Implementing Qubits with Superconducting Integrated Circuits

  • Michel H. Devoret
  • John M. Martinis

Abstract

Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs of superconducting qubits based on multi-junction circuits have solved the problem of isolation from unwanted extrinsic electromagnetic perturbations. We discuss in this review how qubit decoherence is affected by the intrinsic noise of the junction and what can be done to improve it.

Key Words

Quantum information quantum computation superconducting devices Josephson tunnel junctions integrated circuits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, 2000).Google Scholar
  2. 2.
    M. Tinkham, Introduction to Superconductivity (Krieger, Malabar, 1985).Google Scholar
  3. 3.
    J. M. Martinis, M. H. Devoret, J. Clarke, Phys. Rev. Lett. 55, 1543 (1985); M. H. Devoret, J. M. Martinis, J. Clarke, Phys. Rev. Lett. 55, 1908 (1985); J. M. Martinis, M. H. Devoret and J. Clarke, Phys. Rev. 35, 4682 (1987).CrossRefADSGoogle Scholar
  4. 4.
    J. M. Martinis and M. Nahum, Phys Rev. B 48, 18316 (1993).CrossRefADSGoogle Scholar
  5. 5.
    B. D. Josephson, in Superconductivity, R. D. Parks (ed.) (Marcel Dekker, New York, 1969).Google Scholar
  6. 6.
    K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, New York, 1986).Google Scholar
  7. 7.
    I. Giaever, Phys. Rev. Lett. 5,147, 464 (1960).CrossRefADSGoogle Scholar
  8. 8.
    A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 347 (1983); A. J. Leggett, J. Phys. CM 14, R415 (2002).CrossRefGoogle Scholar
  9. 9.
    D. P. DiVincenzo, arXiv:quant-ph/0002077.Google Scholar
  10. 10.
    R. P. Feynman, Lectures on Physics, Vol. 2, Chap. 23, (Addison-Wesley, Reading, 1964).MATHGoogle Scholar
  11. 11.
    D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).MATHCrossRefADSGoogle Scholar
  12. 12.
    P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).MATHGoogle Scholar
  13. 13.
    J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    J. M. Martinis and K. Osborne, in Quantum Information and Entanglement, eds. J. M. Raimond, D. Esteve, and J. Dalibard, Les Houches Summer School Series, arXiv:cond-mat/0402430.Google Scholar
  15. 15.
    J. Clarke, Proc. IEEE 77, 1208 (1989).CrossRefADSGoogle Scholar
  16. 16.
    D. J. Van Harlingen, B. L. T. Plourde, T. L. Robertson, P. A. Reichardt, and John Clarke, preprint.Google Scholar
  17. 17.
    R. W. Simmonds, K. M. Lang, D. A. Hite, D. P. Pappas, and J. M. Martinis, accepted for publication in Phys. Rev. Lett. Google Scholar
  18. 18.
    M. Büttiker, Phys. Rev. B 36, 3548 (1987).CrossRefADSGoogle Scholar
  19. 19.
    V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M. H. Devoret, Physica Scripta T 76, 165 (1998).CrossRefADSGoogle Scholar
  20. 20.
    Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).CrossRefADSGoogle Scholar
  21. 21.
    Yu. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).CrossRefADSGoogle Scholar
  22. 22.
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Science 296, 286 (2002).CrossRefGoogle Scholar
  23. 23.
    A. Barone and G. Paternò, Physics and Applications of the Josephson Effect (Wiley, New York, 1992).Google Scholar
  24. 24.
    S. Han, R. Rouse, and J. E. Lukens, Phys. Rev. Lett. 84, 1300 (2000); J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature 406, 43 (2000).CrossRefADSGoogle Scholar
  25. 25.
    J. E. Mooij, T. P. Orlando, L. Levitov, Lin Tian, C. H. van der Wal, and S. Lloyd, Science 285, 1036 (1999); C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhem, R. N. Schouten, C. Harmans, T. P. Orlando, S. Loyd, and J. E. Mooij, Science 290, 773 (2000).CrossRefGoogle Scholar
  26. 26.
    J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117901 (2002).CrossRefADSGoogle Scholar
