Advertisement

Genetic Programming

  • John R. Koza
  • Riccardo Poli

Abstract

The goal of getting computers to automatically solve problems is central to artificial intelligence, machine learning, and the broad area encompassed by what Turing called “machine intelligence„ (Turing, 1948, 1950). In his talk entitled AI: Where It Has Been and Where It Is Going, machine learning pioneer Arthur Samuel stated the main goal of the fields of machine learning and artificial intelligence: [T]he aim [is]... to get machines to exhibit behavior, which if done by humans, would be assumed to involve the use of intelligence. (Samuel, 1983) Genetic programming is a systematic method for getting computers to automatically solve a problem starting from a high-level statement of what needs to be done. Genetic programming is a domain-independent method that genetically breeds a population of computer programs to solve a problem. Specifically, genetic programming iteratively transforms a population of computer programs into a new generation of programs by applying analogs of naturally occurring genetic operations. This process is illustrated in Figure 5.1.

Keywords

Genetic Programming Crossover Point Fitness Measure Genetic Operation Preparatory Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andre, D. and Teller, A., 1999, Evolving team Darwin United, in: RoboCup-98: Robot Soccer World Cup II, M. Asada, and H. Kitano, ed., Lecture Notes in Computer Science, Vol. 1604, Springer, Berlin, pp. 346–352.Google Scholar
  2. Angeline, P. J. and Kinnear Jr, K. E., eds, 1996, Advances in Genetic Programming 2, MIT Press, Cambridge, MA.Google Scholar
  3. Babovic, V., 1996, Emergence, Evolution, Intelligence: Hydroinformatics, Balkema, Rotterdam.Google Scholar
  4. Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M. and Smith, R. E., eds, 1999, GECCO-99: Proc. Genetic and Evolutionary Computation Conf. (Orlando, FL), Morgan Kaufmann, San Mateo, CA.Google Scholar
  5. Banzhaf, W., Nordin, P., Keller, R. E. and Francone, F. D., 1998a, Genetic Programming: An Introduction, Morgan Kaufmann, San Mateo, CA.MATHGoogle Scholar
  6. Banzhaf, W., Poli, R., Schoenauer, M. and Fogarty, T. C., 1998b, Genetic Programming: Proc. 1st Eur. Workshop (Paris), Lecture Notes in Computer Science. Vol. 1391, Springer, Berlin.Google Scholar
  7. Barnum, H., Bernstein, H. J., and Spector, L., 2000, Quantum circuits for OR and AND of ORs, J. Phys. A: Math. Gen. 33:8047–8057.MATHCrossRefMathSciNetGoogle Scholar
  8. Blickle, T., 1997, Theory of Evolutionary Algorithms and Application to System Synthesis, TIK-Schriftenreihe Nr. 17. Zurich, Switzerland: vdf Hochschul, AG an der ETH, Zurich.Google Scholar
  9. Foster, J. A., Lutton, E., Miller, J., Ryan, C. and Tettamanzi, A. G. B., eds, 2002, Genetic Programming: Proc. 5th Eur. Conf., EuroGP 2002 (Kinsale, Ireland).Google Scholar
  10. Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA.MATHGoogle Scholar
  11. Holland, J. H., 1975, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, Ann Arbor, MI (reprinted 1992, MIT Press, Cambridge, MA).Google Scholar
  12. Iba, H., 1996, Genetic Programming, Tokyo Denki University Press, Tokyo, in Japanese.Google Scholar
  13. Jacob, C., 1997, Principia Evolvica: Simulierte Evolution mit Mathematica, dpunkt.verlag, Heidelberg.MATHGoogle Scholar
  14. Jacob, C., 2001, Illustrating Evolutionary Computation with Mathematica, Morgan Kaufmann, San Mateo, CA.Google Scholar
  15. Kinnear, K. E. Jr, ed., 1994, Advances in Genetic Programming, MIT Press, Cambridge, MA.Google Scholar
  16. Koza, J. R., 1989, Hierarchical genetic algorithms operating on populations of computer programs, in: Proc. 11th Int. Joint Conf. on Artificial Intelligence, Vol. 1, Morgan Kaufmann, San Mateo, CA, pp. 768–774.Google Scholar
  17. Koza, J. R., 1990, Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems, Stanford University Computer Science Department Technical Report STAN-CS-90-1314.Google Scholar
  18. Koza, J. R., 1992, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA.MATHGoogle Scholar
