory gene xylR and operator-promoter regions of the xylABC and xylDEGF operons of the TOL plasmid. J. Bacteriol., 155:1192–1199.PubMedGoogle Scholar
  88. 88.
    James, K.D., Hughes, M.A., and Williams, P.A., 2000, Cloning and expression of ntnD, encoding a novel NAD(P)+-independent 4-nitrobenzyl alcohol dehydrogenase from Pseudomonas sp. strain TW 3. J. Bacteriol., 182:3136–3141.PubMedGoogle Scholar
  89. 89.
    Jeenes, D.J., and Williams, P.A., 1982, Excision and integration of degradative pathway genes from TOL plasmid pWW0. J. Bacteriol., 150:188–194.PubMedGoogle Scholar
  90. 90.
    Jeong, J.J., Kim, J.H., Kim, C.K., Hwang, I., and Lee, K., 2003, 3-and 4-Alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology, 149:3265–3277.PubMedGoogle Scholar
  91. 91.
    Jiménez, J.I., Miñambres, B., García, J.L., and Díaz, E., 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ. Microbiol., 4:824–841.PubMedGoogle Scholar
  92. 92.
    Johnson, G.R., Jain, R.K., and Spain, J.C., 2002, Origins of the 2,4-dinitrotoluene pathway. J. Bacteriol., 184:4219–4232.PubMedGoogle Scholar
  93. 93.
    Johnson, G.R., and Spain, J.C., 2003, Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene. Appl. Microbiol. Biotechnol., 62:110–123.PubMedGoogle Scholar
  94. 94.
    Ka, J.O., Holben, W.E., and Tiedje, J.M., 1994, Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils. Appl. Environ. Microbiol., 60:1106–1115.PubMedGoogle Scholar
  95. 95.
    Kado, C.I., 1998, Origin and evolution of plasmids. Antonie van Leeuwenhoek Int. J. Microbiol., 73:117–126.Google Scholar
  96. 96.
    Kallastu, A., Horak, R., and Kivisaar, M., 1998, Identification and characterization of IS1411, a new insertion sequence which causes transcriptional activation of the phenol degradation genes in Pseudomonas putida. J. Bacteriol., 180:5306–5312.PubMedGoogle Scholar
  97. 97.
    Kamagata, Y., Fulthorpe, R.R., Tamura, K., Takami, H., Forney, L.J., and Tiedje, J.M., 1997, Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic aciddegrading bacteria. Appl. Environ. Microbiol., 63:2266–2272.PubMedGoogle Scholar
  98. 98.
    Keil, H., Lebens, M.R., and Williams, P.A., 1985, TOL plasmid pWW15 contains two nonhomologous, independently regulated catechol 2,3-oxygenase genes. J. Bacteriol., 163:248–255.PubMedGoogle Scholar
  99. 99.
    Klecka, G.M., and Gibson, D.T., 1981, Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl. Environ. Microbiol., 41:1159–1165.PubMedGoogle Scholar
  100. 100.
    Klockgether, J., Reva, O., Larbig, K., and Tummler, B., 2004, Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J. Bacteriol., 186:518–534.PubMedGoogle Scholar
  101. 101.
    Kohler, H.-P.E., Schmid, A., and van der Maarel, M., 1993, Metabolism of 2,2′-dihydroxybiphenyl by Pseudomonas sp. strain HBP1: production and consumption of 2,2′,3-trihydroxybiphenyl. J. Bacteriol., 175:1621–1628.PubMedGoogle Scholar
  102. 102.
    Kunz, D.A., and Chapman, P.J., 1981, Isolation and characterization of spontaneously occurring TOL plasmid mutants of Pseudomonas putida HS1. J. Bacteriol., 146:952–964.PubMedGoogle Scholar
  103. 103.
    Laemmli, C.M., Leveau, J.H.J., Zehnder, A.J.B., and van der Meer J.R., 2000, Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). J. Bacteriol., 182:4165–4172.PubMedGoogle Scholar
  104. 104.
    Laemmli, C.M., Schönenberger, R., Suter, M.J.-F., Zehnder, A.J.B., and van der Meer J.R., 2002, TfdDII, one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro-cis,cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate. Arch. Microbiol., 178:13–25.PubMedGoogle Scholar
  105. 105.
    Laemmli, C.M., Werlen, C., and van der Meer, J.R., 2004, Mutational analysis of the two tfd clusters for chloroaromatic degradation in Ralstonia eutropha JMP134. Arch. Microbiol., 181:112–121.PubMedGoogle Scholar
  106. 106.
    Larbig, K., Christmann, A., Johann, A., Klockgether, J., Hartsch, T., Merkl, R., Wiehlmann, L., Fritz, H.-J., and Tümmler, B., 2002, Gene islands integrated into tRNAGly genes confer genome diversity on a Pseudomonas aeruginosa clone. J. Bacteriol., 184:6665–6680.PubMedGoogle Scholar
  107. 107.
