Advertisement

Oscillations in the Basal Ganglia: The good, the bad, and the unexpected

  • Thomas Boraud
  • Peter Brown
  • Joshua A. Goldberg
  • Ann M. Graybiel
  • Peter J. Magill
Part of the Advances in Behavioral Biology book series (ABBI, volume 56)

Keywords

Basal Ganglion Spike Train Subthalamic Nucleus Oscillatory Activity Beta Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. Abeles, M., 1982, Quantification, smoothing and confidence limits for single-units’ histograms. J. Neurosci. Methods 5:317.PubMedCrossRefGoogle Scholar
  2. Allers, K.A., Ruskin, D.N., Bergstrom, D.A., Freeman, L.E., Ghazi, L.J., Tierney, P.L., and Walters, J.R., 2002, Multisecond periodicities in basal ganglia firing rates correlate with theta bursts in transcortical and hippocampal EEG. J. Neurophysiol. 87:1118.PubMedGoogle Scholar
  3. Amirnovin, R., Williams, Z.M., Cosgrove, G.R., and Eskandar, E.N., 2004, Visually guided movements suppress subthalamic oscillations in Parkinson’s disease patients. J. Neurosci. 24:11302.PubMedCrossRefGoogle Scholar
  4. Bar-Gad, I., Ritov, Y., and Bergman, H., 2001, The neuronal refractory period causes a short-term peak in the autocorrelation function. J. Neurosci. Methods 104:155.PubMedCrossRefGoogle Scholar
  5. Bar-Gad, I., Morris, G., and Bergman, H., 2003, Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog. Neurobiol. 71:439.PubMedCrossRefGoogle Scholar
  6. Bennett, B.D., and Wilson, C.J., 1999, Spontaneous activity of neostriatal cholinergic interneurons in vitro. J. Neurosci. 19:5586.PubMedGoogle Scholar
  7. Bergman, H., Wichmann, T., Karmon, B., and DeLong, M.R., 1994, The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J. Neurophysiol. 72:507.PubMedGoogle Scholar
  8. Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., and Vaadia, E., 1998, Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. 21:32.PubMedCrossRefGoogle Scholar
  9. Berke, J.D., Okatan, M., Skurski, J., and Eichenbaum, H.B., 2004, Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 43:883.PubMedCrossRefGoogle Scholar
  10. Bevan, M.D., Magill, P.J., Terman, D., Bolam, J.P., and Wilson, C.J., 2002, Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 25:525.PubMedCrossRefGoogle Scholar
  11. Boraud, T., Bezard, E., Bioulac, B., and Gross, C.E., 2002, From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog. Neurobiol. 66:265.PubMedCrossRefGoogle Scholar
  12. Brillinger, D.R., 1975, Statistical inference for stationary point processes, in: Stochastic Processes and Related Topics, Vol.1, M.I. Puri, ed., Academic Press, New York, pp. 55–79.Google Scholar
  13. Brown, P., 2003, The oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov. Disord. 18:357.PubMedCrossRefGoogle Scholar
  14. Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., and Di Lazzaro, V., 2001, Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 21:1033.PubMedGoogle Scholar
  15. Brown, P., Mazzone, P., Oliviero, A., Altibrandi, M.G., Pilato, F., Tonali, P.A., and Di Lazzaro, V., 2004, Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Exp. Neurol. 188:480.PubMedCrossRefGoogle Scholar
  16. Buzsáki, G., 2002, Theta oscillations in the hippocampus. Neuron 33:325.PubMedCrossRefGoogle Scholar
  17. Buzsáki, G., and Draguhn, A., 2004, Neuronal oscillations in cortical networks. Science 304:1926.PubMedCrossRefGoogle Scholar
  18. Cassidy, M., Mazzone, P., Oliviero, A., Insola, A., Tonali, P., Di Lazzaro, V., and Brown, P., 2002, Movement-related changes in synchronization in the human basal ganglia. Brain 125:1235.PubMedCrossRefGoogle Scholar
  19. Courtemanche, R., Fujii, N., and Graybiel, A.M., 2003, Synchronous, focally modulatedβ-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J. Neurosci. 23:11741.PubMedGoogle Scholar
  20. Creutzfeld, O.D., Watanabe, S., and Lux, H.D., 1966a, Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr. Clin. Neurophysiol. 20:1.CrossRefGoogle Scholar