  19. Koza, J. R., 1994a, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press, Cambridge, MA.MATHGoogle Scholar
  20. Koza, J. R., 1994b, Genetic Programming II Videotape: The Next Generation, MIT Press, Cambridge, MA.Google Scholar
  21. Koza, J. R., 1994c, Architecture-altering operations for evolving the architecture of a multi-part program in genetic programming, Stanford University Computer Science Department Technical Report STAN-CS-TR-94-1528.Google Scholar
  22. Koza, J. R., 1995, Gene duplication to enable genetic programming to concurrently evolve both the architecture and work-performing steps of a computer program, in: Proc. 14th Int. Joint Conf. on Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, pp. 734–740.Google Scholar
  23. Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H. and Riolo, R., eds, 1998, Genetic Programming 1998: Proc. 3rd Annual Conf. (Madison, WI), Morgan Kaufmann, San Mateo, CA.Google Scholar
  24. Koza, J. R., Bennett III, F. H, Andre, D. and Keane, M. A., 1999a, Genetic Programming III: Darwinian Invention and Problem Solving, Morgan Kaufmann, San Mateo, CA.MATHGoogle Scholar
  25. Koza, J. R., Bennett III, F. H., Andre, D., Keane, M. A. and Brave, S., 1999b, Genetic Programming III Videotape: Human-Competitive Machine Intelligence, Morgan Kaufmann, San Mateo, CA.Google Scholar
  26. Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H. and Riolo, R. L., eds, Genetic Programming 1997: Proc. 2nd Annual Conf. (Stanford University), Morgan Kaufmann, San Mateo, CA.Google Scholar
  27. Koza, J. R., Goldberg, D. E., Fogel, D. B. and Riolo, R. L., eds, 1996, Genetic Programming 1996: Proc. 1st Annual Conf. (Stanford University), MIT Press, Cambridge, MA.Google Scholar
  28. Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J. and Lanza, G., 2003, Genetic Programming IV: Routine Human-Competitive Machine Intelligence, Kluwer, Dordrecht.MATHGoogle Scholar
  29. Koza, J. R. and Rice, J. P., 1992, Genetic Programming: The Movie, MIT Press, Cambridge, MA.Google Scholar
  30. Langdon, W. B., 1998, Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! Kluwer, Amsterdam.Google Scholar
  31. Langdon, W. B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J. F., Burke, E. and Jonoska, N., eds, 2002, Proc. 2002 Genetic and Evolutionary Computation Conf., Morgan Kaufmann, San Mateo, CA.Google Scholar
  32. Langdon, W. B. and Poli, R., 2002, Foundations of Genetic Programming, Springer, Berlin.MATHGoogle Scholar
  33. Luke, S., 1998, Genetic programming produced competitive soccer softbot teams for RoboCup97, in: Genetic Programming 1998: Proc. 3rd Annual Conf. (Madison, WI), J. R. Koza, W. Banzhaf, K. Chellapilla, D. Kumar, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba and R. Riolo, eds, Morgan Kaufmann, San Mateo, CA, pp. 214–222.Google Scholar
  34. Miller, J., Tomassini, M., Lanzi, P. L., Ryan, C., Tettamanzi, A. G. B. and Langdon, W. B., eds, 2001, Genetic Programming: Proc. 4th Eur. Conf., EuroGP 2001 (Lake Como, Italy), Springer, Berlin.Google Scholar
  35. Nordin, P., 1997, Evolutionary Program Induction of Binary Machine Code and Its Application, Krehl, Munster.Google Scholar
  36. Poli, R. and Langdon, W. B., 1997, A new schema theory for genetic programming with one-point crossover and point mutation, in: Genetic Programming 1997: Proc. 2nd Annual Conf. (Stanford University), J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba and R. L. Riolo, R. L., eds, Morgan Kaufmann, San Mateo, CA, pp. 278–285.Google Scholar
  37. Poli, R, and Langdon, W. B., 1998, Schema theory for genetic programming with one-point crossover and point mutation, Evol. Comput. 6:231–252.Google Scholar
  38. Poli, R, and McPhee, N. F., 2001, Exact schema theorems for GP with one-point and standard crossover operating on linear structures and their application to the study of the evolution of size, in: Genetic Programming, Proc. EuroGP 2001, Lake Como, Italy, J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi and W. B. Langdon, eds, Lecture Notes in Computer Science, Vol. 2038, Springer, Berlin, pp. 126–142.Google Scholar