    Lehrbach, P.R., Ward, J., Meulien, P., and Broda, P., 1982, Physical mapping of TOL plasmids pWWO and pND2 and various R plasmid-TOL derivatives from Pseudomonas spp. J. Bacteriol., 152:1280–1283.PubMedGoogle Scholar
  108. 108.
    Lenski, R.E., Mongold, J.A., Sniegowski, P.D., Travisano, M., Vasi, F., Gerrish, P.J., and Schmidt, T.M., 1998, Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another? Antonie van Leeuwenhoek Int. J. Microbiol., 73:35–47.Google Scholar
  109. 109.
    Lesic, B., Bach, S., Ghigo, J.M., Dobrindt, U., Hacker, J., and Carniel, E., 2004, Excision of the high-pathogenicity island of Yersinia pseudotuberculosis requires the combined actions of its cognate integrase and Hef, a new recombination directionality factor. Mol. Microbiol., 52:1337–1348.PubMedGoogle Scholar
  110. 110.
    Leveau, J.H.J., and van der Meer, J.R., 1997, Genetic characterization of insertion sequence ISJP4 on plasmid pJP4 from Ralstonia eutropha JMP134. Gene, 202:103–114.PubMedGoogle Scholar
  111. 111.
    Li, W., Shi, J., Wang, X., Han, Y., Tong, W., Ma, L., Liu, B., and Cai, B., 2004, Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6. Gene, 336:231–240.PubMedGoogle Scholar
  112. 112.
    Lorenz, M.G., and Wackernagel, W., 1994, Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev., 58:563–602.PubMedGoogle Scholar
  113. 113.
    Maeda, K., Nojiri, H., Shintani, M., Yoshida, T., Habe, H., and Omori, T., 2003, Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J. Mol. Biol., 326:21–33.PubMedGoogle Scholar
  114. 114.
    Mahillon, J., and Chandler, M., 1998, Insertion sequences. Microbiol. Mol. Biol. Rev., 62:725–774.PubMedGoogle Scholar
  115. 115.
    Mahillon, J., Leonard, C., and Chandler, M., 1999, IS elements as constituents of bacterial genomes. Res. Microbiol., 150:675–687.PubMedGoogle Scholar
  116. 116.
    Mars, A.E., Kasberg, T., Kaschabek, S.R., van Agteren, M.H., Janssen, D.B., and Reineke, W., 1997, Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J. Bacteriol., 179:4530–4537.PubMedGoogle Scholar
  117. 117.
    Mars, A.E., Kingma, J., Kaschabek, S.R., Reineke, W., and Janssen, D.B., 1999, Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J. Bacteriol., 181:1309–1318.PubMedGoogle Scholar
  118. 118.
    Martin, V.J., and Mohn, W.W., 2000, Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J. Bacteriol., 182:3784–3793.PubMedGoogle Scholar
  119. 119.
    Martinez, B., Tomkins, J., Wackett, L.P., Wing, R., and Sadowsky, M.J., 2001, Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J. Bacteriol., 183:5684–5697.PubMedGoogle Scholar
  120. 120.
    Martins dos Santos, V.A.P., Heim, S., Moore, E.R.B., Strätz, M., and Timmis, K.N., 2004, Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ. Microbiol., 6:1264–1286.Google Scholar
  121. 121.
    Meier, P., and Wackernagel, W., 2003, Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol. Microbiol., 48:1107–1118.PubMedGoogle Scholar
  122. 122.
    Merlin, C., Springael, D., and Toussaint, A., 1999, Tn4371: a modular structure encoding a phage-like integrase, a Pseudomonas-like catabolic pathway, and RP4/Ti-like transfer functions. Plasmid, 41:40–54.PubMedGoogle Scholar
  123. 123.
    Müller, T.A., Werlen, C., Spain, J., and van der Meer, J.R., 2003, Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia. Environ. Microbiol., 5:163–173.PubMedGoogle Scholar
  124. 124.
    Neilson, A.H., 1990, The biodegradation of halogenated organic compounds. J. Appl. Bacteriol., 69:445–470.PubMedGoogle Scholar
  125. 125.
    Newby, D.T., Gentry, T.J., and Pepper, I.L., 2000, Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Appl. Environ. Microbiol., 66:3399–3407.PubMedGoogle Scholar
  126. 126.
    Nishi, A., Tominaga, K., and Furukawa, K., 2000, A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J. Bacteriol., 182:1949–1955.PubMedGoogle Scholar
  127. 127.
    Nordlund, I., Powlowski, J., and Shingler, V., 1990, Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol., 172:6826–6833.PubMedGoogle Scholar
  128. 128.
    Nunes, L.R., Rosato, Y.B., Muto, N.H., Yanai, G.M., da Silva, V.S., Leite, D.B., Gonçalves, E.R., de Souza, A.A., Coletta-Filho, H.D., Machado, M.A., Lopes, S.A., and de Oliviera, R.C., 2003, Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements. Genome Res., 13:570–578.PubMedGoogle Scholar
  129. 129.
    Ochman, H., Lawrence, J.G., and Groisman, E.A., 2000, Lateral gene transfer and the nature of bacterial innovation. Nature, 405:299–304.PubMedGoogle Scholar
  130. 130.
