Introduction

  • Edmund K. Burke
  • Graham Kendall

Abstract

The investigation of search and optimization technologies underpins the development of decision support systems in a wide variety of applications across industry, commerce, science and government. There is a significant level of diversity among optimization and computational search applications. This can be evidenced by noting that a very small selection of such applications includes transport scheduling, bioinformatics optimization, personnel rostering, medical decision support and timetabling. More examples of relevant applications can be seen in (2002), (2004) and (1997). The exploration of decision support methodologies is a crucially important research area. The potential impact of more effective and more efficient decision support methodologies is enormous and can be illustrated by considering just a few of the potential benefits: more efficient production scheduling can lead to significant financial savings; higher quality personnel rosters lead to a more contented workforce; more efficient healthcare scheduling will lead to faster treatment (which could save lives); more effective cutting/packing systems can reduce waste; better delivery schedules can reduce fuel emissions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E. and Lenstra, J. K. (eds), 1997, Local Search in Combinatorial Optimization, Wiley, New York.MATHGoogle Scholar
  2. Bronson, R. and Naadimuthu, G, 1997, Operations Research, Schaum’s Outlines, 2nd edn, McGraw-Hill, New York.Google Scholar
  3. Burke, E. K., De Causmaecker, P., Vanden Berghe, G. and Van Landeghem, R., 2004, The state of the art of nurse rostering, J. Scheduling 7:441–499.CrossRefGoogle Scholar
  4. Burke, E. K., Kendall, G., Newall, J. P., Hart, E., Ross, P. and Schulenburg, S., 2003, Hyper-heuristics: An emerging direction in modern search technology, in: Handbook of Metaheuristics, F. Glover and G. Kochenberger, eds, Chapter 16, pp. 457–474.Google Scholar
  5. Burke, E. K., Petrovic, S., 2002, Recent research directions in automated timetabling, Eur. J. Oper. Res. 140:266–280.MATHCrossRefGoogle Scholar
  6. Carter, M. W., and Price, C. C., 2001, Operations Research: A Practical Introduction, CRC Press, Boca Raton, FL.Google Scholar
  7. Callan R., 2003, Artificial Intelligence, Palgrave Macmillan, London.Google Scholar
  8. Cawsey A., 1998, The Essence of Artificial Intelligence, Prentice-Hall, Engle-wood Cliffs, NJ.Google Scholar
  9. Dell’Amico, M., Maffioli, F. and Martello, S. (eds), 1997, Annotated Bibliographies in Combinatorial Optimization, Wiley, New York.MATHGoogle Scholar
  10. Dowsland, K. A. and Dowsland, W. B., 1992, Packing problems, Eur. J. Oper. Res. 56:2–14.MATHCrossRefGoogle Scholar
  11. Gass, S. I. and Harris, C. M., 2001, Encyclopaedia of Operations Research and Management Science, Kluwer, Dordrecht.Google Scholar
  12. Glover, F. and Kochenberger, G. (eds), 2003, Handbook of Metaheuristics, Kluwer, Dordrecht.MATHGoogle Scholar
  13. Glover, F. and Laguna, M., 1997, Tabu Search, Kluwer, Dordrecht.MATHGoogle Scholar
  14. Hillier F. S. and Liberman G. J., 2005, Introduction to Operations Research, McGraw-Hill, New York (8th edn).Google Scholar
  15. Johnson, D. S. and McGeoch, L. A., 1997, The travelling salesman problem: A case study, in: E. Aarts and J. K. Lenstra, eds, Local Search in Combinatorial Optimization, Wiley, New York, pp. 215–310.Google Scholar
  16. Kirby, M. W., 2003, Operational Research in War and Peace: The British Experience from the 1930s to 1970, Imperial College Press, London.Google Scholar
  17. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G. and Shmoys, D. B. (eds), 1985, The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley, New York (reprinted with subject index 1990).Google Scholar
  18. Leung, J. Y-T. (ed.), 2004, Handbook of Scheduling, Chapman and Hall/CRC Press, Boca Raton, FL.MATHGoogle Scholar
  19. Luger G. F. A., 2002, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Addison-Wesley, Reading, MA, 4th edn.Google Scholar
  20. McCarthy, J., 1996, Defending AI Research: A Collection of Essays and Reviews, CSLI Publications, Stanford, CA.Google Scholar
  21. Michaelwicz, Z. and Fogel D. B., 2004, How to Solve It: Modern Heuristics, Springer, Berlin, 2nd edn.Google Scholar
  22. Negnevitsky M., 2005, Artificial Intelligence: A Guide to Intelligent Systems, Addison-Wesley, Reading, MA, 2nd edn.Google Scholar
  23. Nilsson, N., 1998, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, San Mateo, CA.MATHGoogle Scholar
  24. Oxford Dictionary of Computing, 1997, Oxford University Press, Oxford, 4th edn.Google Scholar
  25. Osman, I. H. and Kelly J. P. (eds), 1996, Metaheuristics: Theory and Applications, Kluwer, Dordrecht.Google Scholar
  26. Pardalos, P. M. and Resende, M. G. C. (eds), 2002, Handbook of Applied Optimization, Oxford University Press, Oxford.MATHGoogle Scholar
  27. Petrovic, S. and Burke, E. K., 2004, University timetabling, Chapter 45 of J. Y-T. Leung, ed., Handbook of Scheduling, Chapman and Hall/CRC Press, Boca Raton, FL.Google Scholar
  28. Rayward-Smith V. J., Osman I. H., Reeves C. R. and Smith G. D., 1996, Modern Heuristic Search Methods, Wiley, New York.MATHGoogle Scholar
  29. Reeves, C. R., 1996, Modern heuristic techniques, in: V. J. Rayward-Smith, I. H. Osman, C. R. Reeves and G. D. Smith, Modern Heuristic Search Methods, Wiley, New York, pp. 1–25.Google Scholar
  30. Resende, M. G. C. and de Sousa, J. P. (eds), 2004, Metaheuristics: Computer Decision Making, Kluwer, Dordrecht.Google Scholar
  31. Ribeiro, C. C. and Hansen, P. (eds), 2002, Essays and Surveys in Metaheuristics, Kluwer, Dordrecht.MATHGoogle Scholar
  32. Rich E. and Knight K., 1991, Artificial Intelligence, McGraw-Hill, New York, 2nd edn.Google Scholar
  33. Russell, S. and Norvig, P., 2003, Artificial Intelligence: A Modern Approach, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  34. Schaerf, A., 1999, A survey of automated timetabling, Artif. Intell Rev. 13:87–127.CrossRefGoogle Scholar
  35. Taha H. A., 2002, Operations Research: An Introduction, Prentice-Hall, Englewood Cliffs, NJ, 7th edn.Google Scholar
  36. Urry S., 1991, An Introduction to Operational Research: The Best of Everything, Longmans, London.Google Scholar
  37. Voss, S, Martello, S., Osman, I. H. and Roucairol, C. (eds), 1999, Metaheuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer, Dordrecht.Google Scholar
  38. Winston, W. L., 2004, Operations Research: Applications and Algorithms, Duxbury Press, Philadelphia, PA, 4th edn.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2005

Authors and Affiliations

  • Edmund K. Burke
    • 1
  • Graham Kendall
    • 1
  1. 1.Automated Scheduling, Optimisation and Planning Research Group, The School of Computer Science and ITUniversity of NottinghamUK

Personalised recommendations