Statistical Alignment: Recent Progress, New Applications, and Challenges

  • Gerton Lunter
  • Alexei J. Drummond
  • István Miklós
  • Jotun Hein
Part of the Statistics for Biology and Health book series (SBH)


Hide Markov Model Markov Chain Monte Carlo Viterbi Algorithm Statistical Alignment Star Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. F. Altschul, W. Gisha, W. Miller, E. W. Meyers, and D. J. Lipman. Basic local alignment search tool. J. Mol. Biol., 215(3):403–410, 1990.CrossRefGoogle Scholar
  2. [2]
    S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. Gapped-BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 25:3389–3402, 1997.CrossRefGoogle Scholar
  3. [3]
    H. Carillo and D. Lipman. The multiple alignment problem in biology. SIAM J. Appl. Math., 48:1073–1082, 1988.MathSciNetGoogle Scholar
  4. [4]
    A. J. Drummond, G. K. Nicholls, A. G. Rodrigo, and W. Solomon. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics, 161(3):1307–1320, 2002.Google Scholar
  5. [5]
    A. J. Drummond and A. Rambaut. BEAST v1.0.3., 2003.Google Scholar
  6. [6]
    R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis. Cambridge University Press, Camebridge, 1998.Google Scholar
  7. [7]
    S. Eddy. HMMER: Profile hidden Markov models for biological sequence analysis (, 2001.Google Scholar
  8. [8]
    J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol., 17:368–376, 1981.CrossRefGoogle Scholar
  9. [9]
    J. Felsenstein. The troubled growth of statistical phylogenetics. Syst. Biol., 50:465–467, 2001.Google Scholar
  10. [10]
    O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol., 162:705–708, 1982.CrossRefGoogle Scholar
  11. [11]
    J. Hein. A unified approach to phylogenies and alignments. Meth. Enzym., 183:625–644, 1990.Google Scholar
  12. [12]
    J. Hein. An algorithm for statistical alignment of sequences related by a binary tree. In Pacific Symposium on Biocomputing, pages 179–190. World Scientific, Singapore, 2001.Google Scholar
  13. [13]
    J. Hein, J. L. Jensen, and C. N. S. Pedersen. Recursions for statistical multiple alignment. Proc. Natl. Acad. Sci. USA, 100(25):14960–14965, 2003.CrossRefGoogle Scholar
  14. [14]
    J. Hein, C. Wiuf, B. Knudsen, M. B. Møller, and G. Wibling. Statistical alignment: Computational properties, homology testing and goodness-of-fit. J. Mol. Biol., 302:265–279, 2000.CrossRefGoogle Scholar
  15. [15]
    D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Communi. ACM, 18:341–343, 1975.zbMATHMathSciNetGoogle Scholar
  16. [16]
    A. Hobolth and J. L. Jensen. Applications of hidden Markov models for comparative gene structure prediction. Technical Report MPS-RR 2003-35, MaPhySto, Aarhus, Denmark, 2003.Google Scholar
  17. [17]
    I. Holmes. Using guide trees to construct multiple-sequence evolutionary HMMs. Bioinformatics, 19:i147–i157, 2003.CrossRefGoogle Scholar
  18. [18]
    I. Holmes and W. J. Bruno. Evolutionary HMMs: A Bayesian approach to multiple alignment. Bioinformatics, 17(9):803–820, 2001.CrossRefGoogle Scholar
  19. [19]
    J. L. Jensen and J. Hein. Gibbs sampler for statistical multiple alignment. Stat. Sinica, 2004. (In press).Google Scholar
  20. [20]
    K. Karplus, C. Barrett, and R. Hughey. Hidden Markov Models for detecting remote protein homologies. Bioinformatics, 14:846–856, 1998.CrossRefGoogle Scholar
  21. [21]
    B. Knudsen and M. M. Miyamoto. Sequence alignments and pair Hidden Markov Models using evolutionary history. J. Mol. Biol., 333:453–460, 2003.CrossRefGoogle Scholar
  22. [22]
    A. Krogh. Two methods for improving performance of a HMM and their application for gene finding. In T. Gaasterland, P. Karp, K. Karplus, C. Ouzounis, C. Sander, and A. Valencia, editors, Proceedings of the Fifth International Conference on Intelligent Systems for Molecular Biology, pages 179–186, Menlo Park, CA, 1997. AAAI Press.Google Scholar
  23. [23]
    M. S. Y. Lee. Unalignable sequences and molecular evolution. Trends Ecol. Evol., 16:681–685, 2001.CrossRefGoogle Scholar
  24. [24]
    D. J. Lipman, S. F. Altschul, and J. D. Kececioglu. A tool for multiple sequence alignment. Proc. Natl. Acad. Sci. USA, 86:4412–4415, 1989.Google Scholar
