Probabilistic modelling of Aspergillus growth

  • Enrique Palou
  • Aurelio López-Malo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 571)


Logistic Regression Water Activity Central Composite Design Listeria Monocytogenes Laboratory Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alavi, S. H., Puri, V. M., Knabel, S. J., Mohtar, R. H., and Whiting, R. C., 1999, Development and validation of a dynamic growth model for Listeria monocytogenes in fluid whole milk, J. Food Prot. 62:170–176.Google Scholar
  2. Alzamora, S.M., and López-Malo, A., 2002, Microbial behavior modeling as a tool in the design and control of minimally processed foods, in: Engineering and Food for the 21st Century, J. Welti-Chanes, G. V. Barbosa-Canovas, and J. M. Aguilera, eds, CRC Press, Boca Raton, FL, pp. 631–650.Google Scholar
  3. Baranyi, J., and Roberts, T. A., 1994, A dynamic approach to predicting bacterial growth in food, Int. J. Food Microbiol. 23:277–294.CrossRefGoogle Scholar
  4. Bolton, L. F., and Frank, J. F., 1999, Defining the growth/no growth interface for Listeria monocytogenes in Mexican-style cheese based on salt, pH and moisture content, J. Food Prot. 62:601–609.Google Scholar
  5. Cole, M. B., Franklin, J. G., and Keenan, M. H. J., 1987, Probability of growth of the spoilage yeast Zygosaccharomyces bailii in a model fruit drink system, Food Microbiol. 4:115–119.CrossRefGoogle Scholar
  6. Cuppers, H. G. M., Oomes, S., and Brul, S., 1997, A model for the combined effects of temperature and salt concentration on growth rate of food spoilage moulds, Appl. Environ. Microbiol. 63:3764–3769.Google Scholar
  7. Gibson, A. M., Baranyi, J., Pitt, J. I., Eyles, M. J., and Roberts, T. A., 1994, Predicting fungal growth: effect of water activity on Aspergillus flavus and related species, Int. J. Food Microbiol. 23:419–431.CrossRefGoogle Scholar
  8. Gould, G. W., 1989, Mechanisms of Action of Food Preservation Procedures, Elsevier, London.Google Scholar
  9. Hosmer, D. W., and Lemeshow, S., 1989, Applied Logistic Regression, John Wiley and Sons, New York, p. 307.Google Scholar
  10. ICMSF (International Commission on the Microbiological Specifications for Foods), 1980, Microbial Ecology of Foods, Vol. 1. Factors Affecting Life and Death of Microorganisms. ICMSF, Academic Press, New York.Google Scholar
  11. Lanciotti, R., Sinigaglia, M., Gardini, F., Vannini, L., and Guerzoni, M. E., 2001, Growth/no growth interfaces of Bacillus cereus, Staphylococcus aureus and Salmonella enteritidis in model systems based on water activity, pH, temperature and ethanol concentration, Food Microbiol. 18:659–668.CrossRefGoogle Scholar
  12. Leistner, L., 1985, Hurdle technology applied to meat products of shelf stable and intermediate moisture food types, in: Properties of Water in Foods in Relation to Quality and Stability, D. Simatos, and J. L. Multon, ed., Martinus Nihof Publishers, Dordrecht, The Netherlands, pp. 309–329.Google Scholar
  13. López-Malo, A., and Palou E., 2000a, Growth/no growth interface of Zygosaccharomyces bailii as a function of temperature, water activity, pH, potassium sorbate and sodium benzoate concentration, Presented at Predictive Modeling in Foods, Leuven, Belgium, September 12–15.Google Scholar
  14. López-Malo, A., and Palou E., 2000b, Modeling the growth/no growth interface of Zygosaccharomyces bailii in mango puree, J. Food Sci. 65:516–520.CrossRefGoogle Scholar
  15. López-Malo, A., Alzamora, S. M., Argaiz, A., 1998, Vanillin and pH synergistic effects on mold growth, J. Food Sci. 63:143–146.CrossRefGoogle Scholar
  16. López-Malo, A., Guerrero, S., and Alzamora, S. M., 2000, Probabilistic modeling of Saccharomyces cerevisiae inhibition under the effects of water activity, pH and potassium sorbate, J. Food Prot. 63:91–95.Google Scholar
  17. López-Malo, A., Palou, E., and Argaiz, A., 1993, Medición de la actividad de agua con un equipo electrónico basado en el punto de rocío, Información Tecnológica. 4(6): 33–37.Google Scholar
  18. Masana, M. O., and Baranyi, J., 2000a, Adding new factors to predictive models: the effect on the risk of extrapolation, Food Microbiol. 17:367–374.CrossRefGoogle Scholar
