Advertisement

Evolution on Neutral Networks in Genetic Programming

  • Wolfgang Banzhaf
  • Andre Leier
Part of the Genetic Programming book series (GPEM, volume 9)

Abstract

We examine the behavior of an evolutionary search on neutral networks in a simple linear genetic programming system of a Boolean function space problem. To this end we draw parallels between notions in RNA-folding problems and in Genetic Programming, observe parameters of neutral networks and discuss the population dynamics via the occupation probability of network nodes in runs on their way to the optimal solution.

Keywords

neutrality linear GP networks population dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenberg, Lee (1994a). Emergent phenomena in genetic programming. In Sebald, Anthony V. and Fogel, Lawrence J., editors, Evolutionary Programming — Proceedings of the Third Annual Conference, pages 233–241, San Diego, CA, USA. World Scientific Publishing.Google Scholar
  2. Altenberg, Lee (1994b). The evolution of evolvability in genetic programming. In Kinnear, Jr., Kenneth E., editor, Advances in Genetic Programming, chapter 3, pages 47–74. MIT Press.Google Scholar
  3. Angeline, Peter John (1994). Genetic programming and emergent intelligence. In Kinnear, Jr., Kenneth E., editor, Advances in Genetic Programming, chapter 4, pages 75–98. MIT Press.Google Scholar
  4. Babajide, A., Hofacker, I.L., Sippl, M.J., and Stadler, P.F. (1997). Neutral networks in protein space. Fold. Des., 2:261–269.CrossRefGoogle Scholar
  5. Banzhaf, W. and Langdon, W. B. (2002). Some considerations on the reason for bloat. Genetic Programming and Evolvable Machines, 3(1):81–91.CrossRefGoogle Scholar
  6. Banzhaf, W., Nordin, P., Keller, R., and Franconce, F. (1998). Genetic Programming-An Introduction. Morgan Kaufmann, San Francisco, CA.Google Scholar
  7. Banzhaf, Wolfgang (1994). Genotype-phenotype-mapping and neutral variation — A case study in genetic programming. In Davidor, Yuval, Schwefel, Hans-Paul, and Männer, Reinhard, editors, Parallel Problem Solving from Nature III, volume 866 of LNCS, pages 322–332, Jerusalem. Springer-Verlag.Google Scholar
  8. Barnett, Lionel (2001). Netcrawling-optimal evolutionary search with neutral networks. In Proceedings of the 2001 Congress on Evolutionary Computation, 2001, pages 30–37. IEEE Press.Google Scholar
  9. Brameier, Markus and Banzhaf, Wolfgang (2001). A comparison of linear genetic programming and neural networks in medical data mining. IEEE Transactions on Evolutionary Computation, 5(1):17–26.CrossRefGoogle Scholar
  10. Ebner, M., Shackleton, M., and Shipman, R. (2002). How neutral networks influence evolvability. Complexity, 7:19–33.MathSciNetCrossRefGoogle Scholar
  11. Forst, C.V., Reidys, C, and Weber, J. (1995). Evolutionary dynamics and optimization: Neutral networks as model-landscapes for rna secondary-structure folding-landscapes. In Advances in Artificial Life, Proc ECAL 1995. Springer-Verlag, LNAI Vol 929.Google Scholar
  12. Gruener, W., Giegerich, R., Strothmann, D., Reidys, C.M., Weber, J., Hofacker, I.L., Stadler, P.F., and Schuster, P. (1996). Analysis of dna sequence structure maps by exhaustive enumeration-part i: Neutral networks. Monatsh. hemie, 127:355–377.CrossRefGoogle Scholar
  13. Huynen, M., Stadler, P.F., and Fontana, W. (1996). Smoothness within ruggedness: The role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA, 93:397–401.CrossRefGoogle Scholar
  14. Kimura, Motoo (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press.Google Scholar
  15. Kirschner, M. and Gerhart, J. (1998). Evolvability. Proc. Natl. Acad. Science (USA), 95:8420–8427.CrossRefGoogle Scholar
  16. Koza, John R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.Google Scholar
  17. Langdon, W. B. and Poli, R. (1998). Fitness causes bloat: Mutation. In Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C, editors, Proceedings of the First European Workshop on Genetic Programming, volume 1391 of LNCS, pages 37–48, Paris. Springer-Verlag.Google Scholar
  18. Langdon, W. B. and Poli, R. (1999). Boolean functions fitness spaces. In Poli, Riccardo, Nordin, Peter, Langdon, William B., and Fogarty, Terence C, editors, Genetic Programming, Proceedings of EuroGP’99, volume 1598 of LNCS, pages 1–14, Goteborg, Sweden. Springer-Verlag.Google Scholar