  39. Poli, R. and N. F., McPhee, 2003a, General schema theory for genetic programming with subtree-swapping crossover: Part I, Evol. Comput. 11:53–66.CrossRefGoogle Scholar
  40. Poli, R. and N. F., McPhee, 2003b, General schema theory for genetic programming with subtree-swapping crossover: Part II, Evol. Comput. 11:169–206.CrossRefGoogle Scholar
  41. Poli, R., Nordin, P., Langdon, W. B. and Fogarty, T. C., 1999, Genetic Programming: Proc. 2nd Eur. Workshop, EuroGP’99, Lecture Notes in Computer Science. Vol. 1598, Springer, Berlin.Google Scholar
  42. Poli, R., Banzhaf, W., Langdon, W. B., Miller, J., Nordin, P. and Fogarty, T. C, 2000, Genetic Programming: Proc. Eur. Conf., EuroGP 2000 (Edinburgh), Lecture Notes in Computer Science. Vol. 1802, Springer, Berlin.Google Scholar
  43. Ryan, C., 1999, Automatic Re-engineering of Software Using Genetic Programming, Kluwer, Amsterdam.Google Scholar
  44. Samuel, A. L., 1983, AI: Where it has been and where it is going, in: Proc. 8th Int. Joint Conf. on Artificial Intelligence, Los Altos, CA, Morgan Kaufmann, San Mateo, CA, pp. 1152–1157.Google Scholar
  45. Spector, L., Barnum, H. and Bernstein, H. J., 1998, Genetic programming for quantum computers, in: Genetic Programming 1998: Proc. 3rd Annual Conf. (Madison, WI), J. R. Koza, W. Banzhaf, K. Chellapilla, D. Kumar, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba and R. Riolo, eds, Morgan Kaufmann, San Mateo, CA, pp. 365–373.Google Scholar
  46. Spector, L., Barnum, H. and Bernstein, H. J., 1999a, Quantum computing applications of genetic programming, in: Advances in Genetic Programming 3, L. Spector, W. B. Langdon, U.-M. O’Reilly and P. Angeline, eds, MIT Press, Cambridge, MA, pp. 135–160.Google Scholar
  47. Spector, L., Barnum, H., Bernstein, H. J. and Swamy, N., 1999b, Finding a better-than-classical quantum AND/OR algorithm using genetic programming, in: IEEE Proc. 1999 Congress on Evolutionary Computation, IEEE, Piscataway, NJ, pp. 2239–2246.CrossRefGoogle Scholar
  48. Spector, L. and Bernstein, H. J., 2002, Communication capacities of some quantum gates, discovered in part through genetic programming, in: Proc. 6th Int. Conf on Quantum Communication, Measurement, and Computing (Rinton, Paramus, NJ).Google Scholar
  49. Spector, L., Goodman, E., Wu, A., Langdon, W. B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. and Burke, E., eds, 2001, Proc. Genetic and Evolutionary Computation Conf, GECCO-2001, Morgan Kaufmann, San Mateo, CA.Google Scholar
  50. Stephens, C. R. and Waelbroeck, H., 1997, Effective degrees of freedom in genetic algorithms and the block hypothesis, in: Genetic Algorithms: Proc. 7th Int. Conf., Thomas Back, ed., Morgan Kaufmann, San Mateo, CA, pp. 34–40.Google Scholar
  51. Stephens, C. R. and Waelbroeck, H., 1999, Schemata evolution and building blocks, Evol. Comput. 7:109–124.Google Scholar
  52. Turing, A. M., 1948, Intelligent machinery. Reprinted in: 1992, Mechanical Intelligence: Collected Works of A. M. Turing, D. C. Ince, ed., North-Holland, Amsterdam, pp. 107–127. Also reprinted in: 1969, Machine Intelligence 5, B. Meltzer, and D. Michie, ed., Edinburgh University Press, Edinburgh.Google Scholar
  53. Turing, A. M., 1950, Computing machinery and intelligence, Mind 59:433–460. Reprinted in: 1992, Mechanical Intelligence: Collected Works of A. M. Turing, D. C. Ince, ed., North-Holland, Amsterdam, pp. 133–160.CrossRefMathSciNetGoogle Scholar
  54. Whitley, L. D., 1994, A genetic algorithm tutorial, Statist. Comput. 4:65–85.CrossRefGoogle Scholar
  55. Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I. and Beyer, H.-G., eds, 2000, GECCO-2000: Proc. Genetic and Evolutionary Computation Conf. (Las Vegas, NV), Morgan Kaufmann, San Mateo, CA.Google Scholar
  56. Wong, M. L. and Leung, K. S., 2000, Data Mining Using Grammar Based Genetic Programming and Applications, Kluwer, Amsterdam.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2005

Authors and Affiliations

  • John R. Koza
    • 1
  • Riccardo Poli
    • 2
  1. 1.Stanford UniversityStanfordUSA
  2. 2.Department of Computer ScienceUniversity of EssexUK

Personalised recommendations