Composition, Applications, Fractionation, Technological and Nutritional Significance of Milk Fat Globule Membrane Material

  • R. E. Ward
  • J. B. German
  • M. Corredig


Experimental Autoimmune Encephalomyelitis Human Milk Whey Protein Bovine Milk Casein Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M., Cawston, T.E. 1975. Reviews of the Progress of Dairy Science. The milk-fat globule membrane. J. Dairy Res. 42, 459–483.Google Scholar
  2. Anderson, M., Cheeseman, G.C., Knight, D.J., Shipe, W.F. 1972. The Effect of aging cooled milk on the composition of the fat globule membrane. J. Dairy Res. 39, 95–105.Google Scholar
  3. Antila, M., Ali-Yrkko, S., Antila, V., Antila, P., Ronnemaa, T., Jarvelainen, H., Viikari, J. 1980. Is fat globule membrane essential for cholesterol-lowering effect of milk? Lancet. 1, 602.CrossRefGoogle Scholar
  4. Astaire, J.C., Ward, R., German, J.B., Jiménez-Flores, R. 2003. Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. J. Dairy Sci. 86, 2297–2307.Google Scholar
  5. Berdel, W.E. 1991. Membrane-interactive lipids as experimental anticancer drugs. Br. J. Cancer. 64, 208–11.Google Scholar
  6. Bernback, S., Blackberg, L., Hernell, O. 1989. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase. J. Clin. Invest. 85, 1221–1226.Google Scholar
  7. Berra, B., Colombo, I., Sottocornola, E., Giacosa, A. 2002. Dietary sphingolipids in colorectal cancer prevention. Eur. J. Cancer Prev. 11, 193–197.CrossRefGoogle Scholar
  8. Blank, M.L., Cress, E.A., Smith, Z.L., Snyder, F. 1991. Dietary supplementation with etherlinked lipids and tissue lipid composition. Lipids. 26, 166–169.CrossRefGoogle Scholar
  9. Boyd, L.C., Drye, N.C., Hansen, A.P. 1999. Isolation and characterization of whey phospholipids. J. Dairy Sci. 82, 2550–2557.CrossRefGoogle Scholar
  10. Charlwood, J., Hanrahan, S., Tyldesley, R., Langridge, J., Dwek, M., Camilleri, P. 2002. Use of proteomic methodology for the characterization of human milk fat globular membrane proteins. Anal. Biochem. 301, 314–324.CrossRefGoogle Scholar
  11. Chazelas, S., Razafindralambo, H., de Chassart, Q.D., Paquot, M. 1995. Surface properties of the milk fat globule membrane: competition between casein and membrane material. In: Food Macromolecules and Colloids (E. Dickinson, D. Lorient, eds.), pp. 95–98, The Royal Society of Chemistry, Cambridge.Google Scholar
  12. Chen, H., Born, E., Mathur, S.N., Johlin, F.C., Jr., Field, F.J. 1992. Sphingomyelin content of intestinal cell membranes regulates cholesterol absorption. Evidence for pancreatic and intestinal cell sphingomyelinase activity. Biochem. J. 286, 771–777.Google Scholar
  13. Corredig, M., Dalgleish, D.G. 1996. Effect of different heat treatments on the strong binding interactions between whey proteins and milk fat globules in whole milk. J. Dairy Res. 63, 441–449.Google Scholar
  14. Corredig, M., Dalgleish, D.G. 1997. Studies on the susceptibility of membrane-derived proteins to proteolysis as related to changes in their emulsifying properties. Food Res. Int. 30, 689–697.CrossRefGoogle Scholar
  15. Corredig, M., Dalgleish, D.G. 1998a. Buttermilk properties in emulsions with soybean oil as a affected by fat globule membrane-derived proteins. J. Food Sci. 63, 476–480.CrossRefGoogle Scholar
  16. Corredig, M., Dalgleish, D.G. 1998b. Effect of heating of cream on the properties of milk fat globule membrane isolates. J. Agric. Food Chem. 46, 2533–2540.CrossRefGoogle Scholar
  17. Corredig, M., Dalgleish, D.G. 1998c. Characterization of the interface of an oil-in-water emulsion stabilized by milk fat globule membrane material. J. Dairy Res. 65, 465–477.CrossRefGoogle Scholar
  18. Corredig, M., Roesch, R.R., Dalgleish, D.G. 2003. Production of a novel ingredient from buttermilk. J. Dairy Sci. 86, 2744–2750.Google Scholar
  19. Dalgleish, D.G., Banks, J.M. 1991. The formation of complexes between serum proteins and fat globules during heating of whole milk. Milchwissenschaft. 46, 75–78.Google Scholar
  20. Danthine, S., Blecker, C., Paquot, M., Innocente, N., Deroanne, C. 2000. Évolution des connaissances sur la membrane du globule gras du lait: synthése bibliographique. Lait. 80, 209–222.CrossRefGoogle Scholar
  21. Das, A.K., Holmes, R.D., Wilson, G.N., Hajra, A.K. 1992. Dietary ether lipid incorporation into tissue plasmalogens of humans and rodents. Lipids. 27, 401–405.CrossRefGoogle Scholar
  22. Dewettinck, K., Boone, M. 2002. Method for obtaining products enriched in phospho-and sphingolipids. International patent WO0234062Google Scholar
  23. Dial, E.J., Lichtenberger, L.M. 1984. A role for milk phospholipids in protection against gastric acid. Studies in adult and suckling rats. Gastroenterology. 87, 379–385.Google Scholar
  24. Dillehay, D.L., Webb, S.K., Schmelz, E.M., Merrill, A.H. Jr. 1994. Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J. Nutr. 124, 615–620.Google Scholar
  25. Diomede, L., Colotta, F., Piovani, B., Re, F., Modest, E.J., Salmona, M. 1993. Induction of apoptosis in human leukemic cells by the ether lipid 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine. A possible basis for its selective action. Int. J. Cancer. 53, 124–130.CrossRefGoogle Scholar
  26. Duan, R.D. 1998. Sphingomyelin hydrolysis in the gut and clinical implications in colorectal tumorigenesis and other gastrointestinal diseases. Scand. J. Gastroenterol. 33, 673–683.CrossRefGoogle Scholar
  27. Eckhardt, E.R., Wang, D.Q., Donovan, J.M., Carey, M.C. 2002. Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology. 122, 948–956.CrossRefGoogle Scholar
  28. Evers, J.M. 2004. The milk fat globule membrane — compositional and structural changes post secretion by the mammary secretory cell. Int. Dairy J. 14, 661–674.CrossRefGoogle Scholar
  29. Fortunato, D., Giuffrida, M.G., Cavaletto, M., Garoffo, L.P., Dellavalle, G., Napolitano, L., Giunta, C., Fabris, C., Bertino, E., Coscia, A., Conti, A. 2003. Structural proteome of human colostral fat globule membrane proteins. Proteomics. 3, 897–905.CrossRefGoogle Scholar
  30. Fryksdale, B.G., Jiménez-Flores, R. 2001. Modification of buttermilk functionality with a biosilicate adsorption process. IFT Annual Meeting Technical Abstracts. pp. 209.Google Scholar
  31. Goldman, A.S. 2002. Evolution of the mammary gland defense system and the ontogeny of the immune system. J. Mamm. Gland Biol. Neoplasia. 7, 277–289.CrossRefGoogle Scholar
  32. Green, D.E., Pauli, R. 1943. The antibacterial action of the Xanthine oxidoreductase system. Proc. Soc. Exp. Biol. Med. 54, 1053–1055.Google Scholar
  33. Hallgren, B., Larsson, S. 1962. The glyceryl ethers in man and cow. J. Lipid Res. 3, 39–43.Google Scholar
