DNA Vaccination in Immunotherapy of Cancer

  • Andrew Y. Choo
  • Daniel K. Choo
  • J. Joseph Kim
  • David B. Weiner
Part of the Cancer Treatment and Research book series (CTAR, volume 123)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chattergoon, M., J. Boyer, and D.B. Weiner. 1997. Genetic immunization: a new era in vaccines and immune therapeutics. FASEB J 11:753–763.PubMedGoogle Scholar
  2. 2.
    Wolff, J.A., R.W. Maline, P. Williams, W. Chong, G. Acsadi, A. Jani, and P.L. Felgner. 1990. Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468.PubMedGoogle Scholar
  3. 3.
    Tang D.C., M. DeVit, and S.A. Johnston. 1992. Genetic immunization is a simple method for eliciting an immune response. Nature 12:152–154.Google Scholar
  4. 4.
    Wang, B., K.E. Ugen, V. Srikantan, M.G. Agadjanyan, K. Dang, Y. Refaeli, A.I. Sato, J. Boyer, W.V. Williams, and D.B. Weiner. 1993. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 90:4156–4160.PubMedGoogle Scholar
  5. 5.
    Ulmer, J.B., J.J. Donnelly, S.E. Parker, G.H. Rhodes, P.L. Felgner, V.J. Dwarki, S.H. Gromkowski, R.R. Deck, C.M. DeWitt, A. Friedman. et al. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 19:1745–1749.Google Scholar
  6. 6.
    Pardoll, D.M., 2002. Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2:227–238.PubMedGoogle Scholar
  7. 7.
    Brodsky, F.M., and L.E. Guagliardi. 1991. The cell biology of antigen processing and presentation. Ann Rev Immunol 9:707–744.Google Scholar
  8. 8.
    Banchereau, J., and R.M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392:245–252.PubMedGoogle Scholar
  9. 9.
    Gabrilovich D.I., H.L. Chen, K.R. Girgis, H.T. Cunningham, G.M. Meny, S. Nadaf, D. Kavanaugh, and D.P. Carbone. 1996. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med 2:1096–1103.PubMedGoogle Scholar
  10. 10.
    Oyana, T., S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, and D.I. Gabrilovich, 1998. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160:1224–1232.Google Scholar
  11. 11.
    Gabrilovich, D.I., T. Ishida, T. Oyana, S. Ran, V. Kravtsov, S. Nadaf, and D.P. Carbone. 1998. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166.PubMedGoogle Scholar
  12. 12.
    Chen, Q., V. Daniel, D.W. Maher, and P. Hersey. 1994. Production of IL-10 by melanoma cells: examination of its role in immunosuppression mediated by melanoma. Int J Cancer 56:755–760.PubMedGoogle Scholar
  13. 13.
    Beissert, S., J. Hosoi, S. Grabbe, A. Asahina, and R.D. Granstein. 1995. IL-10 inhibits tumor antigen presentation by epidermal antigen-presenting cells. J Immunol I154:1280–1286.Google Scholar
  14. 14.
    Yang, A.S., and E.C. Lattime. 2003. Tumor-induced interluekin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res 63:2150–2157.PubMedGoogle Scholar
  15. 15.
    Condon, C., S.C. Watkins, C.M. Celluzzi, K. Thompson, and L.D. Falo. Jr. 1996. DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 2:1122–1128.PubMedGoogle Scholar
  16. 16.
    Casares, S., K. Inaba, T.D. Brumeanu, R.M. Steinman, and C.A. Bona. 1997. Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. J Exp Med 186:1481–1486.PubMedGoogle Scholar
  17. 17.
    Chattergoon, M.A., T.M. Robinson, J.D. Boyer, and D.B. Weiner. 1998. Specific immune induction following DNA-based immunization through in vivo transfection and activation of macrophages. antigen-presenting cells. J Immunol 160:5707–5718.PubMedGoogle Scholar
  18. 18.
    Rubartelli, A., A. Poggi, and M.R. Zocchi. 1997. The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium. Eur J Immunol 27:1893–1900.PubMedGoogle Scholar
  19. 19.
    Albert, M.L., S.F. Pearce, L.M. Francisco, B. Sauter, P. Roy, R.L. Silverstein, and N. Bhardwaj. 1998. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188: 1359–1368.PubMedGoogle Scholar
  20. 20.
    Rovere, P., C. Vallinoto, A. Bondanza, M.C. Crosti, M. Rescigno, P. Ricciardi-Castagnoli, C. Rugarli, and A.A. Manfredi. 1998. Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J Immunol 161:4467–4471.PubMedGoogle Scholar
  21. 21.
    Albert, M.L., B. Sauter, and N. Bhardwaj. 1998. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89.PubMedGoogle Scholar
  22. 22.
    Bellone, M., G. Lezzi, P. Rovere, G. Galati, A. Ronchetti, M.P. Protti, J. Davoust, C. Rrugarli. A.A. Manfredi. 1997. Processing of engulfed apoptotic bodies yields T cell epitopes. J Immunol 159:5391–5399.PubMedGoogle Scholar
  23. 23.
    Ronchetti, A., P. Rovere, G. Iezzi, G. Galati, S. Heltai, M.P. Protti, M.P. Garancini, A.A. Manfredi, C. Rugarli, and M. Bellone. 199. Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen-presenting cells and cytokines. J Immunol 163:130–136.Google Scholar
  24. 24.
    Chattergoon, M.A., J.J. Kim, J.S. Yang, T.M. Robinson, D.J. Lee, T. Dentchev, D.M. Wilson, V. Ayyavoo, and D.B. Weiner. 2000. Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol 18:974–979.PubMedGoogle Scholar
  25. 25.
    Sasaki, S. R.R. Amara, A.E. Oran, J.M. Smith, and H.L. Robinson, 2001. Apoptosis-mediated enhancement of DNA-raised immune responses by mutant caspases. Nat Biotechnol 19:543–547.PubMedGoogle Scholar
  26. 26.
    Pardoll, D.M., and A.M. Beckerleg. 1995. Exposing the immunology of naked DNA vaccines. Immunity 3:165–169.PubMedGoogle Scholar
  27. 27.
    Falo, Jr., L.D., M. Kovacsovics-Akowski, K. Thompson, and K.L. Rock. 1995. Targeting antigen into the phagocytic pathway in vivo induces protective tumor immunity. Nat Med 1:649–653.PubMedGoogle Scholar
  28. 28.
    Staerz, U.D., H. Karasuyama, and A.M. Garner. 1987. Cytotoxic T lymphocytes against a soluble protein. Nature 329:448–451.Google Scholar
  29. 29.
    Ulmer, J.B., R.R. Deck, C.M. DeWitt, J.J. Donnelly, M.J. Caulfield, and M.A. Liu. 1997. Expression of a viral protein by muscle cells in vivo induces protective cell-mediated immunity. Vaccine 15:839–841.PubMedGoogle Scholar
  30. 30.
    Ulmer, J.B., R.R. Deck, C.M. DeWitt, J.I. Donnhly, and M.A. Liu. 1996. Generation of MHC class I-resticted cytotoxic T lymphocytes by expression of a viral protein inmuscle cells: antigen presentation of non-muscle cells. Immunology 89:59–67.PubMedGoogle Scholar
  31. 31.
    Huang, A.Y., P. Golumbek, M. Ahmadzadeh, E. Jaffee, D. Pardoll, and H. Levitsky. 1994. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961–965.PubMedGoogle Scholar
  32. 32.
    Pfeifer, J.D., M.J. Wick, R.L. Roberts, K. Findlay, S.J. Normark, and C.V. Harding. 1993. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 361:359–362.PubMedGoogle Scholar
  33. 33.
    Rescigno, M., S. Citterio, C. Théry, M. Rittig, D. Medaglini, G. Pozzi, S. Amigorena, P. Ricciardi-Castagnoli. 1998. Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells. Proc Natl Acad Sci U S A 95:5229–5234.PubMedGoogle Scholar
  34. 34.
    Amigorena, S., and C. Bonnerot. 1999. Fc receptor signaling and trafficking: a connection for antigen processing. Immunol Rev 172:279–284.PubMedGoogle Scholar
  35. 35.
    Regnault, A., D. Lankar, V. Lacabanne, A. Rodriguez, C. Thery, M. Rescigno, T. Saito, S. Verbeek, C. Bonnerot, P. Ricciardi-Castagnoli, and S. Amigorena. 1999. FcGamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189:371–380.PubMedGoogle Scholar
  36. 36.
    Carbone, F.R., and M.J. Bevan. 1990. Class I-restricted processing and presentation of exogenous cell-associated antigen in vivo. J Exp Med 171:377–387.PubMedGoogle Scholar
  37. 37.
    Kovacsovics-Bankowski, M., and K.L. Rock. 1995. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267:243–246.PubMedGoogle Scholar
  38. 38.
    You, Z., X. Huang, J. Hester, H.C. Toh, and S.Y. Chen. 2001. Targeting dendritic cells to enhance DNA vaccine potency. 61:3704–3711.Google Scholar
  39. 39.
    Srivastava, P.K., A.B. DeLeo, and L.J. Old. 1986. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A 83:3407–3411.PubMedGoogle Scholar
  40. 40.
    Maki, R.G., L.J. Old, and P.K. Srivastava. 1990. Human homologue of murine tumor rejection antigen gp96: 5′-regulatory and coding regions and relationship to stress-induced proteins. Proc Natl Acad Sci U S A 87:5658–5662.PubMedGoogle Scholar
  41. 41.
    Udono, H., and P.K. Srivastava. 1993. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396.PubMedGoogle Scholar
  42. 42.
    Li, Z., and P.K. Srivastava. 1993. Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J 12:3143–3151.PubMedGoogle Scholar
  43. 43.
    Binder, R.J., K.M. Anderson, S. Basu, and P.K. Srivastava. 2000. Cutting Edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol I165:6029–6035.Google Scholar
  44. 44.
    Suto, R., and P.K. Srivastava. 1995. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588.PubMedGoogle Scholar
  45. 45.
    Arnold, D., S. Faath, H. Rammensee, and H. Schild. 1995. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 182:885–889.PubMedGoogle Scholar
  46. 46.
    Arnold-Schild, D., D. Hanau, D. Spehner, C. Schmid, H.G. Rammensee, H. de la Salle, and H. Schild. 1999. Cutting Edge: receptor-mediated endocytosis of heat shock proteins by professional antigen presenting cells. J Immunol 162:3757–3760.PubMedGoogle Scholar
  47. 47.
    Panjwani, N.N., L. Popova, and P.K. Srivastava. 2002. Heat shock proteins gp96 and hsp70 activate and release of NO by APCs. J Immunol I168:2997–3003.Google Scholar
  48. 48.
    Binder, R.J., D.K. Han, and P.K. Srivastava. 2000. CD91: a receptor for heat shock protein gp96. Nat Immunol 1:151–155.PubMedGoogle Scholar
  49. 49.
    Basu, S., R.J. Binder, T. Ramalingam, and P.K. Srivastava. 2001. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313.PubMedGoogle Scholar
  50. 50.
    Tamura, Y., P. Peng, K. Liu, M. Daou, and P.K. Srivastava. 1997. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278:117–120.PubMedGoogle Scholar
  51. 51.
    Blachere, N.E., Z. Li, R.Y. Chandawarkar, R. Suto, N.S. Jaikaria, S. Basu, H. Udono, and P.K. Srivastava. 1997. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1322.PubMedGoogle Scholar
  52. 52.
    Yamazaki, K., T. Nguyen, and E.R. Podack. 1999. Cutting Edge: tumor secreted heat shock-fusion proteins elicits CD8 cells for rejection. J Immunol 163:5178–5182.PubMedGoogle Scholar
  53. 53.
    Chen, C.H., T.L. Wang, C.F. Hung, Y. Yang, R.A. Young, D.M. Pardoll, and T.C. Wu. 2000. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 60:1035–1042.PubMedGoogle Scholar
  54. 54.
    Cheng, W.F., C.F. Hung, C.Y. Chai, K.F. Hsu, L. He, M. Ling, and T.C. Wu. 2001. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 108:669–678.PubMedGoogle Scholar
  55. 55.
    Basu, S., and P.K. Srivastava. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor-and peptide-specific immunity. J Exp Med 189:797–802.Google Scholar
  56. 56.
    Pike, S.E., L. Yao, K.D. Janes, B. Cherney, E. Appella, K. Sakaguchi, H. Nakhasi, J. Teruya-Feldstein, P. Wirth, G. Gupta, and G. Tosato. 1998. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188:2349–2356.PubMedGoogle Scholar
  57. 57.
    Pike, S.E., L. Yao, J. Setsuda, K.D. Jones, B. Cherney, E. Appella, K. Sakaguchi, H. Nakhasi, C.D. Atreya, J. Teruya-Feldstein, P. Wirth, G. Gupta, and G. Tosato. 1999. Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 94:2461–2468.PubMedGoogle Scholar
  58. 58.
    Hung, C.F., K.F. Hsu, W.F. Cheng, C.Y. Chai, L. He, M. Ling, and T.C. Wu. 2001. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res 61:1080–1088.PubMedGoogle Scholar
  59. 59.
    Maraskovsky, E., K. Brasel, M. Teepe, E.R. Roux, S.D. Lyman, K. Shortman, and H.J. McKenna. 1996. Dramatic increase in the numbers of functionally mature dendritic cells in FLT3 ligand-treated mice: multiple dendritic cell subpopulation identified. J Exp Med 184:1953–1962.PubMedGoogle Scholar
  60. 60.
    Lynch, D.H., A. Andreasen, E. Maraskovsky, J. Whitmore, R.E. Miller, and J.C. Schuh. 1997. Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat Med 3:625–631.PubMedGoogle Scholar
  61. 61.
    Kim, J.J., J.S. Yang, D.J. Lee, D.M. Wilson, L.K. Nottingham, L. Morrison, A. Tsai, J. Oh, K. Dang, T. Dentchev, M.G. Agadjanyan, J.I. Sin, A.A. Chalian, and D.B. Weiner. 2000. Macrophage colony-stimlating factor can modulate immune responses and attract dendritic cells in vivo. Hum. Gene Ther 11:305–321.PubMedGoogle Scholar
  62. 62.
    Haddad, D., J. Ramprakash, M. Sedegah, Y. Charoenvit, R. Baumgartner, S. Kumar, S.L. Hoffman, and W.R. Weiss. 2000. Plasmid vaccine expressing granulocyte-macrophage colony-stimulating factor attracts infiltrates including immature dendritic cells into inkected muscles. J Immunol I165:3772–3781.Google Scholar
  63. 63.
    Shedlock, D.J., and D.B. Weiner. 2000. DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol 68:793–806.PubMedGoogle Scholar
  64. 64.
    Kim, J.J., M.L. Bagarazzi, N. Trivedi, Y. Hu, K. Kazahaya, D.M. Wilson, R. Ciccarelli, M.A. Chattergoon, K. Dang, S. Mahalingam, A.A. Chalian, M.G. Agadjanyan, J.D. Boyer. B. Wang, and D.B. Weiner. 1997. Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nat Biotechnol 15:641–646.PubMedGoogle Scholar
  65. 65.
    Iwasaki, A., B.J. Stiernholm, A.K. Chan, N.L. Berinstein, and B.H. Barber. 1997. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 158:4591–4601.PubMedGoogle Scholar
  66. 66.
    Tsuji, T., K. Hamajima, N. Ishii, I. Aoki, J. Fukushima, K.O. Xin, S. Kawamoto, S. Sasaki, K. Matsunaga, Y. Ishigatubo, K. Tani, T. Okubo, and K. Okuda. 1997. Immunomodulatory effects of a plasmid expressing B7-2 on human immunodeficiency cirus-1-specific cell-mediated immunity induced by a plasmid encoding the viral antigen. Eur J Immunol 27:782–787.PubMedGoogle Scholar
  67. 67.
    Agadjanyan, M,G., J.J, Kim, N. Trivedi, D.M. Wilson, B. Monzavi-Karbassi, L.D. Morrison, L.K. Nottingham, T. Dentchev, A. Tsai, K. Dang, A.A. Chalian, M.A. Maldonado, W.V. Williams, and D.B. Weiner. 1999. CD96 (B7-2) can function to drive MHC-restricted antigen-specific CTL responses in vivo. J Immunol 162:3417–3427.PubMedGoogle Scholar
  68. 68.
    Ridge, J.P., F. Di Rosa, and P. Matzinger. 1998. An conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–478.PubMedGoogle Scholar
  69. 69.
    Bennett, S.R., F.R. Carbone, F. Karamalis, R.A. Flavell, J.F. Miller, and W.R. Heath. 1998. Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature 393:478–480.PubMedGoogle Scholar
  70. 70.
    Schoenberger, S.P., R.E. Toes, E.I. van der Voort, R. Offringa, and C.J. Melief. 1998. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483.PubMedGoogle Scholar
  71. 71.
    Yang, Y., and J.M. Wilson. 1996. CD40 ligand-dependent T cell activation:requirement of B7-CD28 signaling through CD40. Science 273:1862–1864.PubMedGoogle Scholar
  72. 72.
    Cella, M., D. Scheidegger, K. Palmer-Lehmann, P. Lane, A. Lanzavecchia, and G. Albert. 1996. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184:747–752.PubMedGoogle Scholar
  73. 73.
    Caux, C., C. Massacrier, B. Vanbervliet, B. Dubois, C. Van Kooten, I. Durand, and J. Banchereau. 1994. Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180:1263–1272.PubMedGoogle Scholar
  74. 74.
    Mendoza, R.B., M.J. Cantwell, and T.J. Kipps. 1997. Immunostimulatory effects of a plasmid expressing CD40 ligand (CD154) on gene immunization. J Immunol 159:5777–5781.PubMedGoogle Scholar
  75. 75.
    Ihata, A., S. Watabe, S. Sasaki, A. Shirai, J. Fukushima, K. Hamajima, J. Inoue, and K. Okuda. 1998. Immunomodulatory effect of a plasmid expressing CD40 ligand on DNA vaccination against human immunodeficiency virus type-1. Immunology 98:436–442.Google Scholar
  76. 76.
    Sin, J.I., J.J. Kim, D. Zhang, and D.B. Weiner, 2001. Modulation of cellular responses by plasmid CD40L:CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Hum. Gene Ther 12:1091–1102.PubMedGoogle Scholar
  77. 77.
    Sogn, J.A., J.F. Finerty, A.K. Heath, G.L.C. Shen, and F.C. Austin. 1993. Cancer vaccines: the perspective of the Cancer Immunology Branch, NCI. Annals N Y Acad Sci 690:322–330.Google Scholar
  78. 78.
    Kelley, J.R., and D.J. Cole. 1998. Gene therapy strategies utilizing carcinoembryonic antigen as a tumor associated antigen for vaccination against solid malignancies. Gene Ther Mol Biol 2:14–30.Google Scholar
  79. 79.
    Diefenbach, A., and D.H. Raulet. 2002. The innate immune responses to tumors and its role in the induction of T-cell immunity. Immunol. Rev 188:9–21.PubMedGoogle Scholar
  80. 80.
    Pardoll, D.M., and S.L. Topalian. 1998. The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 10:588–594.PubMedGoogle Scholar
  81. 81.
    Weber, L.W., W.B. Bowne, J.D. Wolchok, R. Srinivasan, J. Qin, Y. Moroi, R. Clynes. P. Song, J.J. Lewis, and A. N. Houghton. 1998. Tumor immunity and autoimmunity induced by immunization with homologous DNA. J Clin Invest 102:1258–1264.PubMedGoogle Scholar
  82. 82.
    Xiang, R., H.N. Lode, T.H. Chao, J.M. Ruehlmann. C.S. Dolman, F. Rodriguez, J.L. Whitton, W.W. Overwijk, N.P. Restifo, and R.A. Reisfeld, 2000. An autologous oral DNA vaccine prevents against murine melanoma. Proc Natl Acad Sci U S A 97:5492–5497.PubMedGoogle Scholar
  83. 83.
    Kelley, J.R., and D.J, Cole. 1998. Gene therapy strategies utilizing carcinoembryonic antigen as a tumor associated antigen for vaccination against solid malignancies. Gene Ther Mol Biol 2:14–30.Google Scholar
  84. 84.
    Zaremba, S., E. Barzaga, M. Zhu, N. Soares, N. Tsang, J. Schlom. 1997. Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 57:4570–4577.PubMedGoogle Scholar
  85. 85.
    Foon, K.A., M. Chakraborty, W.J. John, A. Sherratt, H. Kohler, M. Bhattacharya-Chatterjee. 1997. Immune response to the carcinoembryonic antigen in patients treated with an anti-idiotype antibody vaccine. J Clin Invest 96:334–342.Google Scholar
  86. 86.
    Conry, R.M., A.F. LoBuglio, J. Kantor, J. Schlom, F. Loechel, S.E. Moore, L.A. Sumerel, D.L. Barlow, S. Abrams, and D.T. Curiel. 1994. Immune response to a carcinoembryonic antigen polynucleotide vaccine. Cancer Res 54:1164–1168.PubMedGoogle Scholar
  87. 87.
    Conry, R.M., A.F. LoBuglio, and D.T. Curiel. 1996. Polynucleotide-mediated immunization therapy of cancer. Semin Oncol 23:135–147.PubMedGoogle Scholar
  88. 88.
    Smith, B.F., H.J. Baker, D.T. Curiel, W. Jiang, and R.M. Conry. 1998. Humoral and cellular immune responses of dogs immunized with a nucleic acid vaccine encoding human carcinoembryonic antigen. Gene Ther 5:865–868.PubMedGoogle Scholar
  89. 89.
    Boring, C.C., T.S. Squires, and T. Tong. 1994. Cancer statistics, 1994. CA: a Cancer J Clin 44:7–26.Google Scholar
  90. 90.
    Gilliland, F.D., C.R. Keys. 1995. Male genital cancers. Cancer 75:295–315.PubMedGoogle Scholar
  91. 91.
    Wei, C., R.A. Willis, B.R. Tilton, R.J. Looney, E.M. Lord, R.K. Barth, and J.G. Frelinger. 1997. Tissue-specific expression of the human prostate-specific antigen gene in transgenic mice: implications for tolerance and immunotherapy. Proc Natl Acad Sci U S A 94:6369–6374.PubMedGoogle Scholar
  92. 92.
    Ko, S.C., A. Gotoh, G.N, Thalmann, H.E. Zhau, D.A. Johnston, W.W. Zhang, C. Kao, and L.W.K. Chung. 1996. Molecular therapy with recombinant p53 adenovirus in an androgen-independent, metastatic human prostate cancer model. Hum Gene Ther 7:1683–1691.PubMedGoogle Scholar
  93. 93.
    Wang, M.C., M. Kuriyama, L.D. Papsidero, R.M. Loor, L.A. Valenzyela, G.P. Murphy, and T.M. Chu. 1982. Prostate antigen of human cancer patients. Methods Cancer Res 19:179–197.Google Scholar
  94. 94.
    Watt, K.W.K., P.-J. Lee, TM’ Timkulu, W.-P. Chan, and R. Loor. 1986. Human prostate-specific antigen: structural and functional similarity with serine proteases. Proc Natl Acad Sci U S A 83:3166–3170.PubMedGoogle Scholar
  95. 95.
    Labrie, F., A. DuPont, R. Suburu, L. Cusan, M. Tremblay, J.L. Gomez, and J. Edmond. 1992. Serum prostate specific antigen as a pre-screening test for prostate cancer. J Urol 151:1283–1290.Google Scholar
  96. 96.
    Kim, J.J., N.N. Trivedi, D.M. Wilson, S. Mahalingam, L. Morrison, A. Tsai, M.A. Chattergoon, K. Dang, M. Patel, L. Ahn, A.A. Chalian, J.D. Boyer, T. Kieber-Emmons, M.G. Agadjanyan, and D.B. Weiner. 1998. Molecular and immunological analysis of genetic prostate specific antigen (PSA) vaccine. Oncogene 17:3125–3135.PubMedGoogle Scholar
  97. 97.
    Kim, J.J., J.S. Yang, L.K. Nottingham, Waixing Tang, K. Dang, K.H. Manson, M.S. Wyand, D.M. Wilson, and D.B. Weiner. 2001. Induction of immune responses and safety profiles in rhesus macaques immunized with a DNA vaccine expressing human prostate specific antigen (PSA). Oncogene 20:4497–4506.PubMedGoogle Scholar
  98. 98.
    Seedorf, K., T. Oltersdorf, G. Krammer, and W. Rowekamp. 1987. Identification of early proteins of the human papilloma viruses type 16 (HPV 16) and type 18 (HPV 18) in cervical carcinoma cells. EMBO J 6:139–144.PubMedGoogle Scholar
  99. 99.
    Dyson, N., P.M. Howley, K. Munger, and E. Harlow. 1989. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937.PubMedGoogle Scholar
  100. 100.
    Tan, J., N.S. Yang, J.G. Turner, G.L. Niu, H.F. Maassab, H. Sun, M.L. Herlocher, A.E. Chang, and H. Yu. 1999. Interleukin-12 cDNA skin transfection potentiates human papillomavirus E6 DNA vaccine-induced antitumor immune response. Cancer Gene Ther 6:331–339.PubMedGoogle Scholar
  101. 101.
    Shi, W., P. Bu, J. Liu, A. Polack, S. Fisher, and Qiao. 1999. Human papillomavirus type 16 E7 DNA vaccine:mutation in the open reading frame of E7 enhances specific cytotoxic T-lymphocyte induction and antitumor activity. J Virol 73:7877–7881.PubMedGoogle Scholar
  102. 102.
    Wu, T.C., F.G. Guarnieri, K.F. Staveley-O’Carroll, R.P. Viscidi, H.I. Levitsky, L. Hedrick, K.R. Cho, J.T. August, and D.M. Pardoll. 1995. Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens. Proc Natl Acad Sci U S A 92:11671–11675.PubMedGoogle Scholar
  103. 103.
    Ji, H., T.L. Wanf, C.H. Chen, S.I. Pai, C.F. Hung, K.Y. Lin, R.J. Kurman, D.M. Pardoll, and T.C. Wu. 1999. Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum Gene Ther 10:2727–2740.PubMedGoogle Scholar
  104. 104.
    Elliott, G., and P. O’Hare. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233.PubMedGoogle Scholar
  105. 105.
    Hung, C.F., W.F. Cheng. C.Y. Chai, K.F. Hsu, L. He, M. Ling, and T.C. Wu. 2001. Improving vaccine potency through intercellular spreading and enhanced MHC class I presentation of antigen. J Immunol 166:5733–5740.PubMedGoogle Scholar
  106. 106.
    Hung, C.F., W.F. Cheng, L. He, M. Ling, J. Juang, C.T. Lin, and T.C. Wu. 2003. Enhanced major histocompatibility complex class I antigen presentation by targeting antigen to centrosomes. Cancer Res 63:2393–2398.PubMedGoogle Scholar
  107. 107.
    Klencke, B., M. Matijevic, R.G. Urban, J.L. Lathey, M.L. Hedley, M. Berry, J. Thatcher, V. Weinberg, J. Wilson, T. Darragh, N. Jay, M. Da Costa, and J.M. Palefsky. 2002. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin Cancer Res 8:1028–1037.PubMedGoogle Scholar
  108. 108.
    Slamon, D.J., G.M. Clark, S.G. Wong, W.J. Levin, A. Ullrich, and W.L. McGuire. 1987. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182.PubMedGoogle Scholar
  109. 109.
    van de Vijver, M.J., J.L. Peterse, W.J. Mooi, P. Wisman, J. Lomans, O. Dalesio, and R. Nusse. 1988. Neu-protein overexpression in breast cancer: association with comedotype ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 319:1239–1245.PubMedGoogle Scholar
  110. 110.
    Graus-Porta, D., R.R. Beerli, J.M. Daly, and N.E. Hynes. 1997. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator if lateral signaling. EMBO J 16:1647–1655.PubMedGoogle Scholar
  111. 111.
    Chen, Y., D. Hu, D.J. Eling, J. Robbins, and T.J. Kipps. 1998. DNA vaccines encoding full-length or truncated Neu induce protective immunity against neu-expressing mammary tumors. Cancer Res 58:1965–1971.PubMedGoogle Scholar
  112. 112.
    Wei, W.Z., W.P. Shi, A. Galy, D. Lichlyter, S. Hernandez, B. Groner, L. Heilbrun, and R.F. Jones. 1999. Protection against mammary tumor growth by vaccination with full-length, modified human ErbB-2 DNA. Int J Cancer 81:748–754.PubMedGoogle Scholar
  113. 113.
    Amici, A., A. Smorlesi, G. Noce, G. Santoni, P. Cappelletti, L. Capparuccia, R. Coppari, R. Lucciarini, C. Petrelli, and M. Provinciali. 2000. DNA vaccination with full-length or truncated neu induces protective immunity against the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Gene Ther 7:703–706.PubMedGoogle Scholar
  114. 114.
    Niethammer, A.G., R. Xiang, J.C. Becker, H. Wodrich, U. Pertl, G. Karsten, B.P. Eliceiri, R.A. Reisfeld. 2002. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8:1369–1375.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Andrew Y. Choo
    • 1
  • Daniel K. Choo
    • 1
  • J. Joseph Kim
    • 2
  • David B. Weiner
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of Pennsylvania School of MedicinePhiladelphia
  2. 2.Viral Genomix, Inc. (VGX Pharmaceuticals)Philadelphia

Personalised recommendations