Advertisement

Limitations of the Isolated GP-STN Network

  • Ian M. Stanford
  • Krim C. Loucif
  • Claire L. Wilson
  • Diana Cash
  • Michael G. Lacey
Part of the Advances in Behavioral Biology book series (ABBI, volume 56)

6. Conclusions

An in vitro mouse slice preparation from control and MPTP-treated mice in which functional reciprocal GP-STN connectivity is maintained, does not produce oscillatory bursting or synchronous activity neuronal activity. Pharmacological interventions that produce bursting activity do so without concomitant neuronal synchrony, or a requirement for glutamate or GABA transmission. Pre-treatment with MPTP did not alter this behaviour. Thus, we have no evidence that the functionally connected, but isolated, GP — STN network can act as a pacemaker for synchronous correlated activity in the basal ganglia and must conclude that other inputs such as those from cortex and/or striatum are required.

Keywords

Subthalamic Nucleus Interspike Interval Bicuculline Methiodide Oscillatory Burst Rebound Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Albin, R.L., Young, A.B., and Penney, J.B., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci. 12:366–375.PubMedCrossRefGoogle Scholar
  2. Araki, T., Mikami, T., Tanji, H., Matsubara, M., Imai, Y., Mizugaki, M., and Itoyama, Y., 2001, Biochemical and immunohistological changes in the brain of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse, Eur. J. Pharm. Sci. 12:231–8.PubMedCrossRefGoogle Scholar
  3. Bergman, H., Wichmann, T., Karmon, B., and Delong, M.R., 1994, The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism, J. Neurophysiol. 72:507–520.PubMedGoogle Scholar
  4. Beurrier C., Congar P., Bioulac B., Hammond C., 1999, Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode, J. Neurosci. 19:599–609.PubMedGoogle Scholar
  5. Bevan M.D., Wilson C.J., 1999, Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons, J. Neurosci. 19:7617–7628.PubMedGoogle Scholar
  6. Bevan, M.D., Wilson, C.J., Bolam, J.P., Magill, P.J., 2000, Equilibrium potential of GABAA current and implications for rebound burst firing in rat subthalamic neurons in vitro, J. Neurophysiol. 83:3169–3172.PubMedGoogle Scholar
  7. Bevan, M.D., Magill, P.J., Hallworth, N.E., Bolam, J.P., and Wilson, C.J. 2002, Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs, J. Neurophysiol. 87:1348–1362.PubMedGoogle Scholar
  8. Cooper, A.J., Stanford, I.M., 2000, Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neuron in vitro, J. Physiol. 527.2:291–304.CrossRefGoogle Scholar
  9. DeLong, M., 1990, Primate models of movement disorders of basal ganglia origin, Trends Neurosci. 13(7):281–285.PubMedCrossRefGoogle Scholar
  10. Filion, M., Tremblay, L., 1991, Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism, Brain Res. 547:142–151.PubMedCrossRefGoogle Scholar
  11. Johnson, S.W, Seutin, V., 1997, Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents, Neurosci. Letts. 231:13–16.CrossRefGoogle Scholar
  12. Kaneoke, Y., Vitek, J.L., 1996, Burst and oscillation as disparate neuronal properties, J. Neurosci Methods, 68:211–223.PubMedCrossRefGoogle Scholar
  13. Lisman J.E., 1997, Bursts as a unit of neural information: Making unreliable synapses reliable, Trends Neurosci. 20:38–43.PubMedCrossRefGoogle Scholar
  14. Magill, P.J., Bolam, J.P., Bevan, M.D., 2000, Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram, J. Neurosci. 20:820–833.PubMedGoogle Scholar
  15. Magill, P.J., Bolam, J.P., Bevan, M.D., 2001, Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network, Neurosci. 106:313–330.CrossRefGoogle Scholar
  16. Magnin, M., Morel, A., Jeanmonod, D., 2002, Single unit analysis of the pallidum, thalamus, and subthalamic nucleus in Parkinsonian patients, Neurosci. 96:549–564.CrossRefGoogle Scholar
  17. Nakanishi, H., Kita, H., Kitai, S.T. 1987, Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparation, Brain Res. 437:35–44.PubMedCrossRefGoogle Scholar
  18. Nambu, A., Llinás, R., 1994, Electrophysiology of globus pallidus neurons in vitro, J. Neurophysiol. 72:1127–1139.Google Scholar
  19. Nini, A., Feingold, A., Slovin, H. & Bergman, H., 1995, Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol. 74:1800.PubMedGoogle Scholar
  20. Plenz, D., Kitai, S.T. 1999, A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus, Nature 400:677–682.PubMedCrossRefGoogle Scholar
  21. Seutin, V., Johnson, S.W., North, R.A., 1993, Apamin increases NMDA-induced burst-firing of rat mesencephalic dopamine neurons, Brain Res. 630:341–344.PubMedCrossRefGoogle Scholar
  22. Wilson C.J., Weyrick A., Terman D., Hallworth N.E., Bevan M.D., 2004a, A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons, J. Neurophysiol. 91:1963–1980.PubMedCrossRefGoogle Scholar
  23. Wilson C.L., Puntis M., Lacey M.G., 2004b, Overwhelmingly asynchronous firing of rat subthalamic nucleus neurons in brain slices provides little evidence for intrinsic connectivity, Neurosci. 123:187–200.CrossRefGoogle Scholar
  24. Raz, A., Vaadia, E., Bergman, H., 2000, Firing Patterns and Correlations of Spontaneous Discharge of Pallidal Neurons in the Normal and the Tremulous 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Vervet Model of Parkinsonism, J. Neurosci. 20:8559–8571.PubMedGoogle Scholar
  25. Raz, A., Frechter-Mazar, V., Feingold, A., Abeles, M., Vaadia, E. & Bergman, H., 2001, Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. J. Neurosci. 21:RC128 (1–5).PubMedGoogle Scholar
  26. Zhu, Z.T., Munhall, A., Shen, K.Z., Johnson, S.W., 2004, Calcium-dependent subthreshold oscillations determine bursting activity induced by N-methyl-D-aspartate in rat subthalamic neurons in vitro. Eur. J. Neurosci. 19:1296–1304.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Ian M. Stanford
    • 1
  • Krim C. Loucif
    • 1
  • Claire L. Wilson
    • 1
  • Diana Cash
    • 2
  • Michael G. Lacey
    • 3
  1. 1.School of Life and Health SciencesAston UniversityBirminghamUK
  2. 2.Neuroimaging Research GroupInstitute of PsychiatryLondonUK
  3. 3.The Division of Neuroscience, The Medical SchoolThe University of BirminghamEdgbaston, BirminghamUK

Personalised recommendations