Advertisement

The Battle for Cantorian Set Theory

  • Joseph W. Dauben
Part of the CMS Books in Mathematics book series (CMSBM)

Keywords

Ordinal Number Trigonometric Series Cardinal Number Irrational Number Continuum Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Charraud, Nathalie, Infini et Inconscient. Essai sur Georg Cantor (Paris: Anthropos, 1994).zbMATHGoogle Scholar
  2. Cantor, Georg, “Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen,” Mathematische Annalen, 5 (1872), pp. 123–132; in Cantor 1932, pp. 92–102; translated as “Extension d’un théorème de la théorie des series trigonométriques,” Acta Mathematica, 2 (1883), pp. 336-3-48.zbMATHMathSciNetCrossRefGoogle Scholar
  3. ____, “Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen,” Journal für die reine und angewandte Mathematik, 77 (1874), pp. 258–262; in Cantor (1932), pp. 115–118; translated as “Sur une propriété du système de tous les nombres algébriques reels,” Acta Mathematica, 2 (1883), pp. 205–310.CrossRefGoogle Scholar
  4. ____, Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen (Leipzig: B.G. Teubner, 1883). In Cantor (1932), pp. 165–208. Translated, in part, into French as “Fondaments d’une Théorie générale des ensembles,” Acta Mathematica, 2 (1883), pp. 381–408; and into English as “Foundations of the Theory of Manifolds” (trans. U. Parpart), The Campaigner (The Theoretical Journal of the National Caucus of Labor Committees), 9 (January and February, 1976), pp. 69–96; a better translation into English is by W. B. Ewald, “Foundations of a General Theory of Manifolds: A Mathematico-Philosophical Investigation into the Theory of the Infinite,” in From Kant to Hilbert: a Source Book in the Foundations of Mathematics, ed. W. B. Ewald (New York: Oxford University Press, 1996), vol. 2, pp. 878–920.Google Scholar
  5. ____, “Über eine elementare Frage der Mannigfaltigkeitslehre,” Jahresbericht der Deutschen Mathematiker-Vereinigung, 1 (1891), pp. 75–78; in Cantor 1932, pp. 278–280.Google Scholar
  6. ____, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, ed. E. Zermelo (Berlin: J. Springer; rep. Hildesheim: Olms, 1966, and Berlin: Springer, 1990).Google Scholar
  7. Cantor, Georg, and Richard Dedekind, Briefwechsel Cantor-Dedekind, eds. E. Noether and J. Cavaillès (Paris: Hermann, 1937).Google Scholar
  8. Dauben, Joseph W., “The Trigonometric Background to Georg Cantor’s Theory of Sets,” Archive for History of Exact Sciences, 7 (1971), pp. 181–216.zbMATHCrossRefMathSciNetGoogle Scholar
  9. ____, Georg Cantor: His Mathematics and Philosophy of the Infinite (Cambridge, MA: Harvard University Press, 1979; rep. Princeton: Princeton University Press, 1990).Google Scholar
  10. Dedekind, Richard, Stetigkeit und irrationale Zahlen (2nd ed. Braunschweig: Vieweg, 1892); English translation: Dedekind 1901/1963.zbMATHGoogle Scholar
  11. ____, Essays on the Theory of Numbers, Continuity of Irrational Numbers, the Nature and Meaning of Numbers, trans. W.W. Beman (Chicago: Open Court, 1901; repr. New York: Dover, 1963).Google Scholar
  12. Fraenkel, A., “Georg Cantor,” Jahresbericht der Deutschen Mathematiker-Vereinigung, 39 (1930), pp. 189–266.zbMATHGoogle Scholar
  13. Garciadiego, Alejandro R., Bertrand Russell and the Origins of the Settheoretic ‘Paradoxes’ (Basel: Birkhäuser Verlag, 1992).Google Scholar
  14. Grattan-Guinness, Ivor, “Towards a Biography of Georg Cantor,” Annals of Science, 27 (1971), pp. 345–391.zbMATHMathSciNetCrossRefGoogle Scholar
  15. Kneser, A., “Leopold Kronecker,” Jahresbericht der Deutschen Mathematiker-Vereinigung, 33 (1925), pp. 210–228.zbMATHGoogle Scholar
  16. Meschkowski, Herbert, Probleme des Unendlichen. Werk und Leben Georg Cantors (Braunschweig: Vieweg, 1967).zbMATHGoogle Scholar
  17. ____, “Zwei unveröffentlichte Briefe Georg Cantors,” Der Mathematikunterricht, 4 (1971), pp. 30–34.Google Scholar
  18. ____, Georg Cantor-Briefe, eds. Herbert Meschkowski and Winfried Nilson (Berlin: Springer-Verlag, 1991).Google Scholar
  19. Moore, Gregory H., Zermelo’s Axiom of Choice (New York: Springer-Verlag, 1982).zbMATHGoogle Scholar
  20. Pierpont, J., “Mathematical Rigor, Past and Present,” Bulletin of the American Mathematical Society, 34 (1928), pp. 23–53.zbMATHCrossRefMathSciNetGoogle Scholar
  21. Poincaré, Henri, “L’avenir des mathématiques,” Atti del IV Congresso Internazionale dei Matematici, Rome, 6–11 April, 1908 (Rome: Tipografia della R. Accademia dei Lincei, C.V. Salviucci, 1909), pp. 167–182.Google Scholar
  22. Purkert, Walter, and Hans Joachim Ilgauds, Georg Cantor (Biographien hervorragender Naturwissenschaftler, Techniker und Mediziner, vol. 79, Leipzig: B.G. Teubner, 1985).Google Scholar
  23. ____, Georg Cantor 1845–1918 (Vita Mathematica, vol. 1, Basel: Birkhäuser Verlag, 1987).zbMATHGoogle Scholar
  24. Russell, Bertrand, “On Some Difficulties in the Theory of Transfinite Numbers and Order Types,” Proceedings of the London Mathematical Society, 4 (1907), pp. 29–53.Google Scholar
  25. Schoenflies, A., “Die Krisis in Cantor’s mathematischem Schaffen,” Acta Mathematica 50 (1927), pp. 1–23.zbMATHCrossRefMathSciNetGoogle Scholar
  26. Thuillier, Pierre, “Dieu, Cantor et l’infini,” La Recherche, 84 (December, 1977), pp. 1110–1116.Google Scholar
  27. Weber, A., “Leopold Kronecker,” Mathematische Annalen, 43 (1893), pp. 1–25.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Joseph W. Dauben
    • 1
    • 2
  1. 1.Department of History, Herbert H. Lehman CollegeCUNYBronxUSA
  2. 2.Ph.D. Program in History, The Graduate CenterCity University of New YorkNew YorkUSA

Personalised recommendations