  21. Creutzfeld, O.D., Watanabe, S., and Lux, H.D., 1966b, Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr. Clin. Neurophysiol. 20:19.CrossRefGoogle Scholar
  22. Crone, N.E., Migloiretti, D.L., Gordon, B., and Lesser, R.P., 1998, Functional mapping of human sensorimotor cortex with electroencephalographic analysis. 2. Event related synchronisation in the gamma band. Brain 121:2301.PubMedCrossRefGoogle Scholar
  23. DeCharms, R.C., and Zador, A., 2000, Neural representation and the cortical code. Annu. Rev. Neurosci. 23:613.PubMedCrossRefGoogle Scholar
  24. DeCoteau, W.E., Mao, J., Gibson, D.J., Courtemanche, R., Kubota, Y., and Graybiel, A.M., 2004, Striatal theta-gamma local field potential oscillations coordinate with hippocampus rhythms in behaviorally selective patterns. Soc. Neurosci. Abstr. Program No. 70.4.Google Scholar
  25. DeCoteau, W.E., Mao, J., Gibson, D.J., Courtemanche, R., Kubota, Y., and Graybiel, A.M, 2005, Theta-gamma oscillations in local field potentials are prominent in the rat striatum and are coordinated with hippocampal rhythms in behaviorally selective patterns. Submitted.Google Scholar
  26. DeLong, M.R., 1990, Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13:281.PubMedCrossRefGoogle Scholar
  27. Destexhe, A., Contreras, D., and Steriade, M., 1999, Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19:4595.PubMedGoogle Scholar
  28. Donoghue, J.P., Sanes, J.N., Hastopoulos, N.G., and Gaál, G., 1998, Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J. Neurophysiol. 79:159.PubMedGoogle Scholar
  29. Doyle, L.M.F., Kühn A.A., Hariz, M., Kupsch, A., Schneider, G-H., and Brown, P., 2005, Levodopa-induced modulation of subthalamic beta oscillations during self-paced movements in patients with Parkinson’s disease. Eur. J. Neurosci. 21:1403.PubMedCrossRefGoogle Scholar
  30. Engel, A.K., Fries, P., and Singer, W., 2001, Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 10:704.CrossRefGoogle Scholar
  31. Engel, A.K., and Singer, W., 2001, Temporal binding and the neural correlates of sensory awareness. Trends Cog. Sci. 5:16–25.CrossRefGoogle Scholar
  32. Foffani, G., Priori, A., Egidi, M., Rampini, P., Tamma, F., Caputo, E., Moxon, K.A., Cerutti, S., and Barbieri, S., 2003, 300-Hz subthalamic oscillations in Parkinson’s disease. Brain 126:2153.PubMedCrossRefGoogle Scholar
  33. Fogelson, N., Kühn, A.A., Silberstein, P., Dowsey Limousin, P., Hariz, M., Trottenberg, T., Kupsch, A., and Brown, P., 2005, Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neurosci. Lett., in press.Google Scholar
  34. Frost, J.D., 1968, EEG-intracellular potential relationships in isolated cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 24:434.PubMedCrossRefGoogle Scholar
  35. Gervasoni, D., Lin, S.C., Ribeiro, S., Soares, E.S., Pantoja, J., and Nicolelis, M.A., 2004, Global forebrain dynamics predict rat behavioral states and their transitions. J. Neurosci. 24:11137.PubMedCrossRefGoogle Scholar
  36. Goldberg, J.A., Boraud, T., Maraton, S., Haber, S.N., Vaadia, E., and Bergman, H., 2002, Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease. J. Neurosci. 22:4639.PubMedGoogle Scholar
  37. Goldberg, J.A., Rokni, U., Boraud, T., Vaadia, E., and Bergman, H., 2004, Spike synchronization in the cortex-basal ganglia networks of parkinsonian primates reflects global dynamics of the local field potentials. J. Neurosci. 24:6003.PubMedCrossRefGoogle Scholar
  38. Goto, Y., and O’Donnell, P., 2001a, Network synchrony in the nucleus accumbens in vivo. J. Neurosci. 21:4498.PubMedGoogle Scholar
  39. Goto, Y., and O’Donnell, P., 2001b, Synchronous activity in the hippocampus and nucleus accumbens in vivo. J. Neurosci. 21:RC131.Google Scholar
  40. Halliday, D.M., Rosenberg, J.R., Amjad, A.M., Breeze, P., Conway, B.A., and Farmer, S.F., 1995, A framework for the analysis of mixed time series/point process data — theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog. Biophys. Mol. Biol. 64:237.PubMedCrossRefGoogle Scholar
  41. Hassler, R., and Dieckmann, G., 1967, Arrest reaction, delayed inhibition and unusual gaze behaviour resulting from stimulation of the putamen in awake unrestrained cats. Brain Res. 5:504.PubMedCrossRefGoogle Scholar
  42. Heimer, G., Bar-Gad, I., Goldberg, J.A., and Bergman, H., 2002, Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism. J. Neurosci. 22:7850.PubMedGoogle Scholar
  43. Hubbard, J.I., Llinás, R., and Quastel, D.M.J., 1969, Extracellular field potentials in the central nervous system, in: Electrophysiological Analysis of Synaptic Transmission, Edward Arnold (Publishers) Ltd., London, pp. 265–293.Google Scholar
  44. Hurtado, J.M., Gray, C.M., Tamas, L.B., and Sigvardt, K.A., 1999, Dynamics of tremor-related oscillations in the human globus pallidus: a single study. Proc. Natl. Acad. Sci. USA. 96:1674.PubMedCrossRefGoogle Scholar
  45. Hurtado, J.M., Lachaux, J.P., Beckley, D.J., Gray, C.M., and Sigvardt, K.A., 2000, Inter-and intralimb oscillator coupling in Parkinsonian tremor. Mov. Disord. 15:683.PubMedCrossRefGoogle Scholar
  46. Hurtado, J.M., Rubchinsky, L.L., and Sigvardt, K.A., 2004, Statistical method for detection of phase-locking episodes in neural oscillations. J. Neurophysiol. 91:1883.PubMedCrossRefGoogle Scholar
  47. Kühn, A.A., Williams, D., Kupsch, A., Limousin, P., Hariz, M., Schneider, G-H., Yarrow, K., and Brown, P., 2004, Event-related beta synchronization in human subthalamic nucleus correlates with motor performance. Brain 127:735.PubMedCrossRefGoogle Scholar
  48. Kühn, A.A., Trottenberg, T., Kivi, A., Kupsch, A., Schneider, G-H., and Brown, P., 2005, The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Exp. Neurol., in press.Google Scholar
  49. Leblois, A., Meissner, W., Bezard, E., Bioulac, B., Gross, C., and Boraud, T., Evolution of the activity of GPi neurons during a slow dopamine depletion process. Submitted.Google Scholar
  50. Leblois, A., Boraud, T., Bergman, H., and Hansel, D., 2005, Basal ganglia physiology is built on competition between feedback loops, in: Recent Breakthroughs in Basal Ganglia Research, E. Bezard, ed., Nova Science Publishers, New York, in press.Google Scholar
  51. Levy, R., Hutchison, W.D., Lozano, A.M., and Dostrovsky, J.O., 2000, High-frequency synchronisation of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J. Neurosci. 20:7766.PubMedGoogle Scholar
  52. Levy, R., Ashby, P., Hutchinson, W.D., Lang, A.E., Lozano, A.M., and Dostrovsky, J.O., 2002a, Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 125:1196.PubMedCrossRefGoogle Scholar
  53. Levy, R., Hutchison, W.D., Lozano, A.M., and Dostrovsky, J.O., 2002b, Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J. Neurosci. 22:2855.PubMedGoogle Scholar
  54. Liu, X., Ford-Dunn, H.L., Hayward, G.N., Nandi, D., Miall, R.C., Aziz, T.Z., and Stein, J.F., 2002, The oscillatory activity in the parkinsonian subthalamic nucleus investigated using the macro-electrodes for deep brain stimulation. Clin. Neurophysiol. 113:1667.PubMedCrossRefGoogle Scholar
  55. Loukas, C., and Brown, P., 2004, Online prediction of self-paced hand movements from subthalamic activity using neural networks in Parkinson’s disease. J. Neurosci. Methods. 137:193.PubMedCrossRefGoogle Scholar
  56. MacKay, W.A., 1997, Synchronised neuronal oscillations and their role in motor processes. Trends Cog. Sci. 1:176.CrossRefGoogle Scholar
  57. Magill, P.J., Bolam, J.P., and Bevan, M.D., 2000, Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J. Neurosci. 20:820.PubMedGoogle Scholar
  58. Magill, P.J., Bolam, J.P., and Bevan, M.D., 2001, Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 106:313.PubMedCrossRefGoogle Scholar
