Advertisement

Sequential Motor Behavior and the Basal Ganglia

Evidence from a serial reaction time task in monkeys
  • Robert S. Turner
  • Kevin McCairn
  • Donn Simmons
  • Izhar Bar-Gad
Part of the Advances in Behavioral Biology book series (ABBI, volume 56)

Keywords

Basal Ganglion Globus Pallidus Sequence Learning Serial Reaction Time Task Sequence Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Aldridge, J.W., and Berridge, K.C., 1998, Coding of serial order by neostriatal neurons: a “natural action” approach to movement sequence, J. Neurosci. 18:2777–2787.PubMedGoogle Scholar
  2. Aldridge, J.W., Berridge, K.C., and Rosen, A.R., 2004, Basal ganglia neural mechanisms of natural movement sequences, Can J. Physiol. Pharmacol. 82:732–739.PubMedCrossRefGoogle Scholar
  3. Baron, M.S., Vitek, J.L., Bakay, R.A.E., Green, J., Kaneoke, Y., Hashimoto, T., Turner, R.S., Woodard, J.L., Cole, S.A., McDonald, W.M., and DeLong, M.R., 1996, Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study, Ann. Neurol. 40:355–366.PubMedCrossRefGoogle Scholar
  4. Baron, M.S., Wichmann, T., Ma, D., and DeLong, M.R., 2002, Effects of transient focal inactivation of the basal ganglia in parkinsonian primates, J. Neurosci. 22:592–599.PubMedGoogle Scholar
  5. Baunez, C., and Robbins, T.W., 1999, Effects of transient inactivation of the subthalamic nucleus by local muscimol and APV infusions on performance on the five-choice serial reaction time task in rats, Psychopharmacology (Berl.) 141:57–65.PubMedCrossRefGoogle Scholar
  6. Benecke, R., Rothwell, J.C., Dick, J.P.R., Day, B.L., and Marsden, C.D., 1987, Disturbances of sequential movements in patients with Parkinson’s disease, Brain 110:361–379.PubMedGoogle Scholar
  7. Benecke, R., Rothwell, J.C., Dick, J.P.R., Day, B.L., and Marsden, C.D., 1986, Performance of simultaneous movements in patients with Parkinson’s disease, Brain 109:739–757.PubMedGoogle Scholar
  8. Bischoff-Grethe, A., Goedert, K.M., Willingham, D.T., and Grafton, S.T., 2004, Neural substrates of response-based sequence learning using fMRI, J. Cogn. Neurosci. 16:127–138.PubMedCrossRefGoogle Scholar
  9. Bottjer, S.W., Miesner, E.A., and Arnold, A.P., 1984, Forebrain lesions disrupt development but not maintenance of song in passerine birds, Science 224:901–903.PubMedGoogle Scholar
  10. Brotchie, P., Iansek, R., and Horne, M.K., 1991, Motor function of the monkey globus pallidus. 2. Cognitive aspects of movement and phasic neuronal activity, Brain 114:1685–1702.PubMedGoogle Scholar
  11. Brown, R.G., Jahanshahi, M., Limousin-Dowsey, P., Thomas, D., Quinn, N.P., and Rothwell, J.C., 2003, Pallidotomy and incidental sequence learning in Parkinson’s disease, Neuroreport 14:21–24.PubMedCrossRefGoogle Scholar
  12. Christie, M.A., and Hersch, S.M., 2004, Demonstration of nondeclarative sequence learning in mice: development of an animal analog of the human serial reaction time task, Learn Mem. 11:720–723.PubMedCrossRefGoogle Scholar
  13. Cohen, A., Ivry, R.I., and Keele, S.W., 1990, Attention and structure in sequence learning, J. Exp. Psychol.: Learning Memory Cogn. 16:17–30.CrossRefGoogle Scholar
  14. Cromwell, H.C., and Berridge, K.C., 1996, Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax, J. Neurosci. 16:3444–3458.PubMedGoogle Scholar
  15. Curran, T., 1998, Implicit sequence learning from a cognitive neuroscience perspective, in: Handbook of Implicit Learning, M.A. Stadler and P.A. Frensch, eds., Sage, Thousand Oaks, CA, pp. 365–400.Google Scholar
  16. Eichenbaum, H., and Cohen, N.J., 2001, From Conditioning to Conscious Recollection: Memory Systems of the Brain, Oxford University Press, Oxford, New York.Google Scholar
  17. Exner, C., Koschack, J., and Irle, E., 2002, The differential role of premotor frontal cortex and basal ganglia in motor sequence learning: evidence from focal basal ganglia lesions, Learn Mem. 9:376–386.PubMedCrossRefGoogle Scholar
  18. Filion, M., and Tremblay, L., 1991, Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism, Brain Res. 547:142–151.PubMedCrossRefGoogle Scholar
  19. Grafton, S.T., Hazeltine, E., and Ivry, R., 1995, Functional anatomy of sequence learning in normal humans, J. Cogn. Neurosci. 7:497–510.CrossRefGoogle Scholar
  20. Graybiel, A.M., 1998, The basal ganglia and chunking of action repertoires, Neurobiol. Learn Mem. 70:119–136.PubMedCrossRefGoogle Scholar
  21. Graybiel, A.M., 2004, Network-level neuroplasticity in cortico-basal ganglia pathways, Parkinsonism Relat. Disord. 10:293–296.PubMedCrossRefGoogle Scholar
  22. Green, A.L., Joint, C., Sethi, H., Bain, P., and Aziz, T.Z., 2004, Cost analysis of unilateral and bilateral pallidotomy for Parkinson’s disease, J. Clin. Neurosci. 11:829–834.PubMedCrossRefGoogle Scholar
  23. Hazeltine, E., Grafton, S.T., and Ivry, R., 1997, Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study, Brain 120:123–140.PubMedCrossRefGoogle Scholar
  24. Hikosaka, O., Nakamura, K., Sakai, K., and Nakahara, H., 2002a, Central mechanisms of motor skill learning, Curr. Opin. Neurobiol. 12:217–222.PubMedCrossRefGoogle Scholar
  25. Hikosaka, O., Rand, M.K., Nakamura, K., Miyachi, S., Kitaguchi, K., Sakai, K., Lu, X., and Shimo, Y., 2002b, Long-term retention of motor skill in macaque monkeys and humans, Exp. Brain Res. 147:494–504.PubMedCrossRefGoogle Scholar
  26. Hikosaka, O., and Wurtz, R.H., 1983, Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses, J. Neurophysiol. 49:1268–1284.PubMedGoogle Scholar
  27. Hoover, J.E., and Strick, P.L., 1993, Multiple output channels in the basal ganglia, Science 259:819–821.PubMedGoogle Scholar
  28. Horak, F.B., and Anderson, M.E., 1984, Influence of globus pallidus on arm movements in monkeys. I. Effects of kainic acid-induced lesions, J. Neurophysiol. 52:290–304.PubMedGoogle Scholar
  29. Inase, M., Buford, J.A., and Anderson, M.E., 1996, Changes in the control of arm position, movement, and thalamic discharge during local inactivation in the globus pallidus of the monkey, J. Neurophysiol. 75:1087–1104.PubMedGoogle Scholar
  30. Jog, M.S., Kubota, Y., Connolly, C.I., Hillegaart, V., and Graybiel, A.M., 1999, Building neural representations of habits, Science 286:1745–1749.PubMedCrossRefGoogle Scholar
  31. Keele, S.W., Ivry, R., Mayr, U., Hazeltine, E., and Heuer, H., 2003, The cognitive and neural architecture of sequence representation, Psychol. Rev. 110:316–339.PubMedCrossRefGoogle Scholar
  32. Keele, S.W., Jennings, P., Jones, S., Caulton, S., Caulton, D., and Cohen, A., 1995, On the modularity of sequence representation, J. Motor. Behav. 27:17–30.Google Scholar
  33. Kermadi, I., and Joseph, J.P., 1995, Activity in the caudate nucleus of monkey during spatial sequencing, J. Neurophysiol. 74:911–933.PubMedGoogle Scholar
  34. Kermadi, I., Jurquet, Y., Arzi, M., and Joseph, J.P., 1993, Neural activity in the caudate nucleus of monkeys during spatial sequencing, Exp. Brain Res. 94:352–356.PubMedCrossRefGoogle Scholar
  35. Kimura, M., Aosaki, T., Hu, Y., Ishida, A., and Watanabe, K., 1992, Activity of primate putamen neurons is selective to the mode of voluntary movement: visually guided, self-initiated or memory-guided, Exp. Brain Res. 89:473–477.PubMedCrossRefGoogle Scholar
  36. Kimura, M., Matsumoto, N., Okahashi, K., Ueda, Y., Satoh, T., Minamimoto, T., Sakamoto, M., and Yamada, H., 2003, Goal-directed, serial and synchronous activation of neurons in the primate striatum, Neuroreport 14:799–802.PubMedCrossRefGoogle Scholar
  37. Koch, I., and Hoffmann, J., 2000, The role of stimulus-based and response-based spatial information in sequence learning, J. Exp. Psychol. Learn Mem. Cogn. 26:863–882.PubMedCrossRefGoogle Scholar
  38. Laitinen, L.V., 1995, Pallidotomy for Parkinson’s diesease, Func. Neurol. 6:105–112.Google Scholar
  39. Lee, D., and Quessy, S., 2003, Activity in the supplementary motor area related to learning and performance during a sequential visuomotor task, J. Neurophysiol. 89:1039–1056.PubMedCrossRefGoogle Scholar
  40. Limousin, P., Brown, R.G., Jahanshahi, M., Asselman, P., Quinn, N.P., Thomas, D., Obeso, J.A., and Rothwell, J.C., 1999, The effects of posteroventral pallidotomy on the preparation and execution of voluntary hand and arm movements in Parkinson’s disease, Brain 122:315–327.PubMedCrossRefGoogle Scholar
  41. Lu, X., and Ashe, J., 2005, Anticipatory activity in primary motor cortex codes memorized movement sequences, Neuron 45:967–973.PubMedCrossRefGoogle Scholar
  42. Marsden, C.D., 1984, Which motor disorder in Parkinson’s disease indicates the true motor function of the basal ganglia?, in: Functions of the Basal Ganglia, C.F. Symp, ed., Pitman, London, pp. 225–237.Google Scholar
  43. Marsden, C.D., and Obeso, J.A., 1994, The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease, Brain 117:877–897.PubMedGoogle Scholar
  44. Miller, W.C., and DeLong, M.R., 1988, Parkinsonian symptomatology: an anatomical and physiological analysis, Ann. NY Acad. Sci. 515:287–302.PubMedGoogle Scholar
  45. Mink, J., 1996, The basal ganglia: focused selection and inhibition of competing motor programs, Prog. Neurobiol. 50:381–425.PubMedCrossRefGoogle Scholar
  46. Mink, J., and Thach, W., 1991, Basal ganglia motor control. III. pallidal ablation: normal reaction time, muscle cocontraction, and slow movement, J. Neurophysiol. 65:330–351.PubMedGoogle Scholar
  47. Miyachi, S., Hikosaka, O., and Lu, X., 2002, Differential activation of monkey striatal neurons in the early and late stages of procedural learning, Exp. Brain Res. 146:122–126.PubMedCrossRefGoogle Scholar
  48. Miyachi, S., Hikosaka, O., Miyashita, K., Karadi, Z., and Rand, M.K., 1997, Differential roles of monkey striatum in learning of sequential hand movement, Exp. Brain Res. 115:1–5.PubMedCrossRefGoogle Scholar
  49. Mushiake, H., and Strick, P.L., 1995, Pallidal neuron activity during sequential arm movements., J. Neurophysiol. 74:2754–2758.PubMedGoogle Scholar
  50. Nissen, M.J., and Bullemer, P., 1987, Attentional requirements of learning: evidence from performance measures, Cogn. Psychol. 19:1–32.CrossRefGoogle Scholar
  51. Nottebohm, F., Stokes, T.M., and Leonard, C.M., 1976, Central control of song in the canary, Serinus canarius, J. Comp. Neurol. 165:457–486.PubMedCrossRefGoogle Scholar
  52. Penhune, V.B., and Doyon, J., 2002, Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences, J. Neurosci. 22:1397–1406.PubMedGoogle Scholar
  53. Procyk, E., Ford Dominey, P., Amiez, C., and Joseph, J.P., 2000, The effects of sequence structure and reward schedule on serial reaction time learning in the monkey, Brain Res. Cogn. Brain Res. 9:239–248.PubMedCrossRefGoogle Scholar
  54. Rand, M.K., Hikosaka, O., Miyachi, S., Lu, X., and Miyashita, K., 1998, Characteristics of a long-term procedural skill in the monkey, Exp. Brain Res. 118:293–297.PubMedCrossRefGoogle Scholar
  55. Rhodes, B.J., Bullock, D., Verwey, W.B., Averbeck, B.B., and Page, M.P., 2004, Learning and production of movement sequences: behavioral, neurophysiological, and modeling perspectives, Hum. Mov. Sci. 23:699–746.PubMedCrossRefGoogle Scholar
  56. Sachdev, R.N., Gilman, S., and Aldridge, J.W., 1991, Bursting properties of units in cat globus pallidus and entopeduncular nucleus: the effect of excitotoxic striatal lesions, Brain Res. 549:194–204.PubMedCrossRefGoogle Scholar
  57. Sage, J.R., Anagnostaras, S.G., Mitchell, S., Bronstein, J.M., De Salles, A., Masterman, D., and Knowlton, B.J., 2003, Analysis of probabilistic classification learning in patients with Parkinson’s disease before and after pallidotomy surgery, Learn Mem. 10:226–236.PubMedCrossRefGoogle Scholar
  58. Smeding, H.M., Esselink, R.A., Schmand, B., Koning-Haanstra, M., Nijhuis, I., Wijnalda, E.M., and Speelman, J.D., 2005, Unilateral pallidotomy versus bilateral subthalamic nucleus stimulation in PD A comparison of neuropsychological effects, J. Neurol. 252:176–182.PubMedCrossRefGoogle Scholar
  59. Smith, J., Siegert, R.J., McDowall, J., and Abernethy, D., 2001, Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson’s disease, Brain Cogn. 45:378–391.PubMedCrossRefGoogle Scholar
  60. Turner, R.S., and Anderson, M.E., 2005, Context-dependent modulation of movement-related discharge in the primate globus pallidus, J. Neurosci. 25:2965–2976.PubMedCrossRefGoogle Scholar
  61. Ueda, Y., and Kimura, M., 1997, Contrasting properties of activity of primate putamen and primary motor cortex neurons during sequential motor behavior, Soc. Neurosci. Abstr. 23:465.Google Scholar
  62. Verwey, W.B., Lammens, R., and van Honk, J., 2002, On the role of the SMA in the discrete sequence production task: a TMS study. Transcranial Magnetic Stimulation, Neuropsychologia 40:1268–1276.PubMedCrossRefGoogle Scholar
  63. Wenger, K.K., Musch, K.L., and Mink, J.W., 1999, Impaired reaching and grasping after focal inactivation of globus pallidus pars interna in the monkey, J. Neurophysiol. 82:2049–2060.PubMedGoogle Scholar
  64. Willingham, D.B., Wells, L.A., and Farrell, J.M., 2000, Implicit motor sequence learning is represented in response locations, Mem. Cognit. 28:366–375.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Robert S. Turner
    • 1
  • Kevin McCairn
    • 1
  • Donn Simmons
    • 1
  • Izhar Bar-Gad
    • 1
  1. 1.Department of Neurological SurgeryUCSFSan Francisco

Personalised recommendations