    O’Donnell, K.J., and Williams, P.A., 1991, Duplication of both xyl catabolic operons on TOL plasmid pWW15. J. Gen. Microbiol., 137:2831–2838.PubMedGoogle Scholar
  131. 131.
    Oelschlaeger, T.A., Dobrindt, U., Janke, B., Middendorf, B., Karch, H., and Hacker, J., 2003, Analysis of pathogenicity islands of STEC. Methods Mol. Med., 73:99–112.PubMedGoogle Scholar
  132. 132.
    Ogawa, N., and Miyashita, K., 1999, The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl. Environ. Microbiol., 65:724–731.PubMedGoogle Scholar
  133. 133.
    O’Leary, N.D., O’Connor, K.E., and Dobson, A.D., 2002, Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol. Rev., 26:403–417.PubMedGoogle Scholar
  134. 134.
    Osborne, D.J., Pickup, R.W., and Williams, P.A., 1988, The presence of two complete homologous meta pathway operons on TOL plasmid pWW53. J. Gen. Microbiol., 134:2965–2975.PubMedGoogle Scholar
  135. 135.
    Ouchiyama, N., Miyachi, S., and Omori, T., 1998, Cloning and nucleotide sequence of carbazole catabolic genes from Pseudomonas stutzeri strain OM1, isolated from activated sludge. J. Gen. Appl. Microbiol., 44:57–63.PubMedGoogle Scholar
  136. 136.
    Overhage, J., Kresse, A.U., Priefert, H., Sommer, H., Krammer, G., Rabenhorst, J., and Steinbuchel, A., 1999, Molecular characterization of the genes pcaG and pcaH, encoding protocatechuate 3,4-dioxygenase, which are essential for vanillin catabolism in Pseudomonas sp. strain HR199. Appl. Environ. Microbiol., 65:951–960.PubMedGoogle Scholar
  137. 137.
    Paget, E., and Simonet, P., 1994, On the track of natural transformation in soil. FEMS Microbiol. Ecol., 15:109–118.Google Scholar
  138. 138.
    Park, H.S., and Kim, H.S., 2000, Identification and characterization of the nitrobenzene catabolic plasmids pNB1 and pNB2 in Pseudomonas putida HS12. J. Bacteriol., 182:573–580.PubMedGoogle Scholar
  139. 139.
    Pérez-Pantoja, D., Guzman, L., Manzano, M., Pieper, D.H., and Gonzalez, B., 2000, Role of tfdCI DI EI FI and tfdDI ICI I EI I FI I gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Appl. Environ. Microbiol., 66:1602–1608.PubMedGoogle Scholar
  140. 140.
    Pérez-Pantoja, D., Ledger, T., Pieper, D.H., and Gonzalez, B., 2003, Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134 (pJP4) in 3-chlorobenzoic acid. J. Bacteriol., 185:1534–1542.PubMedGoogle Scholar
  141. 141.
    Perna, N.T., Plunkett, G., III, Burland, V., Mau, B., Glasner, J.D., Rose, D.J., Mayhew, G.F., Evans, P.S., Gregor, J., Kirkpatrick, H.A., Posfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E.J., Davis, N.W., Lim, A., Dimalanta, E.T., Potamousis, K.D., Apodaca, J., Anantharaman, T.S., Lin, J., Yen, G., Schwartz, D.C., Welch, R.A., and Blattner, F.R., 2001, Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature, 409:529–533.PubMedGoogle Scholar
  142. 142.
    Peters, M., Heinaru, E., Talpsep, E., Wand, H., Stottmeister, U., Heinaru, A., and Nurk, A., 1997, Acquisition of a deliberately introduced phenol degradation operon, pheBA, by different indigenous Pseudomonas species. Appl. Environ. Microbiol., 63:4899–4906.PubMedGoogle Scholar
  143. 143.
    Pettigrew, C.A., Haigler, B.E., and Spain, J.C., 1991, Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Appl. Environ. Microbiol., 57:157–162.PubMedGoogle Scholar
  144. 144.
    Pickup, R.W., and Williams, P.A., 1982, Spontaneous deletions in the TOL plasmid pWW20 which give rise to the B3 regulatory mutants of Pseudomonas putida MT20. J. Gen. Microbiol., 128:1385–1390.PubMedGoogle Scholar
  145. 145.
    Platt, A., Shingler, V., Taylor, S.C., and Williams, P.A., 1995, The 4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase (acylating) encoded by the nahM and nahO genes of the naphthalene catabolic plasmid pWW60-22 provide further evidence of conservation of meta-cleavage pathway gene sequences. Microbiology, 141:2223–2233.PubMedGoogle Scholar
  146. 146.
    Plumeier, I., Pérez-Pantoja, D., Heim, S., Gonzalez, B., and Pieper, D.H., 2002, Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134 (pJP4) on 3-chlorobenzoate. J. Bacteriol., 184:4054–4064.PubMedGoogle Scholar
  147. 147.
    Poelarends, G.J., Kulakov, L.A., Larkin, M.J., van Hylckama Vlieg, J.E., and Janssen, D.B., 2000, Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene-and 1,2-dibromoethane-degradative pathways. J. Bacteriol., 182:2191–2199.PubMedGoogle Scholar
  148. 148.
    Poh, R.P.-C., Smith, A.R.W., and Bruce, I.J., 2002, Complete characterization of Tn5530 from Burkholderia cepacia strain 2a(pIJB1) and studies of 2,4-dichlorophenoxyacetate uptake by the organism. Plasmid, 48:1–12.PubMedGoogle Scholar
  149. 149.
    Potrawfke, T., Armengaud, J., and Wittich, R.M., 2001, Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. J. Bacteriol., 183:997–1011.PubMedGoogle Scholar
  150. 150.
    Potrawfke, T., Timmis, K.N., and Wittich, R.M., 1998, Degradation of 1,2,3,4-tetrachlorobenzene by Pseudomonas chlororaphis RW71. Appl. Environ. Microbiol., 64: 3798–3806.PubMedGoogle Scholar
  151. 151.
    Powlowski, J., and Shingler, V., 1994, Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation, 5:219–236.PubMedGoogle Scholar
  152. 152.
    Pries, F., Vandenwijngaard, A.J., Bos, R., Pentenga, M., and Janssen, D.B., 1994, The role of spontaneous cap domain mutations in haloalkane dehalogenase specificity and evolution. J. Biol. Chem., 269:17490–17494.PubMedGoogle Scholar
  153. 153.
    Rakin, A., Noelting, C., Schropp, P., and Heesemann, J., 2001, Integrative module of the high-pathogenicity island of Yersinia. Mol. Microbiol., 39:407–415.PubMedGoogle Scholar
  154. 154.
    Ravatn, R., Studer, S., Springael, D., Zehnder, A., J.B., and van der Meer J.R., 1998, Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J. Bacteriol., 180:4360–4369.PubMedGoogle Scholar
  155. 155.
    Ravatn, R., Studer, S., Zehnder, A.J.B., and van der Meer, J.R., 1998, Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13. J. Bacteriol., 180:5505–5514.PubMedGoogle Scholar
  156. 156.
    Ravatn, R., Zehnder, A.J.B., and van der Meer, J.R., 1998, Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms. Appl. Environ. Microbiol., 64:2126–2132.PubMedGoogle Scholar
  157. 157.
    Reams, A.B., and Neidle, E.L., 2004, Gene amplification involves site-specific short homology-independent illegitimate recombination in Acinetobacter sp. strain ADP1. J. Mol. Biol., 338:643–656.PubMedGoogle Scholar
  158. 158.
    Reddy, B.R., Shaw, L.E., Sayers, J.R., and Williams, P.A., 1994, Two identical copies of IS1246, a 1275 base pair sequence related to other bacterial insertion sequences, enclose the xyl genes on TOL plasmid pWW0. Microbiology, 140:2305–2307.PubMedGoogle Scholar
  159. 159.
    Reich, T., Schmidt, S., and Fortnagel, P., 1999, Metabolism of phenylbenzoate by Pseudomonas sp. strain TR3. FEMS Microbiol. Lett., 176:477–482.PubMedGoogle Scholar
  160. 160.
    Reineke, W., 1984, Microbial degradation of halogenated aromatic compounds, pp. 319–360. In D.T. Gibson (ed.), Microbial degradation of organic compounds. Marcel Dekker Inc., New York.Google Scholar
  161. 161.
    Reineke, W., Jeenes, D.J., Williams, P.A., and Knackmuss, H.-J., 1982, TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway. J. Bacteriol., 150:195–201.PubMedGoogle Scholar
  162. 162.
    Reineke, W., and Knackmuss, H.-J., 1979, Construction of haloaromatics utilizing bacteria. Nature (Lond.), 277:385–386.Google Scholar
  163. 163.
    Reineke, W., and Knackmuss, H.-J., 1984, Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol., 47:395–402.PubMedGoogle Scholar
  164. 164.
    Rippen, G., 1995, Handbuch der Umweltchemikalien: Stoffdaten — Prüfverfahren — Vorschriften. Ecomed, Landsber/Lech.Google Scholar
  165. 165.
    Romine, M.F., Stillwell, L.C., Wong, K.K., Thurston, S.J., Sisk, E.C., Sensen, C., Gaasterland, T., Fredrickson, J.K., and Saffer, J.D., 1999, Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol., 181:1585–1602.PubMedGoogle Scholar
  166. 166.
    Rousseaux, S., Hartmann, A., and Soulas, G., 2001, Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol. Ecol., 36:211–222.PubMedGoogle Scholar
  167. 167.
    Rowe-Magnus, D.A., Guerout, A.M., Ploncard, P., Dychinco, B., Davies, J., and Mazel, D., 2001, The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc. Natl. Acad. Sci. USA, 98:652–657.PubMedGoogle Scholar
  168. 168.