  59. Magill, P.J., Sharott, A., Bevan, M.D., Brown, P., and Bolam, J.P., 2004a, Synchronous unit activity and local field potentials evoked in the subthalamic nucleus by cortical stimulation. J. Neurophysiol. 92:700.PubMedCrossRefGoogle Scholar
  60. Magill, P.J., Sharott, A., Bolam, J.P., and Brown, P., 2004b, Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat. J. Neurophysiol. 92:2122.PubMedCrossRefGoogle Scholar
  61. Magill, P.J., Sharott, A., Harnack, D., Kupsch, A., Meissner, W., and Brown, P., 2005, Coherent spike-wave oscillations in the cortex and subthalamic nucleus of the freely moving rat. Neuroscience 132:659.PubMedCrossRefGoogle Scholar
  62. Masimore, B., Kakalios, J., and Redish, A.D., 2004, Measuring fundamental frequencies in local field potentials. J. Neurosci. Methods 138:97.PubMedCrossRefGoogle Scholar
  63. Marsden, J.F., Limousin-Dowsey, P., Ashby, P., Pollak, P., and Brown, P., 2001, Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson’s disease. Brain 124:378.PubMedCrossRefGoogle Scholar
  64. Mena-Segovia, J., Bolam, J.P., and Magill, P.J., 2004, Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci. 27:585.PubMedCrossRefGoogle Scholar
  65. Mink, J.W., 1996, The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50:381.PubMedCrossRefGoogle Scholar
  66. Mitzdorf, U., 1985, Current-source density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65:37.PubMedGoogle Scholar
  67. Moro, E., Esselink, R.J.A., Xie, J., Hommel, M., Benabid, A.L., and Pollak, P., 2002, The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 59:706.PubMedGoogle Scholar
  68. Murthy, V.N., and Fetz, E.E., 1992, Coherent 25-and 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl. Acad. Sci. USA. 89:5670.PubMedCrossRefGoogle Scholar
  69. Murthy, V.N., and Fetz, E.E, 1996a, Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. J. Neurophysiol. 76:3949.PubMedGoogle Scholar
  70. Murthy, V.N., and Fetz, E.E., 1996b, Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J. Neurophysiol. 76: 3968.PubMedGoogle Scholar
  71. Nini, A., Feingold, A., Slovin, H., and Bergman, H., 1995, Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol. 74:1800.PubMedGoogle Scholar
  72. Perkel, D.H., Gerstein, G.L., and Moore, G.P., 1967a, Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys. J. 7:391.PubMedCrossRefGoogle Scholar
  73. Perkel, D.H., Gerstein, G.L., and Moore, G.P., 1967b, Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7:419.PubMedGoogle Scholar
  74. Pfurtscheller, G., Stancak, A., and Neuper, C., 1996, Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr. Clin. Neurophysiol. 98:281.PubMedCrossRefGoogle Scholar
  75. Priori, A., Foffani, G., Pesenti, A., Bianchi, A., Chiesa, V., Baselli, G., Caputo, E., Tamma, F., Rampini, P., Egidi, M., Locatelli, M., Barbieri, S., and Scarlato, G., 2002, Movement-related modulation of neural activity in human basal ganglia and its L-DOPA dependency: recordings from deep brain stimulation electrodes in patients with Parkinson’s disease. Neurol. Sci. 23:S101.PubMedCrossRefGoogle Scholar
  76. Priori, A., Foffani, G., Pesenti, A., Tamma, F., Bianchi, A.M., Pellegrini, M., Locatelli, M., Moxon, K.A., and Villani, R.M., 2004, Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp. Neurol. 189:369.PubMedCrossRefGoogle Scholar
  77. Raz, A., Vaadia, E., and Bergman, H., 2000, Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J. Neurosci. 20:8559.PubMedGoogle Scholar
  78. Raz, A., Frechter-Mazar, V., Feingold, A., Abeles, M., Vaadia, E., and Bergman, H., 2001, Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. J. Neurosci. 21:RC128.PubMedGoogle Scholar
  79. Richards, C.D., Shiroyama, T., and Kitai, S.T., 1997, Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience 80:557.CrossRefGoogle Scholar
  80. Roelfsema, P.R., Engel, A.K., König, P., and Singer, W., 1997, Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385:157.PubMedCrossRefGoogle Scholar