  34. Hallgren, B., Niklasson, A., Stallberg, G., Thorin, H. 1974. On the occurrence of 1-O-alkylglycerols and 1-O-(2-methoxyalkyl)glycerols in human colostrum, human milk, cow’s milk, sheep’s milk, human red bone marrow, red cells, blood plasma and a uterine carcinoma. Acta Chem. Scand. 28, 1029–34.Google Scholar
  35. Hancock, J.T., Salisbury, V., Ovejero-Boglione, M.C., Cherry, R., Hoare, C., Eisenthal, R., Harrison, R. 2002. Antimicrobial properties of milk: dependence on presence of Xanthine oxidoreductase and nitrite. Antimicrob. Agents Chemother. 46, 3308–3310.CrossRefGoogle Scholar
  36. Hannun, Y.A., Obeid, L.M. 2002. The ceramide-centric universe of lipid-mediated cell regulation: Stress encounters of the lipid kind. J. Biol Chem. 277, 25847–25850.CrossRefGoogle Scholar
  37. Hoskins, L.C. 1992. Mucin degradation in the human gastrointestinal tract and its significance to enteric microbial ecology. Eur. J. Gastroenterol. Hepatol. 5, 205–213.CrossRefGoogle Scholar
  38. Howard, A.N., Marks, J. 1977. Hypocholesterolaemic effect of milk. Lancet. 2, 255–256.CrossRefGoogle Scholar
  39. Hussi, E., Miettinen, T.A., Ollus, A., Kostiainen, E., Ehnholm, C., Haglund, B., Huttunen, J.K., Manninen, V. 1981. Lack of serum cholesterol-lowering effect of skimmed milk and butter milk under controlled conditions. Atherosclerosis. 39, 267–272.CrossRefGoogle Scholar
  40. Huston, G.E., Patton, S. 1990. Factors related to the formation of cytoplasmic crescents on milk fat globules. J. Dairy Sci. 73, 2061–2066.CrossRefGoogle Scholar
  41. Ikonen, E. 2001. Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13, 470–477.CrossRefGoogle Scholar
  42. Imaizumi, K., Tominaga, A., Sato, M. Sugano, M., 1992. Effects of dietary sphingolipids on levels of serum and liver lipids in rats. Nutr. Res. 12, 543–548.CrossRefGoogle Scholar
  43. Ito, O., Kamata, S., Hayashi, M., Ushiyama, K. 1993. Milk fat globule membrane substances inhibit mouse intestinal β-glucuronidase. J. Food Sci. 58, 753–755.CrossRefGoogle Scholar
  44. Jensen, R.G. 1989. In: The Lipids of Human Milk. CRC Press, Inc., Boca Raton, Florida.Google Scholar
  45. Jensen, R.G. 2002. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85, 295–350.CrossRefGoogle Scholar
  46. Kanno, C. 1989. Emulsifying properties of bovine milk fat globule membrane in milk fat emulsion: conditions for the reconstitution of milk fat globules. J. Food Sci. 54, 1534–1539.CrossRefGoogle Scholar
  47. Kanno, C. 1990. Secretory membranes of the lactating mammary gland. Protoplasma. 159, 184–208.CrossRefGoogle Scholar
  48. Kanno, C., Shimomura, Y., Takano, E. 1991. Physicochemical properties of milk fat emulsions stabilized with bovine milk fat globule membrane. J. Food Sci. 56, 1219–1223.CrossRefGoogle Scholar
  49. Keenan, T., Patton, S. 1995. The structure of milk: implications for sampling and storage A. The milk lipid globular membrane. In: Handbook of Milk Composition (R.G. Jensen, ed.), pp. 5–44, Academic Press, Inc., San Diego.Google Scholar
  50. Keenan, T.W., Mather, I.H. 2002. Milk fat globule membrane. In: Encyclopedia of Dairy Science (H. Roginski, J.W. Fuquay, P.F. Fox., eds.), pp. 1568–1576, Adademic Press, London.Google Scholar
  51. Kim, H.-H.Y., Jiménez-Flores, R. 1995. Heat-induced interactions between the proteins of milk fat globule membrane and skim milk. J. Dairy Sci. 78, 24–35.Google Scholar
  52. Kivinen, A., Tarpila, S., Salminen, S., Vapaatalo, H. 1992. Gastroprotection with milk phospholipids: a first human study. Milchwissenschaft. 47, 694–696.Google Scholar