    Saint, C.P., McClure, C., and Venables, W.A., 1990, Physical map of the aromatic amine and m-toluate catabolic plasmid pTDN1 in Pseudomonas putida: location of a unique meta-cleavage pathway. J. Gen. Microbiol., 136:615–625.PubMedGoogle Scholar
  169. 169.
    Sajjaphan, K., Shapir, N., Wackett, L.P., Palmer, M., Blackmon, B., Tomkins, J., and Sadowsky, M.J., 2004, Arthrobacter aerescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl. Environ. Microbiol., 70:4402–4407.PubMedGoogle Scholar
  170. 170.
    Sanseverino, J., Applegate, B.M., King, J.M., and Sayler, G.S., 1993, Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl. Environ. Microbiol., 59:1931–1917.PubMedGoogle Scholar
  171. 171.
    Saumaa, S., Tover, A., Kasak, L., and Kivisaar, M., 2002, Different spectra of stationary-phase mutations in early-arising versus late-arising mutants of Pseudomonas putida: involvement of the DNA repair enzyme MutY and the stationary-phase sigma factor RpoS. J. Bacteriol., 184:6957–6965.PubMedGoogle Scholar
  172. 172.
    Savard, P., Péloquin, L., and Sylvestre, M., 1986, Cloning of Pseudomonas sp. strain CBS3 genes specifying dehalogenation of 4-chlorobenzoate. J. Bacteriol., 168:81–85.PubMedGoogle Scholar
  173. 173.
    Sayler, G.S., Hooper, S.W., Layton, A.C., and King, J.M.H., 1990, Catabolic plasmids of environmental and ecological significance. Microbiol. Ecol., 19:1–20.Google Scholar
  174. 174.
    Schlömann, M., 1994, Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation, 5:301–321.PubMedGoogle Scholar
  175. 175.
    Schlüter, A., Heuer, H., Szczepanowski, R., Forney, L.J., Thomas, C.M., Pühler, A., and Top, E.M., 2003, The 64 508 bp IncP-1b antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology, 149:3139–3153.PubMedGoogle Scholar
  176. 176.
    Schubert, S., Dufke, S., Sorsa, J., and Heesemann, J., 2004, Anovel integrative and conjugative element (ICE) of Escherichia coli: the putative progenitor of the Yersinia high-pathogenicity island. Mol. Microbiol., 51:837–848.PubMedGoogle Scholar
  177. 177.
    Sentchilo, V.S., Perebituk, A.N., Zehnder, A.J., and van der Meer, J.R., 2000, Molecular diversity of plasmids bearing genes that encode toluene and xylene metabolism in Pseudomonas strains isolated from different contaminated sites in Belarus. Appl. Environ. Microbiol., 66:2842–2852.PubMedGoogle Scholar
  178. 178.
    Sentchilo, V.S., Ravatn, R., Werlen, C., Zehnder, A.J.B., and van der Meer, J.R., 2003, Unusual expression of the integrase gene in the clc genomic island of Pseudomonas sp. strain B13. J. Bacteriol., 185:4530–4538.PubMedGoogle Scholar
  179. 179.
    Sentchilo, V.S., Zehnder, A.J.B., and van der Meer, J.R., 2003, Characterization of two alternative promoters and a transcription regulator for integrase expression in the clc catabolic genomic island of Pseudomonas sp. strain B13. Mol. Microbiol., 49:93–104.PubMedGoogle Scholar
  180. 180.
    Shaw, L.E., and Williams, P.A., 1988, Physical and functional mapping of two cointegrate plasmids derived from RP4 and TOL plasmid pDK1. J. Gen. Microbiol., 134:2463–2474.PubMedGoogle Scholar
  181. 181.
    Sinclair, M.I., and Holloway, B.W., 1991, Chromosomal insertion of TOL transposons in Pseudomonas aeruginosa PAO. J. Gen. Microbiol., 137:1111–1120.PubMedGoogle Scholar
  182. 182.
    Sinclair, M.I., Maxwell, P.C., Lyon, B.R., and Holloway, B.W., 1986, Chromosomal location of TOL plasmid DNA in Pseudomonas putida. J. Bacteriol., 168:1302–1308.PubMedGoogle Scholar
  183. 183.
    Smith, C.A., and Thomas, C.M., 1987, Comparison of the organization of the genomes of phenotypically diverse plasmids of incompatibility group P: members of the IncP β subgroup are closely related. Mol. Gen. Genet., 206:419–427.PubMedGoogle Scholar
  184. 184.
    Smith, G.R., 1988, Homologous recombination in procaryotes. Microbiol. Rev., 52:1–28.PubMedGoogle Scholar
  185. 185.
    Smith, M.A., Weaver, V.B., Young, D.M., and Ornston, L.N., 2003, Genes for chlorogenate and hydroxycinnamate catabolism (hca) are linked to functionally related genes in the dca-pca-qui-pob-hca chromosomal cluster of Acinetobacter sp. strain ADP1. Appl. Environ. Microbiol., 69:524–532.PubMedGoogle Scholar
  186. 186.
    Smits, T.H., Balada, S.B., Witholt, B., and van Beilen, J.B., 2002, Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J. Bacteriol., 184:1733–1742.PubMedGoogle Scholar
  187. 187.
    Somerville, C.C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., and Youngs, H., 2004, Towards a systems approach to understanding plant cell walls. Science, 306:2206–2211.PubMedGoogle Scholar
  188. 188.
    Somerville, C.C., Nishino, S.F., and Spain, J.C., 1995, Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol., 177:3837–3842.PubMedGoogle Scholar
  189. 189.
    Sota, M., Kawasaki, H., and Tsuda, M., 2003, Structure of haloacetate-catabolic IncP-1 β plasmid pUO1 and genetic mobility of its residing haloacetate-catabolic transposon. J. Bacteriol., 185:6741–6745.PubMedGoogle Scholar
  190. 190.
    Spain, J.C., 1995, Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol., 49:523–555.PubMedGoogle Scholar
  191. 191.
    Spain, J.C., and Nishino, S.F., 1987, Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol., 53:1010–1019.PubMedGoogle Scholar
  192. 192.
    Spooner, R.A., Lindsay, K., and Franklin, F.C., 1986, Genetic, functional and sequence analysis of the xylR and xylS regulatory genes of the TOL plasmid pWW0. J. Gen. Microbiol., 132:1347–1358.PubMedGoogle Scholar
  193. 193.
    Springael, D., Kreps, S., and Mergeay, M., 1993, Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J. Bacteriol., 175:1674–1681.PubMedGoogle Scholar
  194. 194.
    Springael, D., Peys, K., Ryngaert, A., Van Roy, S., Hooyberghs, L., Ravatn, R., Heyndrickx, M., van der Meer, J.R., Vandecasteele, C., Mergeay, M., and Diels, L., 2002, Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria. Environ. Microbiol., 4:70–80.PubMedGoogle Scholar
  195. 195.
    Springael, D., Ryngaert, A., Merlin, C., Toussaint, A., and Mergeay, M., 2001, Occurrence of Tn4371-related mobile elements and sequences in (chloro)biphenyl-degrading bacteria. Appl. Environ. Microbiol., 67:42–50.PubMedGoogle Scholar
  196. 196.
    Springael, D., and Top, E.M., 2004, Horizontal gene transfer and microbial adaptation to xenobiotics: newtypes of mobile genetic elements and lessons from ecological studies. Trends Microbiol., 12:53–56.PubMedGoogle Scholar
  197. 197.
    Stapleton, R.D., Bright, N.G., and Sayler, G.S., 2000, Catabolic and genetic diversity of degradative bacteria from fuel-hydrocarbon contaminated aquifers. Microbiol. Ecol., 39:211–221.Google Scholar
  198. 198.
    Stapleton, R.D., and Sayler, G.S., 1998, Assessment of the microbiological potential for the natural attenuation of petroleum hydrocarbons in a shallow aquifer system. Microbiol. Ecol., 36:349–361.Google Scholar
  199. 199.
    Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S., and Olson, M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.PubMedGoogle Scholar
  200. 200.
    Summers, D.K., 1994, The origins and consequences of genetic instability in prokaryotes. Dev. Biol. Stand., 83:7–11.PubMedGoogle Scholar
  201. 201.
    Taira, K., Hirose, J., Hayashida, S., and Furukawa, K., 1992, Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J. Biol. Chem., 267:4844–4853.PubMedGoogle Scholar
  202. 202.
    Tan, H.-M., 1999, Bacterial catabolic transposons. Appl. Microbiol. Biotechnol., 51:1–12.PubMedGoogle Scholar
  203. 203.
    Tan, H.-M., and Mason, J.R., 1990, Cloning and expression of the plasmid-encoded benzene dioxygenase genes from Pseudomonas putida ML2. FEMS Microbiol. Lett., 72:259–264.Google Scholar
  204. 204.
    Thomas, C.M. (ed.), 2000, The Horizontal Gene Pool. Harwood academic publishers, Singapore.Google Scholar
  205. 205.
    Thorsted, P.B., Macartney, D.P., Akhtar, P., Haines, A.S., Ali, N., Davidson, P., Stafford, T., Pocklington, M.J., Pansegrau, W., Wilkins, B.M., Lanka, E., and Thomas, C.M., 1998, Complete sequence of the IncPbeta plasmid R751: implications for evolution and organisation of the IncP backbone. J. Mol. Biol., 282:969–990.PubMedGoogle Scholar
  206. 206.
    Top, E., Vanrolleghem, P., Mergeay, M., and Verstraete, W., 1992, Determination of the mechanism of retrotransfer by mechanistic mathematical modeling. J. Bacteriol., 174:5953–5960.PubMedGoogle Scholar
  207. 207.
    Top, E.M., Holben, W.E., and Forney, L.J., 1995, Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl. Environ. Microbiol., 61:1691–1698.PubMedGoogle Scholar
  208. 208.
    Top, E.M., and Springael, D., 2003, The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr. Opin. Biotechnol., 14:262–269.PubMedGoogle Scholar
  209. 209.