  19. Masana, M. O., and Baranyi, J., 2000b, Growth/no growth interface of Brochothrix thermosphacta as a function of pH and water activity, Food Microbiol. 17:485–493.CrossRefGoogle Scholar
  20. McMeekin, T. A., Olley, J., Ross, T., and Ratkowsky, D. A., 1993, Predictive Microbiology: Theory and Application, Research Studies Press, Tauton, UK.Google Scholar
  21. McMeekin, T. A., Presser, K., Ratkowsky, D. A., Ross, T., Salter, M., and Tienungoon, S., 2000, Quantifying the hurdle concept by modelling the growth/no growth interface. A review, Int. J. Food Microbiol. 55:93–98.CrossRefGoogle Scholar
  22. McMeekin, T. A., Ross, T., and Olley, J., 1992, Application of predictive microbiology to assure the quality and safety of fish and fish products, Int. J. Food Microbiol. 15:13–32.CrossRefGoogle Scholar
  23. Montgomery, D. C., 1984, Design and Analysis of Experiments, John Wiley and Sons, New York.Google Scholar
  24. Palou, E., and López-Malo, A., 2004, Growth/no-growth interface modeling and emerging technologies, in: Novel Food Processing Technologies, G. V. Barbosa-Canovas, M. S. Tapia, and P. Cano, eds, Marcel Dekker, New York, pp. 629–651.Google Scholar
  25. Pitt, J. I., 1989, Food mycology–an emerging discipline, Soc. Appl. Bacteriol. Symp. Suppl. 1989:1S–9S.Google Scholar
  26. Pitt, J. I., and Hocking, A. D., 1977, Influence of solute and hydrogen ion concentration on the water relations of some xerophilic fungi, J. Gen. Microbiol. 101:35–40.Google Scholar
  27. Pitt, J. I., and Miscamble, B. F., 1995, Water relations of Aspergillus flavus and closely related species, J. Food Prot. 58:86–90.Google Scholar
  28. Presser, K. A., Ross, T., and Ratkowsky, D. A., 1998, Modelling of the growth limits (growth/no-growth) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity, Appl. Environ. Microbiol. 64:1773–1779.Google Scholar
  29. Ratkowsky, D. A., and Ross, T., 1995, Modelling the bacterial growth/no-growth interface, Lett. Appl. Microbiol. 20:29–33.CrossRefGoogle Scholar
  30. Ratkowsky, D. A., 1993, Principles of modelling, J. Indust. Microbiol. 12:195–199.CrossRefGoogle Scholar
  31. Ratkowsky, D. A., Ross, T., McMeekin, T. A., and Olley, J., 1991, Comparison of Arrhenius-type and Belehradek-type models for prediction of bacterial growth in foods, J. Appl. Bacteriol. 71:452–459.Google Scholar
  32. Ross, T., and McMeekin, T. A., 1994, Predictive microbiology, Int. J. Food Microbiol. 23:241–264.CrossRefGoogle Scholar
  33. Rosso, L., and Robinson, T. P., 2001, Cardinal model to describe the effect of water activity on the growth of moulds, Int. J. Food Microbiol. 63:265–273.CrossRefGoogle Scholar
  34. Salter, M. A., Ratkowsky, D. A., Ross, T., and McMeekin, T. A., 2000, Modelling the combined temperature and salt (NaCl) limits for growth of a pathogenic Escherichia coli strain using nonlinear logistic regression, Int. J. Food Microbiol. 61:159–167.CrossRefGoogle Scholar
  35. Samson, R. A., 1989, Filamentous fungi in food and feed, Soc. Appl. Bacteriol. Symp. Suppl. 1989:27S–35S.Google Scholar
  36. Schaffner, D. W., and Labuza, T. P., 1997, Predictive microbiology: where are we, and where are we going?, Food Technol. 51:95–99.Google Scholar
  37. Smith, J. E., and Moss, M.O., 1985, Mycotoxins, Formation, Analysis and Significance, John Wiley and Sons, Chichester, UK.Google Scholar
  38. Tienungoon, S., Ratkowsky, D. A., McMeekin, T. A., and Ross, T., 2000, Growth limits of Listeria monocytogenes as a function of temperature, pH, NaCl, and lactic acid, Appl. Environ. Microbiol. 11:4979–4987.CrossRefGoogle Scholar
  39. Valik, L., Baranyi, J., and Gorner, F., 1999, Predicting fungal growth: the effect of water activity on Penicillium roqueforti, Int. J. Food Microbiol. 47:141–146.CrossRefGoogle Scholar
  40. Whiting, R. C., and Call, J. E., 1993, Time of growth model for proteolytic Clostridium botulinum, Food Microbiol. 10:295–301.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Enrique Palou
    • 1
  • Aurelio López-Malo
    • 1
  1. 1.Ingeniería Química y AlimentosUniversidad de las AméricasPueblaMexico

Personalised recommendations