  19. Langdon, William B. and Banzhaf, Wolfgang (2005). Repeated sequences in linear genetic programming genomes. Complex Systems. in press.Google Scholar
  20. Lovacz, L. (1993). Random walks on graphs: A survey. Technical report, Department of Computer Science, Yale University, CT, USA.Google Scholar
  21. Nimwegen, E.v., Crutchfield, J.P., and Huynen, M. (1998). Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA, 96:9716–9720.CrossRefGoogle Scholar
  22. Noh, J.D. and Rieger, H. (2004). Random walks on complex networks. Phys. Rev. Lett., 92:118701-1–3.CrossRefGoogle Scholar
  23. Nordin, Peter and Banzhaf, Wolfgang (1995). Complexity compression and evolution. In Eshelman, L., editor, Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95), pages 310–317, Pittsburgh, PA, USA. Morgan Kaufmann.Google Scholar
  24. Reidys, C.M., Stadler, P.F., and Schuster, P. (1997). Generic properties of combinatory maps-neutral networks of rna secondary structures. Bull. Math. Biol, 59:339–397.CrossRefGoogle Scholar
  25. Schultes, E.A. and Bartel, D.P. (2000). One sequence, two ribozymes: Implications for the emergence of new ribozyme folds. Science, 289:448–452.CrossRefGoogle Scholar
  26. Schuster, P., Fontana, W., Stadler, P.F., and Hofacker, I.L. (1994). From sequences to shapes and back: A case study in rna secondary structures. Proc. Roy. Soc. Lond. B, 255:279–284.Google Scholar
  27. Schuster, Peter (1995). Extended molecular evolutionary biology: Articial life bridging the gap between chemistry and biology. In Langton, C.G., editor, Artificial Life: An Overview, pages 39–60. MIT Press, Cambridge, MA.Google Scholar
  28. Soule, Terence, Foster, James A., and Dickinson, John (1996). Code growth in genetic programming. In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L., editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 215–223, Stanford University, CA, USA. MIT Press.Google Scholar
  29. Soule, Terence and Heckendorn, Robert B. (2002). An analysis of the causes of code growth in genetic programming. Genetic Programming and Evolvable Machines, 3(3):283–309.CrossRefGoogle Scholar
  30. Stephens, C. R. and Vargas, J. Mora (2000). Effective fitness as an alternative paradigm for evolutionary computation I: General formalism. Genetic Programming and Evolvable Machines, 1(4):363–378.CrossRefGoogle Scholar
  31. T. Smith, Ph. Husbands and O’Shea, M. (2001). Neutral networks in an evolutionary robotics search space. In Proceedings of the 2001 Congress on Evolutionary Computation, 2001, pages 136–145. IEEE Press.Google Scholar
  32. Vassilev, Vesselin K., Fogarty, Terence C, and Miller, Julian F. (2003). Smoothness, ruggedness and neutrality of fitness landscapes: from theory to application. In Ghosh, Ashish and Tsutsui, Shigeyoshi, editors, Advances in evolutionary computing: theory and applications, pages 3–44. Springer-Verlag New York, Inc.Google Scholar
  33. Vassilev, Vesselin K. and Miller, Julian F. (2000a). The advantages of landscape neutrality in digital circuit evolution. In Proceedings of the Third International Conference on Evolvable Systems, pages 252–263. Springer-Verlag.Google Scholar
  34. Vassilev, Vesselin K. and Miller, Julian F. (2000b). Embedding landscape neutrality to build a bridge from the conventional to a more efficient three-bit multiplier circuit. In Whitley, Darrell, Goldberg, David, Cantu-Paz, Erick, Spector, Lee, Parmee, Ian, and Beyer, Hans-Georg, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), page 539, Las Vegas, Nevada, USA. Morgan Kaufmann.Google Scholar
  35. Wagner, G.P. and Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50:967–976.CrossRefGoogle Scholar
  36. Yu, Tina and Miller, Julian (2001). Neutrality and the evolvability of boolean function landscape. In Miller, Julian F., Tomassini, Marco, Lanzi, Pier Luca, Ryan, Conor, Tettamanzi, Andrea G. B., and Langdon, William B., editors, Genetic Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS, pages 204–217, Lake Como, Italy. Springer-Verlag.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Wolfgang Banzhaf
    • 1
  • Andre Leier
    • 1
  1. 1.Department of Computer ScienceMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations