Bayesian Analysis of Molecular Evolution Using MrBayes

  • John P. Huelsenbeck
  • Fredrik Ronquist
Part of the Statistics for Biology and Health book series (SBH)


Bayesian Analysis Molecular Evolution Branch Length Substitution Model Molecular Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Adachi and M. Hasegawa. MOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs of Institute of Statistical Mathematics, 28:1–150, 1996.Google Scholar
  2. [2]
    J. Adachi, P. Waddell, W. Martin, and M. Hasegawa. Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. Journal of Molecular Evolution, 50:348–358, 2000.Google Scholar
  3. [3]
    H. Akaike. Information theory as an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki, editors, Second International Symposium on Information Theory, pages 267–281. Akademiai Kiado, Budapest, 1973.Google Scholar
  4. [4]
    U. Arnason, A. Gullberg, and A. Janke. Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenartha (Edentata) and Ferungulates. Molecular Biology and Evolution, 14:762–768, 1997.Google Scholar
  5. [5]
    E. T. Bell. Exponential numbers. American Mathematical Monthly, 41:411–419, 1934.zbMATHMathSciNetGoogle Scholar
  6. [6]
    J. O. Berger, B. Liseo, and R. L. Wolpert. Integrated likelihood methods for eliminating nuisance parameters. Statistical Science, 14:1–28, 1999.CrossRefMathSciNetGoogle Scholar
  7. [7]
    M. J. Bishop and A. E. Friday. Tetrapod relationships: The molecular evidence. In C. Patterson, editor, Molecules and Morphology in Evolution, pages 123–139. Cambridge University Press, Cambridge, England, 1987.Google Scholar
  8. [8]
    Y. Cao, A. Janke, P. J. Waddell, M. Westerman, O. Takenaka, S. Murata, N. Okada, S. Paabo, and M. Hasegawa. Conflict amongst individual mitochondrial proteins in resolving the phylogeny of eutherian orders. Journal of Molecular Evolution, 47:307–322, 1998.Google Scholar
  9. [9]
    J. T. Chang. Full reconstruction of Markov models on evolutionary tree: Identifiability and consistency. Mathematical Bioscience, 137:51–73, 1996.zbMATHMathSciNetGoogle Scholar
  10. [10]
    D. R. Cox. Further results on tests of families of alternate hypotheses. Journal of the Royal Statistical Society B, 24:406–424, 1962.zbMATHGoogle Scholar
  11. [11]
    M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure, volume 5, pages 345–352. National Biomedical Research Foundation, Washington, DC, 1978. Suppl. 3.Google Scholar
  12. [12]
    M. W. Dimmic, J. S. Rest, D. P. Mindell, and D. Goldstein. rtREV: An amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. Journal of Molecular Evolution, 55:65–73, 2002.CrossRefGoogle Scholar
  13. [13]
    J. Felsenstein. Statistical inference and the estimation of phylogenies. PhD thesis, University of Chicago, 1968.Google Scholar
  14. [14]
    J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17:368–376, 1981.CrossRefGoogle Scholar
  15. [15]
    J. Felsenstein. Distance methods for inferring phylogenies: A justification. Evolution, 38:16–24, 1984.Google Scholar
  16. [16]
    J. Felsenstein. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39:783–791, 1985.Google Scholar
  17. [17]
    P. G. Foster. Modeling compositional heterogeneity. Systematic Biology, 53:485–495, 2004.CrossRefGoogle Scholar
  18. [18]
    N. Galtier and M. Gouy. Inferring pattern and process: Maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Molecular Biology Evolution, 15:871–879, 1998.Google Scholar
  19. [19]
    N. Galtier, N. Tourasse, and M. Gouy. A nonhyperthermophilic common ancestor to extant life forms. Science, 283:220–221, 1999.CrossRefGoogle Scholar
  20. [20]
    N. Goldman. Maximum likelihood inference of phylogenetic trees with special reference to a Poisson process model of DNA substitution and to parsimony analyses. Systematic Zoology, 39:345–361, 1990.Google Scholar
  21. [21]
    N. Goldman and Z. Yang. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution, 11:725–736, 1994.Google Scholar
  22. [22]
    P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711–732, 1995.zbMATHMathSciNetGoogle Scholar
  23. [23]
    M. Hasegawa, H. Kishino, and T. Yano. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22:160–174, 1985.Google Scholar
  24. [24]
    M. Hasegawa, T. Yano, and H. Kishino. A new molecular clock of mitochondrial DNA and the evolution of Hominoids. Proceedings of the Japan Academy Series B, 60:95–98, 1984.Google Scholar