    Topp, E., Zhu, H., Nour, S.M., Houot, S., Lewis, M., and Cuppels, D., 2000, Characterization of an atrazine-degrading Pseudoaminobacter sp. isolated from Canadian and French agricultural soils. Appl. Environ. Microbiol., 66:2773–2782.PubMedGoogle Scholar
  210. 210.
    Toussaint, A., Merlin, C., Monchy, S., Benotmane, M.A., Leplae, R., Mergeay, M., and Springael, D., 2003, The biphenyl-and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl. Environ. Microbiol., 69:4837–4845.PubMedGoogle Scholar
  211. 211.
    Trefault, N., de la Iglesia, R., Molina, A.M., Manzano, M., Ledger, T., Pérez-Pantoja, D., Sánchez, M.A., Stuardo, M., and González, B., 2004, Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ. Microbiol. 6:655–668PubMedGoogle Scholar
  212. 212.
    Tsoi, T.V., Plotnikova, E.G., Cole, J.R., Guerin, W.F., Bagdasarian, M., and Tiedje, J.M., 1999, Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Appl. Environ. Microbiol., 65:2151–2162.PubMedGoogle Scholar
  213. 213.
    Tsuda, M., and Genka, H., 2001, Identification and characterization of Tn4656, a novel class II transposon carrying a set of toluene-degrading genes from TOL plasmid pWW53. J. Bacteriol., 183:6215–6224.PubMedGoogle Scholar
  214. 214.
    Tsuda, M., and Iino, T., 1987, Genetic analysis of a transposon carrying toluene degrading genes on a TOL plasmid pWW0. Mol. Gen. Genet., 210:270–276.PubMedGoogle Scholar
  215. 215.
    Tsuda, M., and Iino, T., 1988, Identification and characterization of Tn4653, a transposon covering the toluene transposon Tn4651 on TOL plasmid pWW0. Mol. Gen. Genet., 213:72–77.PubMedGoogle Scholar
  216. 216.
    Tsuda, M., Minegishi, K., and Iino, T., 1989, Toluene transposons Tn4651 and Tn4653 are class II transposons. J. Bacteriol., 171:1386–1393.PubMedGoogle Scholar
  217. 217.
    Urata, M., Miyakoshi, M., Kai, S., Maeda, K., Habe, H., Omori, T., Yamane, H., and Nojiri, H., 2004, Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2-dioxygenase, on the carbazole-degradative plasmidpCAR1 of Pseudomonas resinovorans strain CA10. J. Bacteriol., 186:6815–6823.PubMedGoogle Scholar
  218. 218.
    Vallaeys, T., Albino, L., Soulas, G., Wright, A., and Weightman, A.J., 1998, Isolation and characterization of a stable 2,4-dichlorophenoxyacetic acid degrading bacterium, Variovorax paradoxus, using chemostat culture. Biotechnol. Lett., 20:1073–1076.Google Scholar
  219. 219.
    Vallaeys, T., Fulthorpe, R.R., Wright, A.M., and Soulas, G., 1996, The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis. FEMS Microbiol. Ecol., 20:163–172.Google Scholar
  220. 220.
    van Beilen, J.B., Eggink, G., Enequist, H., Bos, R., and Witholt, B., 1992, DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans. Mol. Microbiol., 6:3121–3136.PubMedGoogle Scholar
  221. 221.
    van der Meer, J.R., 1997, Evolution of novel metabolic pathways for the degradation of aromatic compounds. Antonie van Leeuwenhoek Int. J. Microbiol., 71:159–178.Google Scholar
  222. 222.
    van der Meer, J.R., 2002, Evolution of metabolic pathways for degradation of environmental pollutants., pp. 1194–1207. In G. Bitton (ed.), Encyclopedia of Environmental Microbiology. John Wiley & Sons, New York.Google Scholar
  223. 223.
    van der Meer, J.R., de Vos, W.M., Harayama, S., and Zehnder, A.J.B., 1992, Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev., 56:677–694.PubMedGoogle Scholar
  224. 224.
    van der Meer, J.R., Eggen, R.I.L., Zehnder, A.J.B., and de Vos, W.M. 1991, Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J. Bacteriol., 173:2425–2434.PubMedGoogle Scholar
  225. 225.
    van der Meer, J.R., Roelofsen, W., Schraa, G., and Zehnder, A.J.B., 1987, Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 in nonsterile soil columns. FEMS Microbiol. Ecol., 45:333–341.Google Scholar
  226. 226.
    van der Meer, J.R., and Sentchilo, V.S., 2003, Genomic islands and evolution of catabolic pathways in bacteria. Curr. Opin. Biotechnol., 14:248–254.PubMedGoogle Scholar
  227. 227.
    van der Meer, J.R., van Neerven, A.R.W., de Vries, E.J., de Vos, W.M., and Zehnder, A.J.B., 1991, Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J. Bacteriol., 173:6–15.PubMedGoogle Scholar
  228. 228.
    van der Meer, J.R., Werlen, C., Nishino, S., and Spain, J.C., 1998, Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in a contaminated groundwater. Appl. Environ. Microbiol., 64:4185–4193.PubMedGoogle Scholar
  229. 229.
    van der Meer, J.R., Zehnder, A.J.B., and de Vos, W.M., 1991, Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J. Bacteriol., 173:7077–7083.PubMedGoogle Scholar
  230. 230.
    Vedler, E., Vahter, M., and Heinaru, A., 2004, The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J. Bacteriol., 186:7161–7174.PubMedGoogle Scholar
  231. 231.
    Viggor, S., Heinaru, E., Loponen, J., Merimaa, M., Tenno, T., and Heinaru, A., 2002, Biodegradation of dimethylphenols by bacteria with different ring-cleavage pathways of phenolic compounds. Environ. Sci. Pollut. Res. Int., 1:19–26.Google Scholar
  232. 232.
    Weisshaar, M.-P., Franklin, F.C.H., and Reineke, W., 1987, Molecular cloning and expression of the 3-chlorobenzoate-degrading genes from Pseudomonas sp. strain B13. J. Bacteriol., 169:394–402.PubMedGoogle Scholar
  233. 233.
    Werlen, C., Kohler, H.-P.E., and van der Meer, J.R., 1996, The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J. Biol. Chem., 271:4009–4016.PubMedGoogle Scholar
  234. 234.
    Whyte, L.G., Bourbonnière, L., and Greer, C.W., 1997, Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl. Environ. Microbiol., 63:3719–3723.PubMedGoogle Scholar
  235. 235.
    Williams, P.A., Assinder, S.J., De Marco, P., O’Donnell, K.J., Poh, C.L., Shaw, L.E., and Winson, M.K., 1992, Catabolic gene duplications in TOL plasmids, pp. 341–353. In E. Galli, S. Silver, and B. Witholt (eds.), Pseudomonas: Molecular Biology and Biotechnology. American Society for Microbiology, Washington, DC.Google Scholar
  236. 236.
    Williams, P.A., and Murray, K., 1974, Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J. Bacteriol., 120:416–423.PubMedGoogle Scholar
  237. 237.
    Williams, P.A., and Sayers, J.R., 1994, The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation, 5:195–218.PubMedGoogle Scholar
  238. 238.
    Williams, P.A., Shaw, L.M., Pitt, C.W., and Vrecl, M., 1997, XylUW, two genes at the start of the upper pathway operon of TOL plasmid pWW0, appear to play no essential part in determining its catabolic phenotype. Microbiology, 143:101–107.PubMedGoogle Scholar
  239. 239.
    Williams, P.A., Taylor, S.D., and Gibb, L.E., 1988, Loss of the toluene-xylene catabolic genes of TOL plasmid pWW0 during growth of Pseudomonas putida on benzoate is due to a selective growth advantage of ‘cured’ segregants. J. Gen. Microbiol., 134:2039–2048.PubMedGoogle Scholar
  240. 240.
    Williams, P.A., and Worsey, M.J., 1976, Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. J. Bacteriol., 125:818–828.PubMedGoogle Scholar
  241. 241.
    Wilson, M.S., Herrick, J.B., Jeon, C.O., Hinman, D.E., and Madsen, E.L., 2003, Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl. Environ. Microbiol., 69:2172–2181.PubMedGoogle Scholar
  242. 242.
    Wright, B.E., 2000, A biochemical mechanism for nonrandom mutations and evolution. J. Bacteriol., 182:2993–3001.PubMedGoogle Scholar
  243. 243.
    Wyndham, R.C., Cashore, A.E., Nakatsu, C.H., and Peel, M.C., 1994, Catabolic transposons. Biodegradation, 5:323–342.PubMedGoogle Scholar
  244. 244.
    Yen, K.-M., Karl, M.R., Blatt, L.M., Simon, M.J., Winter, R.B., Fausset, P.R., Lu, H.S., Harcourt, A.A., and Chen, K.K., 1991, Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol., 173:5315–5327.PubMedGoogle Scholar
  245. 245.
    Yen, K.-M., and Serdar, C.M., 1988, Genetics of naphthalene catabolism in Pseudomonads. CRC Crit. Rev. Microbiol., 15:247–268.Google Scholar
  246. 246.
    Zeyer, J., Kocher, H.P., and Timmis, K.N., 1986, Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Appl. Environ. Microbiol., 52:334–339.PubMedGoogle Scholar
  247. 247.
    Zhou, J.Z., and Tiedje, J.M., 1995, Gene transfer from a bacterium injected into an aquifer to indigenous bacteria. Mol. Ecol., 4:613–618.PubMedGoogle Scholar
  248. 248.
    Zylstra, G.J., and Gibson, D.T., 1989, Toluene degradation by Pseudomonas putida F1. J. Biol. Chem., 264:14940–14946.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jan Roelof van der Meer
    • 1
  1. 1.Department of Fundamental Microbiology Bâtiment de BiologieUniversity of LausanneLausanneSwitzerland

Personalised recommendations