  25. [25]
    A. Löytynoja and M. C. Milinkovitch. A hidden Markov model for progressive multiple alignment. Bioinformatics, 19:1505–1513, 2003.Google Scholar
  26. [26]
    G. A. Lunter, I. Miklós, A. Drummond, J. L. Jensen, and J. Hein. Bayesian phylogenetic inference under a statistical indel model. In Proceedings of WABI’03, volume 2812 of Lecure Notes in Bioinformatics, pages 228–244, Heidelberg, 2003. Springer-Verlag.Google Scholar
  27. [27]
    G. A. Lunter, I. Miklós, Y. S. Song, and J. Hein. An efficient algorithm for statistical multiple alignment on arbitrary phylogenetic trees. J. Comp. Biol., 10(6):869–889, 2004.Google Scholar
  28. [28]
    D. Metzler. Statistical alignment based on fragment insertion and deletion models. Bioinformatics, 19(4):490–499, 2003.CrossRefGoogle Scholar
  29. [29]
    D. Metzler, R. Fleissner, A. Wakolbinger, and A. von Haeseler. Assessing variability by joint sampling of alignments and mutation rates. J. Mol. Evol., 53:660–669, 2001.CrossRefGoogle Scholar
  30. [30]
    I. M. Meyer and R. Durbin. Comparative ab initio prediction of gene structures using pair HMMs. Bioinformatics, 18(10):1309–1318, 2002.CrossRefGoogle Scholar
  31. [31]
    I. Miklós. An improved algorithm for statistical alignment of sequences related by a star tree. Bull. Math. Biol., 64:771–779, 2002.Google Scholar
  32. [32]
    I. Miklós, G. A. Lunter, and I. Holmes. A “long indel” model for evolutionary sequence alignment. Mol. Biol. Evol., 21(3):529–540, 2004.Google Scholar
  33. [33]
    G. Mitchison. A probabilistic treatment of phylogeny and sequence alignment. J. Mol. Evol., 49:11–22, 1999.Google Scholar
  34. [34]
    B. Morgenstern. DIALIGN 2: Improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics, 15:211–218, 1999.CrossRefGoogle Scholar
  35. [35]
    E. W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1:251–266, 1986.CrossRefzbMATHGoogle Scholar
  36. [36]
    S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the amino acid sequences in two proteins. J. Mol. Biol., 48:443–453, 1970.CrossRefGoogle Scholar
  37. [37]
    C. Notredame, D. Higgins, and J. Heringa. T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol., 302:205–217, 2000.CrossRefGoogle Scholar
  38. [38]
    B. Qian and R. A. Goldstein. Distribution of indel lengths. Proteins Struct. Func. Gen., 45:102–104, 2001.Google Scholar
  39. [39]
    D. Sankoff. Minimal mutation trees of sequences. SIAM J. Appl. Math., 28:35–42, 1975.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    M. Steel and J. Hein. Applying the Thorne-Kishino-Felsenstein model to sequence evolution on a star-shaped tree. Appl. Math. Lett., 14:679–684, 2001.CrossRefMathSciNetGoogle Scholar
  41. [41]
    J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22:4673–4680, 1994.Google Scholar
  42. [42]
    J. L. Thorne, H. Kishino, and J. Felsenstein. An evolutionary model for maximum likelihood alignment of DNA sequences. J. Mol. Evol., 33:114–124, 1991.CrossRefGoogle Scholar
  43. [43]
    J. L. Thorne, H. Kishino, and J. Felsenstein. Inching toward reality: An improved likelihood model of sequence evolution. J. Mol. Evol., 34:3–16, 1992.CrossRefGoogle Scholar
  44. [44]
    E. Ukkonen. Algorithms for approximate string matching. Inf. Control, 64:100–118, 1985.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    A. von Haeseler and M. Vingron. Towards integration of multiple alignment and phylogenetic tree construction. J. Comp. Biol., 4(1):23–34, 1997.Google Scholar
  46. [46]
    L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J. Comp. Biol., 1:337–348, 1994.Google Scholar
  47. [47]
    S. Wu, U. Manber, G. Myers, and W. Miller. An O(NP) sequence comparison algorithm. Inf. Process. Lett., 35:317–323, 1990.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Gerton Lunter
    • 1
  • Alexei J. Drummond
    • 1
    • 2
  • István Miklós
    • 1
    • 3
  • Jotun Hein
    • 1
  1. 1.Bioinformatics group, Department of StatisticsOxford UniversityOxfordUK
  2. 2.Department of ZoologyOxford UniversityOxfordUK
  3. 3.Theoretical Biology and Ecology GroupHungarian Acadademy of Science and Eötvös Loránd UniversityBudapestHungary

Personalised recommendations