  25. [25]
    W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97–109, 1970.zbMATHGoogle Scholar
  26. [26]
    S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences, USA, 89:10915–10919, 1992.Google Scholar
  27. [27]
    D. M. Hillis and J. J. Bull. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42:182–192, 1993.Google Scholar
  28. [28]
    S. Holmes. Bootstrapping phylogenetic trees: Theory and methods. Statistical Science, 18:241–255, 2003.MathSciNetGoogle Scholar
  29. [29]
    J. P. Huelsenbeck. Performance of phylogenetic methods in simulation. Systematic Biology, 44:17–48, 1995.Google Scholar
  30. [30]
    J. P. Huelsenbeck. The robustness of two phylogenetic methods: Four taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. Molecular Biology and Evolution, 12:843–849, 1995.Google Scholar
  31. [31]
    J. P. Huelsenbeck and K. A. Dyer. Bayesian estimation of positively selected sites. Journal of Molecular Evolution, 58:661–672, 2004.CrossRefGoogle Scholar
  32. [32]
    J. P. Huelsenbeck, B. Larget, and M. E. Alfaro. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol. Biol. Evol, 21:1123–1133, 2004.Google Scholar
  33. [33]
    J. P. Huelsenbeck, B. Larget, and D. Swofford. A compound Poisson process for relaxing the molecular clock. Genetics, 154:1879–1892, 2000.Google Scholar
  34. [34]
    J. P. Huelsenbeck and B. Rannala. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology. In press.Google Scholar
  35. [35]
    J. P. Huelsenbeck and F. Ronquist. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17:754–755, 2001.CrossRefGoogle Scholar
  36. [36]
    H. Jeffreys. Theory of Probability. Oxford University Press, Oxford, 1961.Google Scholar
  37. [37]
    D. T. Jones, W. R. Taylor, and J. M. Thornton. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 8:275–282, 1992.Google Scholar
  38. [38]
    T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In H. N. Munro, editor, Mammalian Protein Metabolism, pages 21–123. Academic Press, New York, 1969.Google Scholar
  39. [39]
    S. Kim, K. M. Kjer, and C. N. Duckett. Comparison between molecular and morphological-based phylogenies of galerucine/alticine leaf beetles (Coleoptera: Chrysomelidae). Insect Systematic Evolution, 34:53–64, 2003.Google Scholar
  40. [40]
    M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16:111–120, 1980.CrossRefGoogle Scholar
  41. [41]
    B. Larget and D. Simon. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16:750–759, 1999.Google Scholar
  42. [42]
    M. S. Y. Lee. Molecular clock calibrations and metazoan divergence dates. Journal of Molecular Evolution, 49:385–391, 1999.Google Scholar
  43. [43]
    P. O. Lewis. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50:913–925, 2001.CrossRefGoogle Scholar
  44. [44]
    S. Li. Phylogenetic tree construction using Markov chain Monte Carlo. PhD thesis, Ohio State University, Columbus, 1996.Google Scholar
  45. [45]
    B. Mau. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. PhD thesis, University of Wisconsin, Madison, 1996.Google Scholar
  46. [46]
    B. Mau and M. Newton. Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. Journal of Computational and Graphical Statistics, 6:122–131, 1997.Google Scholar
  47. [47]
    B. Mau, M. Newton, and B. Larget. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics, 55:1–12, 1999.CrossRefMathSciNetGoogle Scholar
  48. [48]
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. W. Teller, and E. Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1091, 1953.CrossRefGoogle Scholar
  49. [49]
    T. Muller and M. Vingron. Modeling amino acid replacement. Journal of Computational Biology, 7:761–776, 2000.CrossRefGoogle Scholar
  50. [50]
    S. V. Muse and B. S. Gaut. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates with application to the chloroplast genome. Molecular Biology and Evolution, 11:715–724, 1994.Google Scholar
  51. [51]
    M. Nei, P. Xu, and G. Glazko. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proceedings of the National Academy of Sciences, USA, 98:2497–2502, 2001.CrossRefGoogle Scholar
  52. [52]
    M. Newton, B. Mau, and B. Larget. Markov chain Monte Carlo for the Bayesian analysis of evolutionary trees from aligned molecular sequences. In F. Seillier-Moseiwitch, T. P. Speed, and M. Waterman, editors, Statistics in Molecular Biology. Monograph Series of the Institute of Mathematical Statistics, 1999.Google Scholar
  53. [53]
    R. Nielsen. Mapping mutations on phylogenies. Systematic Biology, 51:729–739, 2002.CrossRefGoogle Scholar
  54. [54]
    R. Nielsen and Z. Yang. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 148:929–936, 1998.Google Scholar
  55. [55]
    J. A. A. Nylander, F. Ronquist, J. P. Huelsenbeck, and J. L. Nieves-Aldrey. Bayesian phylogenetic analysis of combined data. Systematic Biology, 53:47–67, 2004.CrossRefGoogle Scholar
  56. [56]
    D. Posada and K. A. Crandall. Modeltest: Testing the model of DNA substitution. Bioinformatics, 14:817–818, 1998.CrossRefGoogle Scholar
  57. [57]
    B. Rannala and Z. Yang. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution, 43:304–311, 1996.Google Scholar
  58. [58]
    J. S. Rogers. On the consistency of maximum likelihood estimation of phylogenetic trees from nucleotide sequences. Systematic Biology, 46:354–357, 1997.Google Scholar
  59. [59]
    F. Ronquist and J. P. Huelsenbeck. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:1572–1574, 2003.CrossRefGoogle Scholar
  60. [60]
    M. Schöniger and A. von Haeseler. A stochastic model and the evolution of autocorrelated DNA sequences. Mol. Phyl. Evol., 3:240–247, 1994.Google Scholar
  61. [61]
    E. Schröder. Vier combinatorische probleme. Z. Math. Phys., 15:361–376, 1870.zbMATHGoogle Scholar
  62. [62]
    M. A. Suchard, R. E. Weiss, and J. S. Sinsheimer. Bayesian selection of continuous-time Markov chain evolutionary models. Molecular Biology and Evolution, 18:1001–1013, 2001.Google Scholar
  63. [63]
    Y. Suzuki, G. V. Glazko, and M. Nei. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences, USA, 99:15138–16143, 2002.Google Scholar
  64. [64]
    D. L. Swofford. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MA, 2002.Google Scholar
  65. [65]
    N. Takezaki, A. Rzhetsky, and M. Nei. Phylogenetic test of molecular clock and linearized trees. Molecular Biology and Evolution, 12:823–833, 1995.Google Scholar
  66. [66]
    K. Tamura and M. Nei. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10:512–526, 1993.Google Scholar
  67. [67]
    S. Tavaré. Some probabilistic and statistical problems on the analysis of DNA sequences. Lectures in Mathematics in the Life Sciences, 17:57–86, 1986.zbMATHGoogle Scholar
  68. [68]
    J. L. Thorne, H. Kishino, and I. S. Painter. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution, 15:1647–1657, 1998.Google Scholar
  69. [69]
    L. Tierney. Markov chains for exploring posterior distributions. Annals of Statistics, 22:1701–1762, 1994.zbMATHMathSciNetGoogle Scholar
  70. [70]
    C. Tuffey and M. Steel. Modeling the covarion hypothesis of nucleotide substitution. Mathematical Biosciences, 147:63–91, 1998.MathSciNetGoogle Scholar
  71. [71]
    S. Whelan and N. Goldman. A general empirical model of protein evolution derived from multiple protein families using a maximum likelihood approach. Molecular Biology and Evolution, 18:691–699, 2001.Google Scholar
  72. [72]
    Z. Yang. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution, 10:1396–1401, 1993.Google Scholar
  73. [73]
    Z. Yang. PAML: A program package for phylogenetic analysis by maximum likelihood. Comptuer Applications in Bioscience, 15:555–556, 1997.Google Scholar
  74. [74]
    Z. Yang and B. Rannala. Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method. Molecular Biology and Evolution, 14:717–724, 1997.Google Scholar
  75. [75]
    E. Zuckerkandl and L. Pauling. Molecular disease, evolution, and genetic heterogeneity. In M. Kasha and B. Pullman, editors, Horizons in Biochemistry, pages 189–225. Academic Press, New York, 1962.Google Scholar
  76. [76]
    E. Zuckerkandl and L. Pauling. Evolutionary divergence and convergence in proteins. In V. Bryson and H. J. Vogel, editors, Evolving Genes and Proteins, pages 97–166. Academic Press, New York, 1965.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • John P. Huelsenbeck
    • 1
  • Fredrik Ronquist
    • 2
  1. 1.Division of Biological SciencesUniversity of California at San DiegoLa JollaUSA
  2. 2.School of Computational Science and Information TechnologyFlorida State UniversityTallahasseeUSA

Personalised recommendations