Viral Proteins that Enhance Membrane Permeability

  • María Eugenia González
  • Luis Carrasco
Part of the Protein Reviews book series (PRON, volume 1)


Human Immunodeficiency Virus Type Bovine Viral Diarrhea Virus Semliki Forest Virus Animal Virus Fusion Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almela, M.J., Gonzalez, M.E., and Carrasco, L. (1991). Inhibitors of poliovirus uncoating efficiently block the early membrane permeabilization induced by virus particles. J. Virol. 65, 2572–2577.PubMedGoogle Scholar
  2. Arroyo, J., Boceta, M., Gonzalez, M.E., Michel, M., and Carrasco, L. (1995). Membrane permeabilization by different regions of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41. J. Virol. 69, 4095–4102.PubMedGoogle Scholar
  3. Barco, A. and Carrasco, L. (1995). A human virus protein, poliovirus protein 2BC, induces membrane proliferation and blocks the exocytic pathway in the yeast Saccharomyces cerevisiae. EMBO J. 14, 3349–3364.PubMedGoogle Scholar
  4. Barco, A. and Carrasco, L. (1998). Identification of regions of poliovirus 2BC protein that are involved in cytotoxicity. J. Virol. 72, 3560–3570.PubMedGoogle Scholar
  5. Benedetto, A., Rossi, G.B., Amici, C., Belardelli, F., Cioe, L., Carruba, G. et al. (1980). Inhibition of animal virus production by means of translation inhibitors unable to penetrate normal cells. Virology 106, 123–132.PubMedCrossRefGoogle Scholar
  6. Betakova, T., Wolffe, E.J., and Moss, B. (2000). The vaccinia virus A14.5L gene encodes a hydrophobic 53-amino-acid virion membrane protein that enhances virulence in mice and is conserved among vertebrate poxviruses. J. Virol. 74, 4085–4092.PubMedCrossRefGoogle Scholar
  7. Blanco, R., Carrasco, L., and Ventoso, I. (2003). Cell killing by HIV-1 protease. J. Biol. Chem. 278, 1086–1093.PubMedCrossRefGoogle Scholar
  8. Bour, S. and Strebel, K. (1996). The human immunodeficiency virus (HIV)type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses. J. Virol. 70, 8285–8300.PubMedGoogle Scholar
  9. Carrasco, L. (1978). Membrane leakiness after viral infection and a new approach to the development of antiviral agents. Nature 272, 694–699.PubMedCrossRefGoogle Scholar
  10. Carrasco, L. (1994). Entry of animal viruses and macromolecules into cells. FEBS Lett. 350, 151–154.PubMedCrossRefGoogle Scholar
  11. Carrasco, L. (1995). Modification of membrane permeability by animal viruses. Adv. Virus Res. 45, 61–112.PubMedCrossRefGoogle Scholar
  12. Chan, Y.L., Endo, Y., and Wool, I.G. (1983). The sequence of the nucleotides at the alpha-sarcin cleavage site in rat 28S ribosomal ribonucleic acid. J. Biol. Chem. 258, 12768–12770.PubMedGoogle Scholar
  13. Chang, Y.S., Liao, C.L., Tsao, C.H., Chen, M.C., Liu, C.I., Chen, L.K. et al. (1999). Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. J. Virol. 73, 6257–6264.PubMedGoogle Scholar
  14. Charpilienne, A., Abad, M.J., Michelangeli, F., Alvarado, F., Vasseur, M., Cohen, J. et al. (1997). Solubilized and cleaved VP7, the outer glycoprotein of rotavirus, induces permeabilization of cell membrane vesicles. J. Gen. Virol. 78, 1367–1371.PubMedGoogle Scholar
  15. Chernomordik, L., Chanturiya, A.N., Suss-Toby, E., Nora, E., and Zimmerberg, J. (1994). An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. J. Virol. 68, 7115–7123.PubMedGoogle Scholar
  16. Ciccaglione, A.R., Costantino, A., Marcantonio, C., Equestre, M., Geraci, A., and Rapicetta, M. (2001). Mutagenesis of hepatitis C virus E1 protein affects its membrane-permeabilizing activity. J. Gen. Virol. 82, 2243–2250.PubMedGoogle Scholar
  17. Ciccaglione, A.R., Marcantonio, C., Costantino, A., Equestre, M., Geraci, A., and Rapicetta, M. (1998). Hepatitis C virus E1 protein induces modification of membrane permeability in E.coli cells. Virology 250, 1–8.PubMedCrossRefGoogle Scholar
  18. Comardelle, A.M., Norris, C.H., Plymale, D.R., Gatti, P.J., Choi, B., Fermin, C.D. et al. (1997). A synthetic peptide corresponding to the carboxy terminus of human immunodeficiency virus type 1 transmembrane glycoprotein induces alterations in the ionic permeability of Xenopus laevis oocytes. AIDS Res. Hum. Retroviruses 13, 1525–1532.PubMedGoogle Scholar
  19. Contreras, A., Vazquez, D., and Carrasco, L. (1978). Inhibition, by selected antibiotics, of protein synthesis in cells growing in tissue cultures. J. Antibiot. (Tokyo) 31, 598–602.PubMedGoogle Scholar
  20. Cooley, L.A. and Lewin, S.R. (2003). HIV-1 cell entry and advances in viral entry inhibitor therapy. J. Clin. Virol. 26, 121–132.PubMedCrossRefGoogle Scholar
  21. Cotten, M., Wagner, E., Zatloukal, K., Phillips, S., Curiel, D.T., and Birnstiel, M.L. (1992). High-efficiency receptor-mediated delivery of small and large (48 kilobase) gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proc. Natl. Acad. Sci. USA 89, 6094–6098.PubMedCrossRefGoogle Scholar
  22. Cuadras, M.A., Arias, C.F., and Lopez, S. (1997). Rotaviruses induce an early membrane permeabilization of MA104 cells and do not require a low intracellular Ca2+ concentration to initiate their replication cycle. J. Virol. 71, 9065–9074.PubMedGoogle Scholar
  23. De Clercq, E. (2001). Antiviral drugs: Current state of the art. J. Clin. Virol. 22, 73–89.PubMedCrossRefGoogle Scholar
  24. del Castillo, J.R., Ludert, J.E., Sanchez, A., Ruiz, M.C., Michelangeli, F., and Liprandi, F. (1991). Rotavirus infection alters Na+ and K+ homeostasis in MA-104 cells. J. Gen. Virol. 72, 541–547.PubMedGoogle Scholar
  25. Dong, Y., Zeng, C.Q., Ball, J.M., Estes, M.K., and Morris, A.P. (1997). The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1, 4, 5-trisphosphate production. Proc. Natl. Acad. Sci. USA 94, 3960–3965.PubMedCrossRefGoogle Scholar
  26. Durantel, D., Branza-Nichita, N., Carrouee-Durantel, S., Butters, T.D., Dwek, R.A., and Zitzmann, N. (2001). Study of the mechanism of antiviral action of iminosugar derivatives against bovine viral diarrhea virus. J. Virol. 75, 8987–8998.PubMedCrossRefGoogle Scholar
  27. Elfgang, C., Eckert, R., Lichtenberg-Frate, H., Butterweck, A., Traub, O., Klein, R.A. et al. (1995). Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J. Cell Biol. 129, 805–817.PubMedCrossRefGoogle Scholar
  28. Ewart, G.D., Mills, K., Cox, G.B., and Gage, P.W. (2002). Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur. Biophys. J. 31, 26–35.PubMedCrossRefGoogle Scholar
  29. Fernandez-Puentes, C. and Carrasco, L. (1980). Viral infection permeabilizes mammalian cells to protein toxins. Cell 20, 769–775.PubMedCrossRefGoogle Scholar
  30. Fischer, W.B. and Sansom, M.S. (2002). Viral ion channels: Sructure and function. Biochim. Biophys. Acta 1561, 27–45.PubMedCrossRefGoogle Scholar
  31. Gatti, P.J., Choi, B., Haislip, A.M., Fermin, C.D., and Garry, R.F. (1998). Inhibition of HIV type 1 production by hygromycin B. AIDS Res. Hum. Retroviruses 14, 885–892.PubMedCrossRefGoogle Scholar
  32. Gonzalez, M.E. and Carrasco, L. (1998). The human immunodeficiency virus type 1 Vpu protein enhances membrane permeability. Biochemistry 37, 13710–13719.PubMedCrossRefGoogle Scholar
  33. Gonzalez, M.E. and Carrasco, L. (2001). Human immunodeficiency virus type 1 VPU protein affects Sindbis virus glycoprotein processing and enhances membrane permeabilization. Virology 279, 201–209.PubMedCrossRefGoogle Scholar
  34. Gonzalez, M.E. and Carrasco, L. (2003). Viroporins. FEBS Lett. 552, 28–34.PubMedCrossRefGoogle Scholar
  35. Griffin, S.D., Beales, L.P., Clarke, D.S., Worsfold, O., Evans, S.D., Jaeger, J. et al. (2003). The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 535, 34–38.PubMedCrossRefGoogle Scholar
  36. Hay, A.J. (1992). The action of adamantanamines against influenza A viruses: Inhibition of the M2 ion channel protein. Semin. Virol. 3, 21–30.Google Scholar
  37. Irurzun, A., Nieva, J.L., and Carrasco, L. (1997). Entry of Semliki forest virus into cells: Effects of concanamycin A and nigericin on viral membrane fusion and infection. Virology 227, 488–492.PubMedCrossRefGoogle Scholar
  38. Klimkait, T., Strebel, K., Hoggan, M.D., Martin, M.A., and Orenstein, J.M. (1990). The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J. Virol. 64, 621–629.PubMedGoogle Scholar
  39. Kuo, L. and Masters, P.S. (2003). The small envelope protein E is not essential for murine coronavirus replication. J.Virol. 77, 4597–4608.PubMedCrossRefGoogle Scholar
  40. Lacal, J.C., Vazquez, J.M., Fernandez-Sousa, D., and Carrasco, L. (1980). Antibiotics that specifically block translation in virus-infected cells. J. Antibiot. (Tokyo) 33, 441–446.PubMedGoogle Scholar
  41. Lama, J. and Carrasco, L. (1992). Expression of poliovirus nonstructural proteins in Escherichia coli cells. Modification of membrane permeability induced by 2B and 3A. J. Biol. Chem. 267, 15932–15937.PubMedGoogle Scholar
  42. Lee, T., Crowell, M., Shearer, M.H., Aron, G.M., and Irvin, J.D. (1990). Poliovirus-mediated entry of pokeweed antiviral protein. Antimicrob. Agents Chemother. 34, 2034–2037.PubMedGoogle Scholar
  43. Liljestrom, P., Lusa, S., Huylebroeck, D., and Garoff, H. (1991). In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: The small 6, 000-molecular-weight membrane protein modulates virus release. J.Virol. 65, 4107–4113.PubMedGoogle Scholar
  44. Liprandi, F., Moros, Z., Gerder, M., Ludert, J.E., Pujol, F.H., Ruiz, M.C. et al. (1997). Productive penetration of rotavirus in cultured cells induces co-entry of the translation inhibitor alpha-sarcin. Virology 237, 430–438.PubMedCrossRefGoogle Scholar
  45. Loewy, A., Smyth, J., von Bonsdorff, C.H., Liljestrom, P., and Schlesinger, M.J. (1995). The 6-kilodalton membrane protein of Semliki Forest virus is involved in the budding process. J. Virol. 69, 469–475.PubMedGoogle Scholar
  46. Maidji, E., Tugizov, S., Jones, T., Zheng, Z., and Pereira, L. (1996). Accessory human cytomegalovirus glycoprotein US9 in the unique short component of the viral genome promotes cell-to-cell transmission of virus in polarized epithelial cells. J. Virol. 70, 8402–8410.PubMedGoogle Scholar
  47. Michelangeli, F., Ruiz, M.C., del Castillo, J.R., Ludert, J.E., and Liprandi, F.(1991). Effect of rotavirus infection on intracellular calcium homeostasis in cultured cells. Virology 181, 520–527.PubMedCrossRefGoogle Scholar
  48. Newton, K., Meyer, J.C., Bellamy, A.R., and Taylor, J.A. (1997). Rotavirus nonstructural glycoprotein NSP4 alters plasma membrane permeability in mammalian cells. J. Virol. 71, 9458–9465.PubMedGoogle Scholar
  49. Nyfeler, S., Senn, K., and Kempf, C. (2001). Expression of Semliki Forest virus E1 protein in Escherichia coli. Low pH-induced pore formation. J. Biol. Chem. 276, 15453–15457.PubMedCrossRefGoogle Scholar
  50. Oka, T., Natori, Y., Tanaka, S., Tsurugi, K., and Endo, Y. (1990). Complete nucleotide sequence of cDNA for the cytotoxin alpha sarcin. Nucleic Acids Res. 18, 1897.PubMedCrossRefGoogle Scholar
  51. Otero, M.J. and Carrasco, L. (1987). Proteins are cointernalized with virion particles during early infection. Virology 160, 75–80.PubMedCrossRefGoogle Scholar
  52. Pavlovic, D., Neville, D.C., Argaud, O., Blumberg, B., Dwek, R.A., Fischer, W.B. et al. (2003). The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc. Natl. Acad. Sci. USA 100, 6104–6108.PubMedCrossRefGoogle Scholar
  53. Sanderson, C.M., Parkinson, J.E., Hollinshead, M., and Smith, G.L. (1996). Overexpression of the vaccinia virus A38L integral membrane protein promotes Ca2/+ influx into infected cells. J. Virol. 70, 905–914.PubMedGoogle Scholar
  54. Sanz, M.A., Madan, V., Carrasco, L., and Madan, J.L. (2003). Interfacial domains in Sindbis virus 6K protein. Detection and functional characterization. J. Biol. Chem. 278, 2051–2057.PubMedCrossRefGoogle Scholar
  55. Skehel, J.J. and Wiley, D.C. (1998). Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874.PubMedCrossRefGoogle Scholar
  56. Suarez, T., Gallaher, W.R., Agirre, A., Goni, F.M., and Nieva, J.L. (2000). Membrane interface-interacting sequences within the ectodomain of the human immunodeficiency virus type 1 envelope glycoprotein: Putative role during viral fusion. J Virol. 74, 8038–8047.PubMedCrossRefGoogle Scholar
  57. Tian, P., Hu, Y., Schilling, W.P., Lindsay, D.A., Eiden, J., and Estes, M.K. (1994). The nonstructural glycoprotein of rotavirus affects intracellular calcium levels. J. Virol. 68, 251–257.PubMedGoogle Scholar
  58. Voss, T.G., Fermin, C.D., Levy, J.A., Vigh, S., Choi, B., and Garry, R.F. (1996). Alteration of intracellular potassium and sodium concentrations correlates with induction of cytopathic effects by human immunodeficiency virus. J. Virol. 70, 5447–5454.PubMedGoogle Scholar
  59. Watanabe, T., Watanabe, S., Ito, H., Kida, H., and Kawaoka, Y. (2001). Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity. J. Virol. 75, 5656–5662.PubMedCrossRefGoogle Scholar
  60. Wengler, G., Koschinski, A., Wengler, G., and Dreyer, F. (2003). Entry of alphaviruses at the plasma membrane converts the viral surface proteins into an ion-permeable pore that can be detected by electrophysiological analyses of whole-cell membrane currents. J. Gen. Virol. 84, 173–181.PubMedCrossRefGoogle Scholar
  61. Wild, C.T., Shugars, D.C., Greenwell, T.K., McDanal, C.B., and Matthews, T.J. (1994). Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. USA 91, 9770–9774.PubMedCrossRefGoogle Scholar
  62. Yang, Z.Y., Duckers, H.J., Sullivan, N.J., Sanchez, A., Nabel, E.G., and Nabel, G.J. (2000). Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat. Med. 6, 886–889.PubMedCrossRefGoogle Scholar
  63. Zhang, H., Dornadula, G., Alur, P., Laughlin, M.A., and Pomerantz, R.J. (1996). Amphipathic domains in the C terminus of the TM protein (gp41)permeabilize HIV-1 virions: A molecular mechanism underlying natural endogenous reverse transcription. Proc. Natl. Acad. Sci. USA 93, 12519–12524.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2005

Authors and Affiliations

  • María Eugenia González
    • 1
  • Luis Carrasco
    • 2
  1. 1.Unidad de Expresión Viral, Centro Nacional de MicrobiologiaInstituto de Salud Carlos IIIMadridSpain
  2. 2.Centro de Biología Molecular Severo Ochoa, Facultad de CienciasUniversidad AutónomaCantoblanco, MadridSpain

Personalised recommendations