  81. Ruskin, D.N., Bergstrom, D.A., Tierney, P.L., and Walters, J.R., 2003, Correlated multisecond oscillations in firing rate in the basal ganglia: modulation by dopamine and the subthalamic nucleus. Neuroscience 117:427.PubMedCrossRefGoogle Scholar
  82. Sanes, J.N., and Donoghue, J.P., 1993, Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc. Natl. Acad. Sci. USA. 90:4470.PubMedCrossRefGoogle Scholar
  83. Sharott, A., Magill, P.J., Harnack, D., Kupsch, A., Meissner, W., and Brown, P., 2005a, Dopamine depletion increases the power and coherence of β-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur. J. Neurosci. 21:1413.PubMedCrossRefGoogle Scholar
  84. Sharott, A., Magill, P.J., Bolam, J.P., and Brown, P., 2005b, Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat. J. Physiol. 562:951.PubMedCrossRefGoogle Scholar
  85. Silberstein, P., Kühn, A.A., Kupsch, A., Trottenberg, T., Krauss, J., Wöhrle, J.C., Mazzone, P., Insola, A., Di Lazzaro, V., Oliviero, A., Aziz, T., and Brown, P., 2003, Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 126:2597.PubMedCrossRefGoogle Scholar
  86. Sochurkova, D., and Rektor, I., 2003, Event-related desynchronization/synchronization in the putamen. An SEEG case study. Exp. Brain. Res. 149:401.PubMedGoogle Scholar
  87. Smith, Y., Bevan, M.D., Shink, E., and Bolam, J.P., 1998, Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353.PubMedCrossRefGoogle Scholar
  88. Steriade, M., 2000, Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101:243.PubMedCrossRefGoogle Scholar
  89. Stern, E.A., Jaeger, D., and Wilson, C.J., 1998, Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394:475.PubMedCrossRefGoogle Scholar
  90. Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., Treuer, H., Sturm, V., and Schnitzler, A., 2004, Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Mov. Disord. 19:1328.PubMedCrossRefGoogle Scholar
  91. Volkmann, J., Joliot, M., Mogilner, A., Ioannides, A.A., Lado, F., Fazzini, E., Ribary, U., and Llinás, R., 1996, Central motor loop oscillations in parkinsonian resting tremor revealed by magnetoencephalography. Neurology 46:1359.PubMedGoogle Scholar
  92. Vorobyov, V.V., Schibaev, N.V., Morelli, M., and Carta, A.R., 2003, EEG modifications in the cortex and striatum after dopaminergic priming in the 6-hydroxydopamine rat model of Parkinson’s disease. Brain Res. 972:177.PubMedCrossRefGoogle Scholar
  93. Williams, D., Tijssen, M., van Bruggen, G., Bosch, A., Insola, A., Di Lazzaro, V., Mazzone, P., Oliviero, A., Quartarone, A., Speelman, H., and Brown, P., 2002, Dopamine dependent changes in the functional connectivity between basal ganglia and cerebral cortex in the human. Brain 125:1558.PubMedCrossRefGoogle Scholar
  94. Williams, D., Kühn, A., Kupsch, A., Tijssen, M., van Bruggen, G., Speelman, H., Hotton, G., Yarrow, K., and Brown, P., 2003, Behavioural cues are associated with modulations of synchronous oscillations in the human subthalamic nucleus. Brain 126:1975.PubMedCrossRefGoogle Scholar
  95. Williams, D., Kühn, A., Kupsch, A., Tijssen, M., van Bruggen, G., Speelman, H., Hotton, G., Loukas, C., Brown, P., 2005, The relationship between oscillatory activity and motor reaction time in the parkinsonian subthalamic nucleus. Eur. J. Neurosci. 21:249.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Thomas Boraud
    • 1
  • Peter Brown
    • 2
  • Joshua A. Goldberg
    • 3
  • Ann M. Graybiel
    • 4
  • Peter J. Magill
    • 5
  1. 1.Laboratoire de Neurophysiologie, CNRS UMR 5543Université Victor Segalen BordeauxBordeauxFrance
  2. 2.Sobell Dept. of Motor Neuroscience and Movement DisordersInstitute of NeurologyLondonUK
  3. 3.Dept. of BiologyUniversity of Texas at San AntonioSan AntonioUSA
  4. 4.Dept. of Brain & Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.MRC Anatomical Neuropharmacology UnitUniversity of OxfordOxfordUK

Personalised recommendations