  53. Kobayashi, T., Shimizugawa, T., Osakabe, T., Watanabe, S., Okuyama, H. 1997. A long-term feeding of sphingolipids affected the levels of plasma cholesterol and hepatic triacylglycerol but not tissue phospholipids and sphingolipids. Nutr. Res. 17, 111–114.CrossRefGoogle Scholar
  54. Lauer, K. 1997. Diet and multiple sclerosis. Neurology. 49, S55–61.Google Scholar
  55. Lee, S.J., Sherbon, J.W. 2002. Chemical changes in bovine milk fat globule membrane caused by heat treatment and homogenization of whole milk. J. Dairy Res. 69, 555–567.CrossRefGoogle Scholar
  56. Lipmann, F., Owen, C.R. 1943. The antibacterial effect of enzymatic xanthine oxidation. Science. 98, 246–248.CrossRefGoogle Scholar
  57. Malmsten, M., Bergenstahl, B., Nyberg, L., Odham, G. 1994. Shingomyelin from milk — characterization of liquid crystalline, liposome and emulsion properties. J. Amer. Oil Chemist Soc. 71, 1021–1026.CrossRefGoogle Scholar
  58. Mana, P., Goodyear, M., Bernard, C., Tomioka, R., Freire-Garabal, M., Linares, D. 2004. Tolerance induction by molecular mimicry: prevention and suppression of experimental autoimmune encephalomyelitis with the milk protein butyrophilin. Int Immunol. 16, 489–499.CrossRefGoogle Scholar
  59. Mann, G.V. 1977. Hypocholesterolaemic effect of milk. Lancet. 2, 556.CrossRefGoogle Scholar
  60. Mather, I.H. 2000. A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci. 83, 203–247.Google Scholar
  61. Mather, I.H., Kennan, T.W. 1998. Origin and secretion of milk lipids. J. Mamm. Gland Biol. Neoplasia. 3, 259–273.CrossRefGoogle Scholar
  62. McManaman, J.L., Palmer, C.A., Wright, R.M., Neville, M.C. 2002. Functional regulation of Xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J. Physiol. 545, 567–579.CrossRefGoogle Scholar
  63. McPherson, A.V., Dash, M.C., Kitchen, B.J. 1984. Isolation of bovine milk fat globule membrane material from cream without prior removal of caseins and whey proteins. J. Dairy Res. 51, 113–122.Google Scholar
  64. McPherson, A.V., Kitchen, B.J. 1983. Reviews of the Progress of Dairy Science: The bovine milk fat globule membrane — its formation, composition, structure and behaviour in milk and dairy products. J. Dairy Res. 50, 107–133.Google Scholar
  65. Merrill, A.H., Jr., Schmelz, E.M., Sullards, M.C., Dillehay, D.L. 2001. Sphingolipids: novel inhibitors of colon carcinogenesis. Bulletin 363, International Dairy Federation, Brussels, pp. 27–29.Google Scholar
  66. Merrill, A.H., Jr. 2002. De novo sphingolipid biosynthesis: A necessary, but dangerous, pathway. J. Biol. Chem. 277, 25843–25846.CrossRefGoogle Scholar
  67. Midtvedt, A.C., Carlstedt-Duke, B., Midtvedt, T. 1994. Establishment of a mucin-degrading intestinal microflora during the first two years of human life. J. Pediatr. Gastroenterol. Nutr. 3, 321–326.CrossRefGoogle Scholar
  68. Mistry, V.V., Mabouis, J.L. 1993. Application of membrane separation technology to cheese production. In: Cheese: Chemistry, Physics and Microbiology. Vol. 1, General Aspects (P.F. Fox, ed.), pp. 493–522, Chapman and Hall, London.Google Scholar
  69. Mistry, V.V., Metzger, L.E., Maubois, J.L. 1996. Use of ultrafiltered sweet buttermilk in the manufacture of reduced fat Cheddar cheese. J. Dairy Sci. 79, 1137–1145.Google Scholar
  70. Mondy, B.L., Keenan, T.W. 1993. Bytyrophilin and Xanthine oxidoreductase occur in constant molar proportions in milk lipid globule membrane but vary in amount with breed and stage of lactation. Protoplasma. 177, 32–36.CrossRefGoogle Scholar
  71. Morin, P., Jiménez-Flores, R., Pouliot, Y. 2004. Effect of temperature and pore size on the fractionation of fresh and reconstituted buttermilk by microfiltration. J. Dairy Sci. 87, 267–273.Google Scholar
  72. Morley, R. 1943. The influence of early diet on later development. J. Biosoc. Sci. 28, 481–487.Google Scholar
  73. Motouri, M., Matsuyama, H., Yamamura, J., Tanaka, M., Aoe, S., Iwanga, T., Kawakami, H. 2003. Milk sphingomyelin accelerates enzymatic and morphological maturation of the intestine in artificially reared rats. J. Pediat. Gastroenterol. Nutr. 36, 241–247.CrossRefGoogle Scholar
  74. O’Connell, J.E., Fox, P.F. 2000. Heat stability of buttermilk. J. Dairy Sci. 83, 1728–1732.Google Scholar
  75. Oshida, K., Shimizu, T., Takase, M., Tamura, Y., Shimizu, T., Yamashiro, Y. 2003. Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatr. Res. 53, 589–593.CrossRefGoogle Scholar
  76. Parodi, P.W. 1996. Milk fat components: possible chemopreventive agents for cancer and other diseases. Aust. J. Dairy Technol. 51, 24–31.Google Scholar
  77. Parodi, P.W. 1997. Cows’ milk fat components as potential anticarcinogenic agents. J. Nutr. 127, 1055–1060.Google Scholar
  78. Patton, S. 1994. Detection of large fragments of the human milk mucin MUC-1 in feces of breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 2, 225–230.CrossRefGoogle Scholar
  79. Patton, S. 1999. Some practical implications of the milk mucins. J Dairy Sci. 82, 1115–1117.Google Scholar
  80. Patton, S., Gendler, S.J., Spicer, A.P. 1995. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim. Biophys. Acta 1241, 407–423.Google Scholar
  81. Pfeuffer, M., Schrezenmeir, J. 2001. Sphingolipids: metabolism and implications for health, Bulletin International Dairy Federation, Brussels, 363, pp. 47–51.Google Scholar
  82. Pouliot, M., Pouliot, Y., Britten, M., Maubois, J.L., Fauquant, J. 1994. Study of the dissociation of β-casein from native phosphocaseinate. Lait. 74, 325–332.CrossRefGoogle Scholar
  83. Quaranta, S., Giuffrida, M.G., Cavaletto, M., Giunta, C., Godovac-Zimmermann, J., Canas, B., Fabris, C., Bertino, E., Mombro, M., Conti, A. 2001. Human proteome enhancement: high-recovery method and improved two-dimensional map of colostral fat globule membrane proteins. Electrophoresis. 22, 1810–1818.CrossRefGoogle Scholar
  84. Rueda, R., Maldonado, J., Narbona, E., Gil, A. 1998. Neonatal dietary gangliosides. Early Hum. Dev. 53, S135–S147.CrossRefGoogle Scholar
  85. Ruegg, M., Blanc, B. 1981. The fat globule size distribution in human milk. Biochim. Biophys. Acta 666, 7–14.Google Scholar
  86. Sachdeva, S., Buchheim, W. 1997. Recovery of phospholipids from buttermilk using membrane processing. Kieler Milchwirtschaftliche Forschungsberichte. 49, 47–68.Google Scholar
  87. Saito, H., Ishihara, K.J. 1997. Antioxidant activity and active sites of phospholipids as antioxidants. J. Am. Oil Chem. Soc. 74, 1531–1536.Google Scholar
  88. Sakamoto, W., Nishikaze, O., Sakakibara, E. 1974. Comparison of two inhibitors of betaglucuronidase from porcine sublingual and submaxillary glands. Biochim. Biophys. Acta 343, 409–415.Google Scholar
  89. Schmelz, E.M., Dillehay, D.L., Webb, S.K., Reiter, A., Adams, J., Merrill, A.H., Jr. 1996. Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res. 56, 4936–4941.Google Scholar
  90. Schmelz, E.M., Bushnev, A.S., Dillehay, D.L., Liotta, D.C., Merrill, A.H. Jr. 1997. Suppression of aberrant colonic crypt foci by synthetic sphingomyelins with saturated or unsaturated sphingoid base backbones. Nutr. Cancer. 28, 81–85.CrossRefGoogle Scholar
  91. Schmelz, E.M., Sullards, M.C., Dillehay, D.L., Merrill, A.H., Jr. 2000. Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1,2-dimethylhydrazine-treated CF1 mice. J. Nutr. 130, 522–527.Google Scholar
  92. Schroten, H, Hanisch, F.G., Plogmann, R., Hacker, J., Uhlenbruck, G., Nobis-Bosch, R. Wahn, V. 1992. Inhibition of adhesion of S-fimbriated Escherichia coli to buccal epithelial cells by human milk fat globule membrane components: a novel aspect of the protective function of mucins in the nonimmunoglobulin fraction. Infect. Immunol. 60, 2893–2899.Google Scholar
  93. Sharma, S.K., Dalgleish, D.G. 1993. Interactions between milk serum proteins and synthetic fat globule membrane during heating of homogenized whole milk. J. Agric. Food Chem. 41, 1407–1412.CrossRefGoogle Scholar
  94. Sharma, S.K., Dalgleish, D.G. 1994. Effect of heat treatments on the incorporation of milk serum proteins into the fat globule membrane of homogenized milk. J. Dairy Res. 61, 375–384.CrossRefGoogle Scholar
  95. Simon, G.L., Gorbach, S.L. 1984. Intestinal flora in health and disease. Gastroenterology. 86, 174–193.Google Scholar
  96. Singh, H., Tokley, R.P. 1990. Effects of preheat treatments and buttermilk addition on the seasonal variations in the heat stability of recombined evaporated milk and reconstituted concentrated milk. Aust. J. Dairy Technol. 4, 10–16.Google Scholar
  97. Slimane, T.A., Hoekstra, D. 2002. Sphingolipid trafficking and protein sorting in epithelial cells. FEBS Lett. 529, 54.CrossRefGoogle Scholar
  98. Smith, W.L, Merrill, A.H., Jr. 2002. Sphingolipid metabolism and signaling minireview series. J. Biol. Chem. 277, 25841–25842.CrossRefGoogle Scholar
  99. Spiegel, S., Milstien, S. 2002. Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem. 277, 25851–25854.CrossRefGoogle Scholar
  100. Sprong, R.C., Hulstein, M.F.E., van der Meer, R. 1999. Phospholipid-rich butter milk increases the resistance to Listeria monocytogenes in rats. Immunol. Lett. 69, 25–192 (abstr. 12.33).CrossRefGoogle Scholar
  101. Stefferl, A., Schubart, A., Storch, M., Amini, A., Mather, I., Lassmann, H., Linington, C. 2000. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. J Immunol. 165, 2859–2865.Google Scholar
  102. Takada, Y., Matsubara, N., Yagihira, S., Kawakami, H., Aoe, S. 2001a. Drugs for periodontal diseases containing sphingolipids and food and feed containing them. Japanese Patent JP 2001158736 A 2 20010612.Google Scholar
  103. Takada, Y., Matsubara, N., Yagihira, S., Kawakami, H., Aoe, S. 2001b. Drugs for osteoarticular diseases containing sphingolipids and food and feed containing them. Japanese Patent JP 2001158735 A 2 20010612.Google Scholar
  104. Taylor, M.J., Richardson, T. 1980. Antioxidant activity of skim milk: effect of heat and resultant sulfhydryl groups. J. Dairy Res. 63, 1783–1795.Google Scholar
  105. Turcot, S., Turgeon, S.L., St-Gelais, D. 2001. Effet de la concentration en phospholipids de babeurre dans le lait de fromagerie sur la production et al composition de fromages allégés de type Cheddar. Lait. 81, 429–442.CrossRefGoogle Scholar
  106. van Boekel, M.A.J.S., Walstra, P. 1989. Physical changes in the fat globules in unhomogenized and homogenized milk. Bulletin 269, International Dairy Federation, Brussels, pp. 13–16.Google Scholar
  107. van Boekel, M.A.J.S., Walstra, P. 1995. Effect of heat treatment on chemical and physical changes to milk fat globules. In: Heat-Induced Changes in Milk (P.F. Fox, ed.), pp. 51–65, special issue 9501 International Dairy Federation, Brussels.Google Scholar
  108. van Hooijdonk, A.C.M., Kussendrager, K.D., Steijns, J.M. 2000. In vivo antimicrobial and antiviral activity of components in bovine milk and colostrums involved in non-specific defence. Br. J. Nutr. 84, S127–S134.Google Scholar
  109. van Meer, G., Lisman, Q. 2002. Sphingolipid transport: Rafts and translocators. J. Biol. Chem. 277, 25855–25858.CrossRefGoogle Scholar
  110. Vesper, H., Schmelz, E.-M., Nikolova-Karakashian, M.N., Dillehay, D.L., Lynch, D.V., Merrill, A.H., Jr. 1999. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J. Nutr. 129, 1239–1250.Google Scholar
  111. Vojdani, A., Campbell, A.W., Anyanwu, E., Kashanian, A., Bock, K., Vojdani, E. 2002. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J Neuroimmunol. 129, 168–177.CrossRefGoogle Scholar
  112. Vorbach, C., Scriven, A., Capecchi, M.R. 2002. The housekeeping gene Xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev. 16, 3223–3235.CrossRefGoogle Scholar
  113. Vorbach, C., Harrison. R., Capecchi, M.R. 2003. Xanthine oxidorudectase is central to the evolution and function of the innate immune system. Trends Immunol. 24, 512–517.CrossRefGoogle Scholar
  114. Walstra, P. 1983. Physical chemistry of milk fat globules. In: Developments in Dairy Chemistry (P.F. Fox, ed.), pp. 119–157, Applied Science Publishers, London.Google Scholar
  115. Walstra, P., Oortwijin, H. 1982. The membranes of recombined fat globules. 3. Mode of formation. Neth. Milk Dairy J. 36, 103–113.Google Scholar
  116. Wong, P.Y.Y., Kitts, D.D. 2003. Chemistry of buttermilk solid antioxidant activity. J. Dairy Sci. 86, 1541–1547.CrossRefGoogle Scholar
  117. Wu, C.C., Howell, K.E., Neville, M.C., Yates, J.R. III, McManaman, J.L. 2000. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis. 21, 3470–3482.CrossRefGoogle Scholar
  118. Ye, A., Singh, H., Oldfield, D.J., Anema, S. 2004. Kinetics of heat-induced association of β-lactoglobulin and α-lactalbumin with milk fat globule membrane in whole milk. Int. Dairy J. 14, 389–398.CrossRefGoogle Scholar
  119. Ye, A., Singh, H., Taylor, M.W., Anema, S. 2002. Characterization of protein components of natural and heat-treated milk fat globule membranes. Int. Dairy J. 12, 393–402.CrossRefGoogle Scholar
  120. Yolken, R.H., Peterson, J.A., Vonderfecht, S.L., Fouts, E.T., Midthun. K., Newburg, D.S. 1992. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 90, 1984–1991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • R. E. Ward
    • 1
  • J. B. German
    • 2
  • M. Corredig
    • 3
  1. 1.Department of Nutrition and Food SciencesUtah State UniversityLoganUSA
  2. 2.Department of Food Science and TechnologyUniversity of California, DavisDavisUSA
  3. 3.Department of Food ScienceUniversity of GuelphGuelphCanada

Personalised recommendations