  27. 27.
    M. Steffen, J. Martinis, and I. L. Chuang, PRB 68, 224518 (2003).CrossRefADSGoogle Scholar
  28. 28.
    M. H. Devoret and R. J. Schoelkopf, Nature 406, 1039 (2002).CrossRefGoogle Scholar
  29. 29.
    A. N. Korotkov and D. V. Averin, Phys. Rev. B 64, 165310 (2001).CrossRefADSGoogle Scholar
  30. 30.
    A. Cottet, D. Vion, A. Aassime, P. Joyez, D. Esteve, and M. H. Devoret, Physica C 367, 197 (2002).CrossRefADSGoogle Scholar
  31. 31.
    I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M. H. Devoret, cond-mat/0312623, submitted to Phys. Rev. Lett. Google Scholar
  32. 32.
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Fortschritte der Physik 51, 462 (2003).CrossRefADSGoogle Scholar
  33. 33.
    I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).CrossRefADSGoogle Scholar
  34. 34.
    J. Mannik and J. E. Lukens, Phys. Rev. Lett. 92, 057004 (2004).CrossRefADSGoogle Scholar
  35. 35.
    A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, R. J. Schoelkopf, cond-mat/0408367, accepted by Nature. Google Scholar
  36. 36.
    A. Lupascu, C. J. M. Verwijs, R. N. Schouten, C. J. P. M. Harmans, J. E. Mooij, cond-mat/0311510, submitted to Phys. Rev. Lett. Google Scholar
  37. 37.
    Variable electrostatic transformer: controllable coupling of two charge qubits, D.V. Aver-in, C. Bruder, Phys. Rev. Lett. 91, 057003 (2003).CrossRefADSGoogle Scholar
  38. 38.
    A. Blais, A. Maassen van den Brink, A. M. Zagoskin, Phys. Rev. Lett. 90, 127901 (2003)CrossRefADSGoogle Scholar
  39. 39.
    A. Pashkin Yu, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, and J. S. Tsai, Nature 421 (2003).Google Scholar
  40. 40.
    J. B. Majer, Superconducting Quantum Circuits, PhD Thesis, TU Delft, (2002); J. B. Majer, F. G. Paauw, A. C. J. ter Haar, C. P. J. Harmans, and J. E. Mooij, arXiv:cond-mat/0308192.Google Scholar
  41. 41.
    A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, and F. C. Wellstood, Science 300, 1548 (2003).CrossRefADSGoogle Scholar
  42. 42.
    C. Rigetti and M. Devoret, unpublished.Google Scholar
  43. 43.
    Y. Nakamura, A. Pashkin Yu, and J. S. Tsai, Phys. Rev. Lett. 88, 047901 (2002).CrossRefADSGoogle Scholar
  44. 44.
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, Forts, der Physik 51, 462 (2003); E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion and D. Esteve, submitted.CrossRefADSGoogle Scholar
  45. 45.
    J. Preskill, J. Proc. R. Soc. London Ser. A 454, 385 (1998).MATHADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984).CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    M. H. Devoret in “Quantum Fluctuations”, S. Reynaud, E. Giacobino, J. Zinn-Justin (eds.) (Elsevier, Amsterdam, 1996), p. 351.Google Scholar
  48. 48.
    A. Cottet, Implementation of a quantum bit in a superconducting circuit, PhD Thesis, Université Paris 6, 2002.Google Scholar
  49. 49.
    A. Abragam, Principles of Nuclear Magnetic Resonance (Oxford University Press, Oxford, 1985).Google Scholar
  50. 50.
    R. J. Schoelkopf, A. A. Clerk, S. M. Girvin, K. W. Lehnert, and M. H. Devoret, ar-Xiv:cond-mat/0210247.Google Scholar
  51. 51.
    K. W. Lehnert, K. Bladh, L. F. Spietz, D. Gunnarsson, D. I. Schuster, P. Delsing, and R. J. Schoelkopf, Phys. Rev. Lett. 90, 027002 (2002).CrossRefADSGoogle Scholar
  52. 52.
    J. M. Martinis, S. Nam, J. Aumentado, K. M. Lang, and C. Urbina, Phys. Rev. B 67, 462 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Michel H. Devoret
    • 1
  • John M. Martinis
    • 2
    • 3
  1. 1.Applied Physics DepartmentYale UniversityNew HavenUSA
  2. 2.National Institute of Standards and TechnologyBoulderUSA
  3. 3.Physics DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations