Advertisement

Keywords

Second Harmonic Generation Optical Parametric Oscillator Nonlinear Crystal Nonlinear Optical Crystal Biaxial Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Kato: Phase-matched generation of 2314 Å in KB5O8·4H2O. Appl. Phys. Lett. 29(9), 562–563 (1976).ADSGoogle Scholar
  2. [2]
    W.R. Cook, Jr., H. Jaffe: The crystallographic, elastic, and piezoelectric properties of ammonium pentaborate and potassium pentaborate. Acta Crystallogr. 10(11), 705–707 (1957).Google Scholar
  3. [3]
    K. Thamizharasan, S. Xavier Jesu Raja, F.P. Xavier, P. Sagayaraj: Growth, thermal and microhardness studies of single crystals of potassium penta borate (KB5). J. Cryst. Growth 218(2–4), 323–326 (2000).ADSGoogle Scholar
  4. [4]
    S.A. Rajasekar, K. Thamizharasan, A. Joseph Arul Pragasam, J. Pakiam Julius, P. Sagayaraj: Growth and characterization of pure and doped potassium pentaborate (KB5) single crystals. J. Cryst. Growth 247(1–2), 199–206 (2003).ADSGoogle Scholar
  5. [5]
    J.A. Paisner, M.L. Spaeth, D.C. Gerstenberger, I.W. Ruderman: Generation of tunable radiation below 2000Å by phase-matched sum-frequency mixing in KB5O8·4H2O. Appl. Phys. Lett. 32(8), 476–478 (1978).ADSGoogle Scholar
  6. [6]
    K.B. Petrosyan, A.L. Pogosyan, K.M. Pokhsraryan: Generation of ultrashort light pulses in the UV region by up-conversion of radiation in potassium pentaborate. Izv. Akad. Nauk SSSR, Ser. Fiz. 47(8), 1619–1621 (1983) [In Russian, English trans.: Bull. Acad. Sci. USSR, Phys. Ser. 47(8), 155–157 (1983)].Google Scholar
  7. [7]
    K. Kato: Phase matched generation of 2128 Å in KB5O8·4H2O. Opt. Commun. 19(3), 332–333 (1976).ADSGoogle Scholar
  8. [8]
    K. Kato: Efficient ultraviolet generation of 2073–2174 Å in KB5O8·4H2O. IEEE J. Quant. Electr. QE-13(7), 544–546 (1977).ADSGoogle Scholar
  9. [9]
    G.G. Gurzadyan, R.K. Ispiryan: Two-photon absorption in potassium dihydrophosphate, potassium pentaborate and quartz crystals at 270 and 216 nm. Int. J. Nonl. Opt. Phys. 1(3), 533–540 (1992).Google Scholar
  10. [10]
    H. Zacharias, A. Anders, J.B. Halpern, K.H. Welge: Frequency doubling and tuning with KB5O8·4H2O and application to NO (A2 +) excitation. Opt. Commun. 19(1), 116–119 (1976).ADSGoogle Scholar
  11. [11]
    W.R. Cook, Jr., L.M. Hubby, Jr.: Indices of refraction of potassium pentaborate. J. Opt. Soc. Am. 66(1), 72–73 (1976).ADSGoogle Scholar
  12. [12]
    N. Umemura, K. Kato: Phase-matched UV generation at 0.1774µm in KB5O8·4H2O. Appl. Opt. 35(27), 5332–5335 (1996).ADSGoogle Scholar
  13. [13]
    F.B. Dunning, R.E. Stickel, Jr.: Sum frequency mixing in potassium pentaborate as a source of tunable coherent radiation at wavelengths below 217 nm. Appl. Opt. 15(12), 3131–3134 (1976).ADSGoogle Scholar
  14. [14]
    V.G. Dmitriev, D.N. Nikogosyan: Effective nonlinearity coefficients for three-wave interactions in biaxial crystals of mm2 point group symmetry. Opt. Commun. 95(1–3), 173–182 (1993).ADSGoogle Scholar
  15. [15]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  16. [16]
    H.J. Dewey: Second-harmonic generation in KB5O8· 4H2O from 217.1 to 315.0 nm. IEEE J. Quant. Electr. QE-12(5), 303–306 (1976).ADSGoogle Scholar
  17. [17]
    E. Fill, J. Wildenauer: Generation of the fifth and sixth harmonics of iodine laser pulses. Opt. Commun. 47(6), 412–413 (1983).ADSGoogle Scholar
  18. [18]
    T.S. Chen, W.P. White: Second-harmonic generation in KB5O8·4H2O. IEEE J. Quant. Electr. QE-12(7), 436–437 (1976).ADSGoogle Scholar
  19. [19]
    A.G. Arutyunyan, G.G. Gurzadyan, R.K. Ispiryan: Generation of the fifth harmonic of picosecond yttrium aluminate laser radiation. Kvant. Elektron. 16(12), 2493–2495 (1989) [In Russian, English trans.: Sov. J. Quantum Electron. 19(12), 1602–1603 (1989)].Google Scholar
  20. [20]
    R.E. Stickel, Jr., S. Blit, G.F. Hildebrandt, E.D. Dahl, F.B. Dunning, F.K. Tittel: Generation of coherent UV radiation tunable from 211 nm to 216 nm. Appl. Opt. 17(15), 2270 (1978).ADSGoogle Scholar
  21. [21]
    C.F. Dewey, Jr., W.R. Cook, Jr., R.T. Hodgson, J.J. Wynne: Frequency doubling in KB5O8·4H2O and NH4B5O8·4H2O to 217.3 nm. Appl. Phys. Lett. 26(12), 714–716 (1975).ADSGoogle Scholar
  22. [22]
    R.E. Stickel, Jr., F.B. Dunning: Generation of coherent radiation tunable from 201 nm to 212 nm. Appl. Opt. 16(9), 2356–2358 (1977).ADSGoogle Scholar
  23. [23]
    K. Kato: Tunable UV generation in KB5O8·4H2O to 1966 Å. Appl. Phys. Lett. 30(11), 583–584 (1977).ADSGoogle Scholar
  24. [24]
    H. Hemmati, J.C. Bergquist, W.M. Itano: Generation of continuous-wave 194 nm radiation by sum-frequency mixing in an external ring cavity. Opt. Lett. 8(2), 73–75 (1983).ADSGoogle Scholar
  25. [25]
    R.E. Stickel, Jr., F.B. Dunning: Generation of tunable coherent vacuum UV radiation in KB5. Appl. Opt. 17(7), 981–982 (1978).ADSGoogle Scholar
  26. [26]
    V. Petrov, F. Rotermund, F. Noack: Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8·4H2O. Electron. Lett. 34(18), 1748–1750 (1998).Google Scholar
  27. [27]
    V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, R. Komatsu: Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals. IEEE J. Sel. Topics Quant. Electr. 5(6) 1532–1542 (1999).Google Scholar
  28. [28]
    A.G. Arutyunyan, V.G. Atanesyan, K.B. Petrosyan, K.M. Pokhsraryan: Frequency multiplication of ultrashort light pulses in potassium pentaborate. Pisma Zh. Tekh. Fiz. 6(5–6), 277–280 (1980) [In Russian, English trans.: Sov. Tech. Phys. Lett. 6(3), 120–121 (1980)].Google Scholar

References

  1. [1]
    K. Kato: Tunable UV generation to 0.185µm in CsB3O5. IEEE J. Quant. Electr. 31(1), 169–171 (1995).ADSGoogle Scholar
  2. [2]
    J. Krogh-Moe: Refinement of the crystal structure of caesium triborate, Cs2O·3B2O5. Acta Crystallogr. B 30(5), 1178–1180 (1974).Google Scholar
  3. [3]
    Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, C. Chen: CsB3O5: a new nonlinear crystal. Appl. Phys. Lett. 62(21), 2614–2615 (1993).ADSGoogle Scholar
  4. [4]
    B.V. Bokut: Optical mixing in biaxial crystals. Zh. Prikl. Spektrosk. 7(4), 621–624 (1967) [In Russian, English trans.: J. Appl. Spectrosc. 7(4), 425–429 (1967)].Google Scholar
  5. [5]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  6. [6]
    I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Okamoto, K. Tatsuki, S. Kubota: Absolute measurements of second-order nonlinear-optical coefficients of β-BaB2O4 for visible to ultraviolet second-harmonic wavelengths. J. Opt. Soc. Am. B 16(4), 620–624 (1999).ADSGoogle Scholar
  7. [7]
    Y. Wu, P. Fu, J. Wang, Z. Xu, L. Zhang, Y. Kong, C. Chen: Characterization of CsB3O5 crystal for ultraviolet generation. Opt. Lett. 22(24), 1840–1842 (1997).ADSGoogle Scholar

References

  1. [1]
    M. Yoshimura, Y. Mori, T. Sasaki, H. Yoshida, M. Nakatsuka: Efficient stimulated Brillouin scattering in the organic crystal deuterated L-arginine phosphate monohydrate. J. Opt. Soc. Am. B 15(1), 446–450 (1998).ADSGoogle Scholar
  2. [2]
    D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, G. Kennedy: Deuterated L-arginine phosphate: a new efficient nonlinear crystal. IEEE J. Quant. Electr. 25(2), 179–193 (1989).ADSGoogle Scholar
  3. [3]
    D. Eimerl, J. Marion, E.K. Graham, H.A. McKinstry, S. Haussühl: Elastic components and thermal fracture of AgGaSe2 and d-LAP. IEEE J. Ouant. Electr. 27(1), 142–145 (1991).ADSGoogle Scholar
  4. [4]
    K. Aoki, K. Nagano, Y. Iitaka: The crystal structure of L-arginine phosphate monohydrate. Acta Crystallogr. B 27(1), 11–23 (1971).Google Scholar
  5. [5]
    A.S. Haja Hameed, G. Ravi, R. Jayavel, P. Ramasamy: Nucleation kinetics, growth and characterization of dLAP, dLAP:KF and dLAP:NaN3 crystals. J. Cryst. Growth 250(1–2), 126–133 (2003).ADSGoogle Scholar
  6. [6]
    A.S. Haja Hameed, G. Ravi, R. Ilangovan, A. Nixon Azariah, P. Ramasamy: Growth and characterization of deuterated analog of L-arginine phosphate single crystals. J. Cryst. Growth 237–239, 890–893 (2002).Google Scholar
  7. [7]
    A. Yokotani, T. Sasaki, K. Yoshida, S. Nakai: Extremely high damage threshold of a new nonlinear crystal L-arginine phosphate and its deuterium compound. Appl. Phys. Lett. 55(26), 2692–2693 (1989).ADSGoogle Scholar
  8. [8]
    C.E. Barker, D. Eimerl, S.P. Velsko: Temperature-insensitive phase-matching for second-harmonic generation in deuterated L-arginine phosphate. J. Opt. Soc. Am. B 8(12), 2481–2492 (1991).ADSGoogle Scholar
  9. [9]
    B.V. Bokut: Optical mixing in biaxial crystals. Zh. Prikl. Spektrosk. 7(4), 621–624 (1967) [In Russian, English trans.: J. Appl. Spectrosc. 7(4), 425–429 (1967)].Google Scholar
  10. [10]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  11. [11]
    R.B. Andreev, K.V. Vetrov, V.N. Voitsechovskii, V.D. Volosov, I.V. Nikiforuk, B.P. Nikolaeva, V.E. Yakobson: Growth of d-LAP crystals and study of their primary nonlinear optical properties. Izv. Akad. Nauk SSSR, Ser. Fiz. 54(12), 2491–2493 (1990) [In Russian, English trans.: Bull. Acad. Sci. USSR, Phys. Ser. 54(12), 187–189 (1990)].ADSGoogle Scholar
  12. [12]
    G. Robertson, M.H. Dunn: Excimer pumped deuterated L-arginine phosphate optical parametric oscillator. Appl. Phys. Lett. 62(26), 3405–3407 (1993).ADSGoogle Scholar

References

  1. [1]
    S.K. Kurtz, T.T. Perry, J.G. Bergman, Jr.: Alpha-iodic acid: a solution-grown crystal for nonlinear optical studies and applications. Appl. Phys. Lett. 12(5), 186–188 (1967).ADSGoogle Scholar
  2. [2]
    V.I. Bespalov, I.A. Batyreva, L.A. Dmitrenko, V.V. Korolikhin, S.P. Kuznetsov, M.A. Novikov: Investigation of the absorption of near infrared radiation in partly deuterated KDP and α-HIO3 crystals. Kvant. Elektron. 4(7), 1563–1566 (1977) [In Russian, English trans.: Sov. J. Quantum Electron. 7(7), 885–887 (1977)].Google Scholar
  3. [3]
    H. Naito, H. Inaba: Measurement of the refractive indices of α-iodic acid, HIO3, crystal. Opto-electron. 4(3), 335–337 (1972).Google Scholar
  4. [4]
    S.K. Kurtz: Nonlinear Optical Materials. In: Laser Handbook,Vol. 1, ed. by F.T. Arecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam, 1972), pp. 923–974.Google Scholar
  5. [5]
    R.A. Andrews: IR image parametric up-conversion. IEEE J. Quant. Electr. QE-6(1), 68–80 (1970).ADSGoogle Scholar
  6. [6]
    E.N. Volkova, V.A. Dianova, A.L. Zueva, A.N. Izrailenko, A.C. Lipatov, V.N. Parygin, L.N. Rashkovich, L.E. Chirkov: Electro-optical and piezoelectric properties of α-HIO3 crystals. Kristallogr. 16(2), 346–349 (1971) [In Russian, English trans.: Sov. Phys. — Crystallogr. 16(2), 284–287 (1971)].Google Scholar
  7. [7]
    B.V. Bokut: Optical mixing in biaxial crystals. Zh. Prikl. Spektrosk. 7(4), 621–624 (1967) [In Russian, English trans.: J. Appl. Spectrosc. 7(4), 425–429 (1967)].Google Scholar
  8. [8]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  9. [9]
    J.E. Bjorkholm: Relative measurement of the optical nonlinearities of KDP, ADP, LiNbO3, and α-HIO3. IEEE J. Quant. Electr. QE-4(11), 970–972 (1968).ADSGoogle Scholar
  10. [10]
    K. Hagimoto, A. Mito: Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 and 1064 nm. Appl. Opt. 34(36), 8276–8282 (1995).ADSGoogle Scholar
  11. [11]
    V.A. Kiselev, V.F. Kitaeva, L.A. Kulevskii, Y.N. Polivanov, S.N. Poluektov: Investigation of spontaneous parametric emission in biaxial crystal α-HIO3. Zh. Eksp. Teor. Fiz. 62(4), 1291–1301 (1972) [In Russian, English trans.: Sov. Phys. — JETP 35(4), 687–691 (1972)].Google Scholar
  12. [12]
    H. Ito, H. Naito, H. Inaba: Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals. J. Appl. Phys. 46(9), 3992–3998 (1975).ADSGoogle Scholar
  13. [13]
    A.I. Izrailenko, A.I. Kovrigin, P.V. Nikles: Parametric generation of light in high-efficiency nonlinear LiIO3 and α-HIO3 crystals. Pisma Zh. Eksp. Teor. Fiz. 12(10), 475–478 (1970) [In Russian, English trans.: JETP Lett. 12(10), 331–333 (1970)].Google Scholar
  14. [14]
    R.B. Andreev, V.D. Volosov, A.G. Kalintsev: Spectral, angular, and temperature characteristics of HIO3, LiIO3, CDA, DKDP, KDP and ADP non-linear crystals in second-and fourth-harmonic generation. Opt. Spektrosk. 37(2), 294–299 (1974) [In Russian, English trans.: Opt. Spectrosc. USSR 37(2), 169–171 (1974)].Google Scholar
  15. [15]
    G. Dikchyus, E. Zhilinskas, A. Piskarskas, V. Sirutkaitis: Statistical properties and stabilization of a picosecond phosphate-glass laser with 2 Hz repetition frequency. Kvant. Elektron. 6(8), 1610–1619 (1979) [In Russian, English trans.: Sov. J. Quantum Electron. 9(8), 950–955 (1979)].Google Scholar
  16. [16]
    G.A. Dikchyus, V.I. Kabelka, A.S. Piskarskas, A.Y. Stabinis: Single-pass parametric generation of light in an α-HIO3 crystal pumped with ultrashort pulses. Kvant. Elektron. 1(11), 2513–2515 (1974) [In Russian, English trans.: Sov. J. Quantum Electron. 4(11), 1402–1403 (1974)].Google Scholar
  17. [17]
    G. Dikchyus, R. Danielius, V. Kabelka, A. Piskarskas, T. Tomkiavichyus, A. Stabinis: Kvant. Elektron. 3(4), 779–784 (1976) [In Russian, English trans.: Sov. J. Quantum Electron. 6(4), 425–428 (1976)].Google Scholar
  18. [18]
    R. Danielius, G. Dikchyus, V. Kabelka, A. Piskarskas: High efficiency, picosecond parametric light source with narrow output spectrum and high pulse rate. Zh. Tekh. Fiz. 47(5), 1075–1077 (1977) [In Russian, English trans.: Sov. Phys. — Tech. Phys. 22(5), 642–643 (1977)].Google Scholar
  19. [19]
    R. Danielius, G. Dikchyus, V. Kabelka, A. Piskarskas, A. Stabinis, Y. Yasevichyute: Parametric excitation of light in the picosecond range. Kvant. Elektron. 4(11), 2379–2395 (1977) [In Russian, English trans.: Sov. J. Quantum Electron. 7(11), 1360–1368 (1977)].Google Scholar

References

  1. [1]
    S. Singh, W.A. Bonner, J.R. Potopowicz, L.G. van Uitert: Non-linear optical susceptibility of lithium formate monohydrate. Appl. Phys. Lett. 17(7), 292–294 (1970).ADSGoogle Scholar
  2. [2]
    H. Ito, H. Naito, H. Inaba: New phase-matchable nonlinear optical crystals of the formate family. IEEE J. Quant. Electr. QE-10(2), 247–252 (1974).ADSGoogle Scholar
  3. [3]
    K. Kato: Third-harmonic generation of Nd:YAG laser in lithium formate monohydrate. Opt. Quant. Electron. 8(3), 261–262 (1976).Google Scholar
  4. [4]
    H. Naito, H. Inaba: Measurement of the refractive indices of crystalline lithium formate HCOOLI·H2O. Opto-electron. 5(3), 256–259 (1973).Google Scholar
  5. [5]
    V.G. Dmitriev, D.N. Nikogosyan: Effective nonlinearity coefficients for three-wave interactions in biaxial crystals of mm2 point group symmetry. Opt. Commun. 95(1–3), 173–182 (1993).ADSGoogle Scholar
  6. [6]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  7. [7]
    S.J. Bastow, M.H. Dunn: The generation of tunable UV radiation from 238–249 nm by intracavity frequency doubling of Coumarin 102 dye laser. Opt. Commun. 35(2), 259–263 (1980).ADSGoogle Scholar
  8. [8]
    L. Armstrong, S.E. Neister, R. Adhav: Measuring CFP dye laser damage thresholds on UV doubling crystals. Laser Focus 18(12), 49–53 (1982).Google Scholar

References

  1. [1]
    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan: Handbook of Nonlinear Optical Crystals, Third Revised Edition (Springer, Berlin, 1999).Google Scholar
  2. [2]
    W.R. Cook, Jr.: Thermal expansion of crystals with KH2PO4 structure. J. Appl. Phys. 38(4), 1637–1642 (1967).ADSGoogle Scholar
  3. [3]
    K. Kato: Second-harmonic generation in CDA and CD*A. IEEE J. Quant. Electr. QE-10(8), 616–618 (1974).ADSGoogle Scholar
  4. [4]
    A.S. Sonin, A.S. Vasilevskaya: Elektrooptic Crystals (Atomizdat, Moscow, 1971) [In Russian].Google Scholar
  5. [5]
    D. Eimerl: Electro-optic, linear and nonlinear optical properties of KDP and its isomorphs. Ferroelectrics 72(1–4), 95–139 (1987).Google Scholar
  6. [6]
    T.A. Rabson, H.J. Ruiz, P.L. Shah, F.K. Tittel: Efficient second harmonic generation of picosecond laser pulses. Appl. Phys. Lett. 20(8), 282–284 (1972).ADSGoogle Scholar
  7. [7]
    P. Liu, W.L. Smith, H. Lotem, J.H. Bechtel, N. Bloembergen, R.S. Adhav: Absolute two-photon absorption coefficients at 355 and 266 nm. Phys. Rev. B 17(12), 4620–4632 (1978).ADSGoogle Scholar
  8. [8]
    N.P. Barnes, D.J. Gettemy, R.S. Adhav: Variations of the refractive index with temperature and the tuning rate for KDP isomorphs. J. Opt. Soc. Am. 72(7), 895–898 (1982).ADSGoogle Scholar
  9. [9]
    K.W. Kirby, L.G. DeShazer: Refractive indices of 14 nonlinear crystals isomorphic to KH2PO4. J. Opt. Soc. Am. B 4(7), 1072–1078 (1987).ADSGoogle Scholar
  10. [10]
    R.C. Eckardt, H. Masuda, Y.X. Fan, R.L. Byer: Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation. IEEE J. Quant. Electr. 26(5), 922–933 (1990).ADSGoogle Scholar
  11. [11]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  12. [12]
    R.S. Adhav: Materials for optical harmonic generation. Laser Focus 19(6), 73–78 (1983).Google Scholar
  13. [13]
    V.S. Suvorov, I.S. Rez: Second-harmonic generation without birefringence in CDA (CsH2AsO4) crystal at room temperature. Opt. Spektrosk. 27(1), 181–183 (1969) [English trans.: Opt. Spectrosc. USSR 27(1), 94–95 (1969)].Google Scholar
  14. [14]
    R.B. Andreev, V.D. Volosov, A.G. Kalintsev: Spectral, angular, and temperature characteristics of HIO3, LiIO3, CDA, DKDP, KDP and ADP non-linear crystals in second-and fourth-harmonic generation. Opt. Spektrosk. 37(2), 294–299 (1974) [English trans.: Opt. Spectrosc. USSR 37(2), 169–171 (1974)].Google Scholar
  15. [15]
    Y.D. Golyaev, V.G. Dmitriev, I.Y. Itskhoki, V.N. Krasnyanskaya, I.S. Rez, E.A. Shalaev: Efficient frequency doubler utilizing a cesium dihydrogen arsenate crystal. Kvantovaya Elektron. No. 1, 122–123 (1973) [English trans.: Sov. J. Quantum Electron. 3(1), 72–73 (1973)].Google Scholar
  16. [16]
    R.S. Adhav, A.D. Vlassopoulos: Guide to efficient doubling. Laser Focus 10(5), 47–48 (1974).Google Scholar
  17. [17]
    K.V. Vetrov, V.D. Volosov, A.G. Kalintsev: Nonlinear characteristics of CDA and DCDA in neodymium-laser second-harmonic generation. Izv. Akad. Nauk SSSR, Ser. Fiz. 52(2), 301–303 (1988) [English trans.: Bull. Acad. Sci. USSR, Ser. Phys. 52(2), 78–79 (1988)].ADSGoogle Scholar
  18. [18]
    K. Kato: Efficient second harmonic generation in CDA. Opt. Commun. 9(3), 249–251 (1973).ADSGoogle Scholar
  19. [19]
    R.S. Adhav, R.W. Wallace: Second harmonic generation in 90° phase-matched KDP isomorphs. IEEE J. Quant. Electr. QE-9(8), 855–856 (1973).ADSGoogle Scholar
  20. [20]
    G.A. Massey, M.D. Jones, J.C. Johnson: Generation of pulse bursts at 212.8 nm by intracavity modulation of an Nd:YAG laser. IEEE J. Quant. Electr. QE-14(7), 527–532 (1978).ADSGoogle Scholar
  21. [21]
    G.A. Massey, R.A. Elliot: Tunable infrared parametric generation in cesium dihydrogen arsenate. IEEE J. Quant. Electr. QE-10(12), 899–900 (1974).ADSGoogle Scholar

References

  1. [1]
    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan: Handbook of Nonlinear Optical Crystals, Third Revised Edition (Springer, Berlin, 1999).Google Scholar
  2. [2]
    K. Kato: Second-harmonic generation in CDA and CD*A. IEEE J. Quant. Electr. QE-10(8), 616–618 (1974).ADSGoogle Scholar
  3. [3]
    D. Eimerl: Electro-optic, linear and nonlinear optical properties of KDP and its isomorphs. Ferroelectrics 72(1–4), 95–139 (1987).Google Scholar
  4. [4]
    T.A. Rabson, H.J. Ruiz, P.L. Shah, F.K. Tittel: Efficient second harmonic generation of picosecond laser pulses. Appl. Phys. Lett. 20(8), 282–284 (1972).ADSGoogle Scholar
  5. [5]
    P. Liu, W.L. Smith, H. Lotem, J.H. Bechtel, N. Bloembergen, R.S. Adhav: Absolute two-photon absorption coefficients at 355 and 266 nm. Phys. Rev. B 17(12), 4620–4632 (1978).ADSGoogle Scholar
  6. [6]
    N.P. Barnes, D.J. Gettemy, R.S. Adhav: Variations of the refractive index with temperature and the tuning rate for KDP isomorphs. J. Opt. Soc. Am. 72(7), 895–898 (1982).ADSGoogle Scholar
  7. [7]
    K.W. Kirby, L.G. DeShazer: Refractive indices of 14 nonlinear crystals isomorphic to KH2PO4. J. Opt. Soc. Am. B 4(7), 1072–1078 (1987).ADSGoogle Scholar
  8. [8]
    R.C. Eckardt, H. Masuda, Y.X. Fan, R.L. Byer: Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation. IEEE J. Quant. Electr. 26(5), 922–933 (1990).ADSGoogle Scholar
  9. [9]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  10. [10]
    R.S. Adhav: Materials for optical harmonic generation. Laser Focus 19(6), 73–78 (1983).Google Scholar
  11. [11]
    K.V. Vetrov, V.D. Volosov, A.G. Kalintsev: Nonlinear characteristics of CDA and DCDA in neodymium-laser second-harmonic generation. Izv. Akad. Nauk SSSR, Ser. Fiz. 52(2), 301–303 (1988) [In Russian, English trans.: Bull. Acad. Sci. USSR, Ser. Phys. 52(2), 78–79 (1988)].ADSGoogle Scholar
  12. [12]
    R.S. Adhav, R.W. Wallace: Second harmonic generation in 90° phase-matched KDP isomorphs. IEEE J. Quant. Electr. QE-9(8), 855–856 (1973).ADSGoogle Scholar
  13. [13]
    R.S. Adhav, A.D. Vlassopoulos: Guide to efficient doubling. Laser Focus 10(5), 47–48 (1974).Google Scholar
  14. [14]
    K. Kato: Conversion of high power Nd:YAG laser radiation to the UV at 2661 Å. Opt. Commun. 13(4), 361–362 (1975).ADSGoogle Scholar

References

  1. [1]
    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan: Handbook of Nonlinear Optical Crystals, Third Revised Edition (Springer, Berlin, 1999).Google Scholar
  2. [2]
    S. Haussühl: Elastische und thermoelastische Eigenschaften von KH2PO4, KH2AsO4, NH4H2PO4, NH4 H2AsO4 und RbH2PO4. Z. Kristallogr. 120(6), 401–414 (1964) [In German].Google Scholar
  3. [3]
    E.N. Volkova, B.M. Berezhnoi, A.N. Izrailenko, A.V. Mishchenko, L.N. Rashkovich: Electro-optic and optical properties of partly deuterated rubidium dihydrogen phosphate crystals. Izv. Akad. Nauk SSSR, Ser. Fiz. 35(9), 1858–1861 (1971) [In Russian, English trans.: Bull. Acad. Sci. USSR, Ser. Phys. 35(9), 1690–1693 (1971)].Google Scholar
  4. [4]
    W.R. Cook, Jr.: Thermal expansion of crystals with KH2PO4 structure. J. Appl. Phys. 38(4), 1637–1642 (1967).ADSGoogle Scholar
  5. [5]
    K. Kato: Efficient UV generation at 3547 Å in RDP. Appl. Phys. Lett. 25(6), 342–343 (1974).ADSGoogle Scholar
  6. [6]
    D. Eimerl: Electro-optic, linear and nonlinear optical properties of KDP and its isomorphs. Ferroelectrics 72(1–4), 95–139 (1987).Google Scholar
  7. [7]
    A.S. Sonin, A.S. Vasilevskaya: Elektrooptic Crystals (Atomizdat, Moscow, 1971) [In Russian].Google Scholar
  8. [8]
    P. Liu, W.L. Smith, H. Lotem, J.H. Bechtel, N. Bloembergen, R.S. Adhav: Absolute two-photon absorption coefficients at 355 and 266 nm. Phys. Rev. B 17(12), 4620–4632 (1978).ADSGoogle Scholar
  9. [9]
    A.S. Vasilevskaya, M.F. Koldobskaya, L.G. Lomova, V.P. Popova, T.A. Regulskaya, I.S. Rez, Y.P. Sobesskii, A.S. Sonin, V.S. Suvorov: Some physical properties of rubidium dihydrogen phosphate single crystals. Kristallogr. 12(3), 447–450 (1967) [In Russian, English trans.: Sov. Phys. — Crystallogr. 12(3), 383–385 (1967)].Google Scholar
  10. [10]
    S. Singh: Nonlinear Optical Materials. In: Handbook of Lasers, ed. by R.G. Pressley (The Chemical Rubber Co., Cleveland, 1971), pp. 489–525.Google Scholar
  11. [11]
    E.N. Volkova, S.L. Faerman: Refractive indices of KD2xH2(1–x)PO4 and RbD2xH2(1–x)PO4 crystals. Kvant. Elektron. 3(11), 2508–2511 (1976) [In Russian, English trans.: Sov. J. Quantum Electron. 6(11), 1380–1382 (1976)].Google Scholar
  12. [12]
    N.P. Barnes, D.J. Gettemy, R.S. Adhav: Variations of the refractive index with temperature and the tuning rate for KDP isomorphs. J. Opt. Soc. Am. 72(7), 895–898 (1982).ADSGoogle Scholar
  13. [13]
    K.W. Kirby, L.G. DeShazer: Refractive indices of 14 nonlinear crystals isomorphic to KH2PO4. J. Opt. Soc. Am. B 4(7), 1072–1078 (1987).ADSGoogle Scholar
  14. [14]
    R.C. Eckardt, H. Masuda, Y.X. Fan, R.L. Byer: Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation. IEEE J. Quant. Electr. 26(5), 922–933 (1990).ADSGoogle Scholar
  15. [15]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  16. [16]
    V.S. Suvorov, A.S. Sonin, I.S. Rez: Some nonlinear optical properties of crystals of the KDP group. Zh. Eksp. Teor. Fiz. 53(1), 49–55 (1967) [In Russian, English trans.: Sov. Phys. — JETP 26(1), 33–37 (1968)].Google Scholar
  17. [17]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  18. [18]
    J.E. Pearson, G.A. Evans, A. Yariv: Measurement of the relative nonlinear coefficients of KDP, RDP, RDA, and LiIO3. Opt. Commun. 4(5), 366–367 (1972).ADSGoogle Scholar
  19. [19]
    R.S. Adhav: Materials for optical harmonic generation. Laser Focus 19(6), 73–78 (1983).Google Scholar
  20. [20]
    K. Kato: Highly efficient frequency doubling of visible dye laser radiation in RDP. J. Appl. Phys. 46(6), 2721–2722 (1975).ADSGoogle Scholar
  21. [21]
    M.P. Golovey, I.N. Kalinkina, G.I. Kosourov: On the nonlinear properties of RDP crystal. Opt. Spektrosk. 28(5), 991–992 (1970) [In Russian, English trans.: Opt. Spectrosc. USSR 28(5), 535–536 (1970)].Google Scholar
  22. [22]
    K. Kato, S. Nakao: Frequency doubling of Nd:YAG laser radiation in RDP. Jpn. J. Appl. Phys. 13(10), 1681–1682 (1974).ADSGoogle Scholar
  23. [23]
    R.S. Adhav, A.D. Vlassopoulos: Guide to efficient doubling. Laser Focus 10(5), 47–48 (1974).Google Scholar
  24. [24]
    K. Kato, A.J. Alcock, M.C. Richardson: Conversion of high power ruby laser radiation to the UV in RDP. Opt. Commun. 11(1), 5–7 (1974).ADSGoogle Scholar
  25. [25]
    E.V. Nilov, I.L. Yachnev: Some results on investigating RDP (RbH2PO4) crystal as laser frequency doubler. Zh. Prikl. Spektrosk. 7(6), 943–945 (1967) [In Russian, English trans.: J. Appl. Spectrosc. 7(6), 628–630 (1967)].Google Scholar
  26. [26]
    L. Armstrong, S.E. Neister, R. Adhav: Measuring CFP dye laser damage thresholds on UV doubling crystals. Laser Focus 18(12), 49–53 (1982).Google Scholar

References

  1. [1]
    L.T. Cheng, L.K. Cheng, J.D. Bierlein, F.C. Zumsteg: Nonlinear optical and electro-optical properties of single crystal CsTiOAsO4. Appl. Phys. Lett. 63(19), 2618–2620 (1993).ADSGoogle Scholar
  2. [2]
    B.H.T. Chai: Optical Crystals. In: CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, ed. by M.J. Weber (CRC Press, Boca Raton, 1995), pp. 3–65.Google Scholar
  3. [3]
    J. Protas, G. Marnier, B. Boulanger, B. Menaert: Structure crystalline de CsTiOAsO4. Acta Crystallogr. C 45(8), 1123–1125 (1989).Google Scholar
  4. [4]
    D.T. Reid, M. Ebrahimzade, W. Sibbett: Design criteria and comparison of femtosecond optical parametric oscillators based on KTiOPO4 and RbTiOAsO4. J. Opt. Soc. Am. B 12(11), 2168–2179 (1995).ADSGoogle Scholar
  5. [5]
    L.K. Cheng, J.D. Bierlein: KTP and isomorphs—recent progress in device and material development. Ferroelectrics 142(1–2), 209–228 (1993).Google Scholar
  6. [6]
    L.K. Cheng, E.M. McCarron III, J. Calabrese, J.D. Bierlein, A.A. Ballman: Development of the nonlinear optical crystal CsTiOAsO4. I. Structural stability. J. Cryst. Growth 132(1–2), 280–288 (1993).ADSGoogle Scholar
  7. [7]
    J. Nordborg, G. Svensson, R.J. Bolt, J. Albertson: Top seeded solution growth of [Rb,Cs]TiOAsO4. J. Cryst. Growth 224(3–4), 256–268 (2001).ADSGoogle Scholar
  8. [8]
    B. Boulanger, J.P. Feve, G. Marnier, G.M. Loiacono, D.N. Loiacono C. Bonnin: SHG and internal conical refraction experiments in CsTiOAsO4: comparison with KTiOPO4 and KTiOAsO4 for 1.32-µm type II SHG. IEEE J. Quant. Electr. 33(6), 945–949 (1997).ADSGoogle Scholar
  9. [9]
    J.P. Feve, B. Boulanger, O. Pacaud, I. Rousseau, B. Menaert, G. Marnier: Refined Sellmeier equations from phase-matching measurements over the complete transparency range of KTiOAsO4, RbTiOAsO4, and CsTiOAsO4. In: Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series, Vol. 34, ed. by H. Injeyan, U. Keller, C. Marshall (OSA, Washington DC, 2000), pp. 575–577.Google Scholar
  10. [10]
    J.-P. Feve, B. Boulanger, O. Pacaud, I. Rousseau, B. Menaert, G. Marnier, P. Villeval, C. Bonnin, G.M. Loiacono, D.N. Loiacono: Phase-matching measurements and Sellmeier equations over the complete transparency range of KTiOAsO4, RbTiOAsO4, and CsTiOAsO4. J. Am. Opt. Soc. B 17(5), 775–780 (2000).ADSGoogle Scholar
  11. [11]
    L.K. Cheng, L.T. Cheng, F.C. Zumsteg, J.D. Bierlein, J. Galperin: Development of the nonlinear optical crystal CsTiOAsO4. II. Crystal growth and characterization. J. Cryst. Growth 132(1–2), 289–296 (1993).ADSGoogle Scholar
  12. [12]
    L.-T. Cheng, L.K. Cheng, J.D. Bierlein: Linear and nonlinear optical properties of the arsenate isomorphs of KTP. Proc. SPIE 1863, 43–53 (1993).Google Scholar
  13. [13]
    L.K. Cheng, L.T. Cheng, J. Galperin, P.A. Morris Hotsenpiller, J.D. Bierlein: Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes. J. Cryst. Growth 137(1–2), 107–115 (1994).ADSGoogle Scholar
  14. [14]
    V.G. Dmitriev, D.N. Nikogosyan: Effective nonlinearity coefficients for three-wave interactions in biaxial crystals of mm2 point group symmetry. Opt.Commun. 95(1–3), 173–182 (1993).ADSGoogle Scholar
  15. [15]
    A. Anema, T. Rasing: Relative signs of the nonlinear coefficients of potassium titanyl phosphate. Appl. Opt. 36(24), 5902–5904 (1997).ADSGoogle Scholar
  16. [16]
    B. Lai, N.C. Wong, L.K. Cheng: Continuous-wave tunable light source at 1.6µm by difference-frequency mixing in CsTiOAsO4. Opt. Lett. 20(17), 1779–1781 (1995).ADSGoogle Scholar

References

  1. [1]
    S. Singh, D.A. Draegert, J.E. Geusic: Optical and ferroelectric properties of barium sodium niobate. Phys. Rev. B 2(7), 2709–2724 (1970).ADSGoogle Scholar
  2. [2]
    L.G. van Uitert, J.J. Rubin, W.A. Bonner: Growth of BaNaNb5O15 single crystals for optical applications. IEEE J. Quant. Electr. QE-4(10), 622–627 (1968).ADSGoogle Scholar
  3. [3]
    J.D. Barry, C.J. Kennedy: Thermo-optical effects of intracavity Ba2Na(NbO3)5 on a frequency-doubled Nd:YAG laser. IEEE J. Quant. Electr. QE-11(8), 575–579 (1975).ADSGoogle Scholar
  4. [4]
    M. Ferriol: Crystal growth and structure of pure and rare-earth doped barium sodium niobate (BNN). Progr. Cryst. Growth Character. Mater. 43(2–3), 221–244 (2001).Google Scholar
  5. [5]
    J.E. Geusic, H.J. Levinstein, J.J. Rubin, S. Singh, L.G. van Uitert: The nonlinear optical properties of Ba2NaNb5O15. Appl. Phys. Lett. 11(9), 269–271 (1967).ADSGoogle Scholar
  6. [6]
    J.E. Murray, R.J. Pressley, J.H. Boyden, R.B. Webb: CW mode-locked source at 0.532 μm. IEEE J. Quant. Electr. QE-10(2), 263–267 (1974).ADSGoogle Scholar
  7. [7]
    Y. Uematsu, T. Fukuda: Characteristics and performance of KNbO3-Nd:YAG intracavity second harmonic generation. Jpn. J. Appl. Phys. 12(6), 841–844 (1973).ADSGoogle Scholar
  8. [8]
    R.A. Andrews: IR image parametric up-conversion. IEEE J. Quant. Electr. QE-6(1), 68–80 (1970).ADSGoogle Scholar
  9. [9]
    V.G. Dmitriev, D.N. Nikogosyan: Effective nonlinearity coefficients for three-wave interactions in biaxial crystals of mm2 point group symmetry. Opt. Commun. 95(1–3), 173–182 (1993).ADSGoogle Scholar
  10. [10]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  11. [11]
    J.E. Geusic, H.J. Levinstein, S. Singh, R.G. Smith, L.G. van Uitert: Continuous 0.532 µm solid-state source using Ba2NaNb5O15. Appl. Phys. Lett. 12(9), 306–308 (1968).ADSGoogle Scholar
  12. [12]
    V.A. Dyakov, V.I. Pryalkin, A.I. Kholodnykh: Potassium niobate optical parametric oscillator pumped by the second harmonic of a garnet laser. Kvant. Elektron. 8(4), 715–721 (1981) [In Russian, English trans.: Sov. J. Quantum Electron. 11(4), 433–436 (1981)].Google Scholar
  13. [13]
    F.R. Nash, E.H. Turner, P.M. Bridenbaugh, J.M. Dziedzic: Measurements of second-harmonic generation and the variations in the free and clamped values of the dielectric constants and electro-optic coefficients in barium sodium niobate. J. Appl. Phys. 43(1), 1–9 (1972).ADSGoogle Scholar
  14. [14]
    R.G. Smith, J.E. Geusic, H.J. Levinstein, J.J. Rubin, S. Singh, L.G. van Uitert: Continuous optical parametric oscillation in Ba2NaNb5O15. Appl. Phys. Lett. 12(9), 308–310 (1968).ADSGoogle Scholar
  15. [15]
    R.B. Chesler, M.A. Karr, J.E. Geusic: An experimental and theoretical study of high repetition rate Q-switched Nd:YAG lasers. Proc. IEEE 58(12), 1899–1914 (1970).Google Scholar
  16. [16]
    A. Piskarskas, V. Smilgevichius, A. Umbrasas: The parametric generation of bandwidth-limited picosecond light pulses. Opt. Commun. 73(4), 322–324 (1989).ADSGoogle Scholar
  17. [17]
    H.R. Xia, L.J. Hu, C.J. Wang, L.X. Li, S.B. Yue, X.L. Meng, L. Zhu, Z.H. Yang, J.Y. Wang: Energy state of Nd3+ doped in barium sodium niobate. J. Appl. Phys. 83(5), 2560–2562 (1998).ADSGoogle Scholar
  18. [18]
    A.A. Kaminskii, D. Jaque, S.N. Bagayev, K.-I. Ueda, S.J. Garsia, J. Capmany: New nonlinear-laser properties of ferroelectric Nd3+:Ba2NaNb5O15-CW stimulated emission (4 F 3/24 I 11/2 and 4 F 3/24 I 13/2), collinear and diffuse self-frequency doubling and summation. Kvant. Elektron. 26(2), 95–97 (1999) [In Russian, English trans.: Quantum Electron. 29(2), 95–97 (1999)].ADSGoogle Scholar

References

  1. [1]
    L.G. van Uitert, J.J. Rubin, W.A. Bonner: Growth of BaNaNb5O15 single crystals for optical applications. IEEE J. Quant. Electr. QE-4(10), 622–627 (1968).ADSGoogle Scholar
  2. [2]
    S.C. Abrahams, P.B. Jamieson, J.L. Bernstein: Ferroelectric tungsten bronze-type crystal structures. III. Potassium lithium niobate K(6–x–y)Li(4+x)Nb(10+y)O30. J. Chem. Phys. 54(6), 2355–2364 (1971).ADSGoogle Scholar
  3. [3]
    T.C. Chong, X.W. Xu, G.Y. Zhang, H. Kumagai: Blue SHG characteristics and homogeneity of the TSSG grown potassium lithium niobate (KLN) crystal with high Li2O content. J. Cryst. Growth 225(2–4), 489–494 (2001).ADSGoogle Scholar
  4. [4]
    X.-W. Xu, T.-C. Chong, G.-Y. Zhang, H. Kumagai: Second-harmonic generation of ferroelectric potassium lithium niobate crystals. Jpn. J. Appl. Phys. 40(7), 4540–4543 (2001).ADSGoogle Scholar
  5. [5]
    M. Adachi, A. Kawabata: Elastic and piezoelectric properties of potassium lithium niobate (KLN) crystals. Jpn. J. Appl. Phys. 17(11), 1969–1973 (1978).ADSGoogle Scholar
  6. [6]
    J. Xu, S. Fan, Y. Lin, X. Xu: Bridgeman growth and properties of potassium lithium niobate single crystals. Progr. Cryst. Growth Character. Mater. 40(1–4), 137–144 (2000).Google Scholar
  7. [7]
    X.W. Xu, T.C. Chong, G.Y. Zhang, H. Kumagai: Influence of [K]/[Li] and [Li]/[Nb] ratios in melts on the TSSG growth and SHG characteristics of potassium lithium niobate crystals. J. Cryst. Growth 225(2–4), 458–464 (2001).ADSGoogle Scholar
  8. [8]
    G.Y. Kang, J.K. Yoon: The growth of potassium lithium niobate (KLN) with low Nb2O5 content. J. Cryst. Growth 193(4), 615–622 (1998).ADSGoogle Scholar
  9. [9]
    J. Xu, S. Fan, Y. Lin, Y. Fei: Growth and characterization of potassium lithium niobate crystals. Proc. SPIE 3556, 24–30 (1998).ADSGoogle Scholar
  10. [10]
    L.G. van Uitert, S. Singh, H.J. Levinstein, J.E. Geusic, W.A. Bonner: A new and stable nonlinear optical material. Appl. Phys. Lett. 11(5), 161–163 (1967); Erratum. Appl. Phys. Lett. 12(6), 224 (1968).ADSGoogle Scholar
  11. [11]
    J.J.E. Reid: Resonantly enhanced, frequency doubling of an 820 nm GaAlAs diode laser in a potassium lithium niobate crystal. Appl. Phys. Lett. 62(1), 19–21 (1993).ADSGoogle Scholar
  12. [12]
    T. Fukuda: Growth and crystallographic characteristics of K3Li2Nb5O15 single crystals. Jpn. J. Appl. Phys. 8(1), 122 (1969).ADSGoogle Scholar
  13. [13]
    S. Singh: “Nonlinear Optical Materials” in Handbook of Lasers, ed. by R.G. Pressley (The Chemical Rubber Co., Cleveland, 1971), pp. 489–525.Google Scholar
  14. [14]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  15. [15]
    A.W. Smith, G. Burns, B.A. Scott, H.D. Edmonds: Nonlinear optical properties of potassium-lithium niobates. J. Appl. Phys. 42(2), 684–686 (1971).ADSGoogle Scholar
  16. [16]
    I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito: Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).ADSGoogle Scholar
  17. [17]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  18. [18]
    L. Li, T.C. Chong, X.W. Wu, H. Kumagai, M. Hirano: Growth of potassium lithium niobate (KLN) single crystals for second harmonic generation (SHG) application. J. Cryst. Growth 211(1–4), 281–285 (2000).ADSGoogle Scholar

References

  1. [1]
    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan: Handbook of Nonlinear Optical Crystals, Third Revised Edition (Springer, Berlin, 1999).Google Scholar
  2. [2]
    K. Kato: High-efficiency high-power UV generation at 2128 Å in urea. IEEE J. Quant. Electr. QE-16(8), 810–811 (1980).ADSGoogle Scholar
  3. [3]
    D. Bauerle, K. Betzler, H. Hesse, S. Kapphan, P. Loose: Phase-matched second harmonic generation in urea. Phys. Status Solidi A 42(2), K119–K121 (1977).ADSGoogle Scholar
  4. [4]
    K. Betzler, H. Hesse, P. Loose: Optical second harmonic generation in organic crystals: urea and ammonium-malate. J. Mol. Struct. 47, 393–396 (1978).ADSGoogle Scholar
  5. [5]
    W.R. Donaldson, C.L. Tang: Urea optical parametric oscillator. Appl. Phys. Lett. 44(1), 25–27 (1984).ADSGoogle Scholar
  6. [6]
    M.J. Rosker, C.L. Tang: Widely tunable optical parametric oscillator using urea. J. Opt. Soc. Am. B 2(5), 691–696 (1985).ADSGoogle Scholar
  7. [7]
    J.-M. Halbout, S. Blit, W. Donaldson, C.L. Tang: Efficient phase-matched second-harmonic generation and sum-frequency mixing in urea. IEEE J. Quant. Electr. QE-15(10), 1176–1180 (1979).ADSGoogle Scholar
  8. [8]
    M.J. Rosker, K. Cheng, C.L. Tang: Practical urea optical parametric oscillator for tunable generation throughout the visible and near-infrared. IEEE J. Quant. Electr. QE-21(10), 1600–1606 (1985).ADSGoogle Scholar
  9. [9]
    R.C. Eckardt, H. Masuda, Y.X. Fan, R.L. Byer: Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation. IEEE J. Quant. Electr. 26(5), 922–933 (1990).ADSGoogle Scholar
  10. [10]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  11. [11]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  12. [12]
    K. Hagimoto, A. Mito: Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 and 1064 nm. Appl. Opt. 34(36), 8276–8282 (1995).ADSGoogle Scholar
  13. [13]
    M. Ebrahimzadeh, M.H. Dunn, F. Akerboom: Highly efficient visible urea optical parametric oscillator pumped by a XeCl excimer laser. Opt. Lett. 14(11), 560–562 (1989).ADSGoogle Scholar
  14. [14]
    M. Ebrahimzadeh, M.H. Dunn: Optical parametric fluorescence and oscillation in urea using an excimer laser. Opt. Commun. 69(2), 161–165 (1988).ADSGoogle Scholar
  15. [15]
    C. Cassidy, J.M. Halbout, W. Donaldson, C.L. Tang: Nonlinear optical properties of urea. Opt. Commun. 29(2), 243–246 (1979).ADSGoogle Scholar
  16. [16]
    M.J. Rosker: Recent developments in urea. Proc. SPIE 681, 10–11 (1986).Google Scholar

References

  1. [1]
    K.I. Avdienko, S.V. Bogdanov, S.M. Arkhipov, B.I. Kidyarov, V.V. Lebedev, Y.E. Nevskii, V.I. Trunov, D.V. Sheloput, R.M. Shklovskaya: Lithium Iodate. Growth, Properties and Applications (Nauka, Novosibirsk, 1980) [In Russian].Google Scholar
  2. [2]
    B.H.T. Chai: Optical Crystals. In: CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, ed. by M.J. Weber (CRC Press, Boca Raton, 1995), pp. 3–65.Google Scholar
  3. [3]
    G.D. Hager, S.A. Hanes, M.A. Dreger: Continuous wave frequency doubling of a high energy 1315 nm laser. IEEE J. Quant. Electr. 28(11), 2573–2576 (1992).ADSGoogle Scholar
  4. [4]
    Data sheet of Molecular Technology GmbH. Available at www.mt-berlin.com.Google Scholar
  5. [5]
    Y.V. Burak, K.Y. Borman, I.S. Girnyk: Characteristics of the temperature dependences of thermal properties of α-LiIO3. Fiz. Tverd. Tela 26(12), 3692–3694 (1984) [In Russian, English trans.: Sov. Phys. — Solid State 26(12), 2223–2224 (1984)].Google Scholar
  6. [6]
    Data sheet of Cleveland Crystals Inc. Available at www.clevelandcrystals.com.Google Scholar
  7. [7]
    J.M. Thierry, E. Coquet, J.M. Crettez: Interferometric measurement of thermal expansion coefficients and birefringence of α-LiIO3 with temperature. Opt. Commun. 16(3), 417–419 (1976).ADSGoogle Scholar
  8. [8]
    J.M. Crettez, J. Comte, E. Coquet: Optical properties of α-and β-lithium iodate in the visible range. Opt. Commun. 6(1), 26–29 (1972).ADSGoogle Scholar
  9. [9]
    G. Nath, S. Haussühl: Strong second harmonic generation of a ruby laser in lithium iodate. Phys. Lett. A 29(2), 91–92 (1969).ADSGoogle Scholar
  10. [10]
    F.R. Nash, J.G. Bergman, G.D. Boyd, E.H. Turner: Optical nonlinearities in LiIO3. J. Appl. Phys. 40(13), 5201–5206 (1969).ADSGoogle Scholar
  11. [11]
    T. Laurila, R. Hernberg: Frequency-doubled diode laser for ultraviolet absorption spectroscopy at 325 nm. Appl. Phys. Lett. 83(5), 845–847 (2003).ADSGoogle Scholar
  12. [12]
    G. Nath, H. Mehmanesch, M. Gsänger: Efficient conversion of a ruby laser radiation to 0.347µm in low-loss lithium iodate. Appl. Phys. Lett. 17(7), 286–288 (1970).ADSGoogle Scholar
  13. [13]
    D.J. Gettemy, W.C. Harker, G. Lindholm, N.P. Barnes: Some optical properties of KTP, LiIO3, and LiNbO3. IEEE J. Quant. Electr. 24(11), 2231–2237 (1988).ADSGoogle Scholar
  14. [14]
    J. Jerphagnon: Optical nonlinear susceptibilities of lithium iodate. Appl. Phys. Lett. 16(8), 298–299 (1970).ADSGoogle Scholar
  15. [15]
    E.W. van Stryland, W.E. Williams, M.J. Soileau, A.L. Smirl: Laser-induced damage, nonlinear absorption and doubling efficiency of LiIO3. IEEE J. Quant. Electr. QE-20(4), 434–439 (1984).ADSGoogle Scholar
  16. [16]
    N.M. Bityurin, V.I. Bredikhin, V.N. Genkin: Nonlinear optical absorption and energy structure of LiNbO3 and α-LiIO3 crystals. Kvant. Elektron. 5(11), 2453–2457 (1978) [In Russian, English trans.: Sov. J. Quantum Electron. 8(11), 1377–1379 (1978)].Google Scholar
  17. [17]
    K. Takizawa, M. Okada, S. Ieiri: Refractive indices of paratellurite and lithium iodate in the visible and ultraviolet regions. Opt. Commun. 23(2), 279–281 (1977).ADSGoogle Scholar
  18. [18]
    S. Umegaki, S.I. Tanaka, T. Uchiyama, S. Yabumoto: Refractive indices of lithium iodate between 0.4 and 2.2 µm. Opt. Commun. 3(4), 44–245 (1971).Google Scholar
  19. [19]
    R.B. Andreev, V.D. Volosov, A.G. Kalintsev: Spectral, angular, and temperature characteristics of HIO3, LiIO3, CDA, DKDP, KDP and ADP non-linear crystals in second-and fourth-harmonic generation. Opt. Spektrosk. 37(2), 294–299 (1974) [In Russian, English trans.: Opt. Spectrosc. USSR 37(2), 169–171 (1974)].Google Scholar
  20. [20]
    M.M. Choy, R.L. Byer: Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals. Phys. Rev. B 14(4), 1693–1706 (1976).ADSGoogle Scholar
  21. [21]
    Z.B. Perekalina, G.F. Dobrzhansky, I.A. Spilko: The rotation of the plane of polarization in LiIO3 crystals. Kristallogr. 15(6), 1252–1253 (1970) [In Russian, English trans.: Sov. Phys. — Crystallogr. 15(6), 1095 (1970)].Google Scholar
  22. [22]
    V.A. Kizel, V.I. Burkov: Gyrotropy of Crystals (Nauka, Moscow, 1980) [In Russian].Google Scholar
  23. [23]
    I.M. Beterov, V.I. Stroganov, V.I. Trunov, B.Y. Yurshin: Excitation of optical harmonics in lithium iodate and formate crystals by CW dye laser radiation. Kvant. Elektron. 2(11), 2440–2443 (1975) [In Russian, English trans.: Sov. J. Quantum Electron. 5(11), 1329–1331 (1975)].Google Scholar
  24. [24]
    S.G. Karpenko, N.E. Kornienko, V.L. Strizhevskii: Use of diverging and nonmonochromatic pump waves in nonlinear spectroscopy of infrared radiation. Kvant. Elektron. 1(8), 1768–1779 (1974) [In Russian, English trans.: Sov. J. Quantum Electron. 4(8), 979–985 (1974)].Google Scholar
  25. [25]
    V.I. Kabelka, V.G. Kolomiets, A.S. Piskarskas, A.Y. Stabinis: Features of parametric interaction of ultra-short light packets in a LiIO3 crystal. Zh. Prikl. Spektrosk. 21(5), 947–950 (1974) [In Russian, English trans.: J. Appl. Spectrosc. 21(5), 582–585 (1974)].ADSGoogle Scholar
  26. [26]
    V.I. Kabelka, A.S. Piskarskas, A.Y. Stabinis, R.L. Sher: Group phase matching of interacting light pulses in nonlinear crystals. Kvant. Elektron. 2(2), 434–436 (1975) [In Russian, English trans.: Sov. J. Quantum Electron. 5(2), 255–256 (1975)].Google Scholar
  27. [27]
    K. Kato: High-power difference-frequency generation at 4.4–5.7µm. IEEE J. Quant. Electr. QE-21(2), 119–120 (1985).ADSGoogle Scholar
  28. [28]
    H. Buesener, A. Renn, M. Brieger, F. von Moers, A. Hese: Frequency doubling of CW ring-dye-laser radiation in lithium iodate crystals. Appl. Phys. B 39(2), 77–81 (1986).ADSGoogle Scholar
  29. [29]
    M. Koralewski: Magnetooptical phenomena in LiIO3 crystals. Phys. Stat. Solidi A 61(2), K151–K154 (1980).ADSGoogle Scholar
  30. [30]
    R.C. Eckardt, H. Masuda, Y.X. Fan, R.L. Byer: Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation. IEEE J. Quant. Electr. 26(5), 922–933 (1990).ADSGoogle Scholar
  31. [31]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  32. [32]
    W.J. Alford, A.V. Smith: Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KtiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling. J. Opt. Soc. Am. B 18(4), 524–533 (2001).ADSGoogle Scholar
  33. [33]
    R.J. Gehr, A.V. Smith: Separated-beam nonphase-matched second-harmonic method of characterizing nonlinear optical coefficients. J. Opt. Soc. Am. B 15(8), 2298–2307 (1998).ADSGoogle Scholar
  34. [34]
    J.E. Pearson, G.A. Evans, A. Yariv: Measurement of the relative nonlinear coefficient of KDP, RDP, RDA and LiIO3. Opt. Commun. 4(5), 366–367 (1972).ADSGoogle Scholar
  35. [35]
    T. Kellner, F. Heine, G. Huber: Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5. Appl. Phys. B 65(6), 789–792 (1997).ADSGoogle Scholar
  36. [36]
    A.I. Izrailenko, A.I. Kovrigin, P.V. Nikles: Parametric generation of light in high-efficiency nonlinear LiIO3 and α-HIO3 crystals. Pisma Zh. Eksp. Teor. Fiz. 12(10), 475–478 (1970) [In Russian, English trans.: JETP Lett. 12(10), 331–333 (1970)].Google Scholar
  37. [37]
    M. Okada, S. Ieiri: Kleinman’s symmetry relation in nonlinear optical coefficient of LiIO3. Phys. Lett. A 34(1), 63–64 (1971).ADSGoogle Scholar
  38. [38]
    R.B. Chesler, M.A. Karr, J.E. Geusic: Repetitively Q-switched Nd:YAG-LiIO3 0.53µm harmonic source. J. Appl. Phys. 41(10), 4125–4127 (1970).ADSGoogle Scholar
  39. [39]
    A.J. Campillo, C.L. Tang: Extending the tuning range of tunable oscillators by upconversion. Appl. Phys. Lett. 19(2), 36–38 (1971).ADSGoogle Scholar
  40. [40]
    A.J. Campillo: Properties of a pulsed LiIO3 doubly resonant parametric oscillator. IEEE J. Quant. Electr. QE-8(10), 809–811 (1972).ADSGoogle Scholar
  41. [41]
    D.W. Meltzer, L.S. Goldberg: Tunable IR difference frequency generation in LiIO3. Opt. Commun. 5(3), 209–211 (1972).ADSGoogle Scholar
  42. [42]
    L.S. Goldberg: Optical parametric oscillation in lithium iodate. Appl. Phys. Lett. 17(11), 489–491 (1970).ADSGoogle Scholar
  43. [43]
    T.M. Jedju, L. Rothberg: Tunable femtosecond radiation in the mid-infrared for time-resolved absorption in semiconductors. Appl. Opt. 27(3), 615–618 (1988).ADSGoogle Scholar
  44. [44]
    F. Huisken, A. Kulcke, D. Voelkel, C. Laush, J.M. Lisy: New infrared injection-seeded optical parametric oscillator with high energy and narrow bandwidth output. Appl. Phys. Lett. 62(8), 805–807 (1993).ADSGoogle Scholar
  45. [45]
    G. Nath, G. Pauli: Efficient pulsed optical parametric oscillator with a tuning range from 0.415 to 2.1µm. Appl. Phys. Lett. 22(2), 75–76 (1973).ADSGoogle Scholar
  46. [46]
    D. Malz, J. Bergmann, J. Heise: Up-conversion of thermal IR-radiation in LiIO3 with a pulsed ruby-laser. Exp. Techn. Phys. 23(4), 379–388 (1975).Google Scholar
  47. [47]
    Y.C. See, J. Falk: Lithium iodate, intracavity upconversion. Appl. Phys. Lett. 36(7), 503–505 (1980).ADSGoogle Scholar
  48. [48]
    D. Malz, J. Bergmann, J. Heise: Up-conversion of thermal IR-radiation in LiIO3 with a CW argon laser. Exp. Techn. Phys. 23(5), 495–498 (1975).Google Scholar
  49. [49]
    B.I. Kidyarov, I.V. Nikolaev, E.V. Pestryakov, V.M. Tarasov: Aluminium iodate octahydrate as a new nonlinear-optical crystal. Izv. Ross. Akad. Nauk, Ser. Fiz. 58(2), 131–134 (1994) [In Russian, English trans.: Bull. Russian Acad. Sci.: Physics 58(2), 294–296 (1994)]Google Scholar
  50. [50]
    M. Webb, S.P. Velsko: Temperature sensitivity of phase-matched second-harmonic generation in LiIO3. IEEE J. Quant. Electr. 26(8), 1394–1398 (1990).ADSGoogle Scholar
  51. [51]
    H. Gerlach: Difference frequency generation in LiIO3 using two tunable dye lasers. Opt. Commun. 12(4), 405–408 (1974).ADSGoogle Scholar
  52. [52]
    R.B. Andreev, V.D. Volosov, V.N. Krylov: Parametric generation of high-power nanosecond light pulses at 0.74–1.85µm. Pisma Zh. Tekh. Fiz. 4(5–6), 256–258 (1978) [In Russian, English trans.: Sov. Tech. Phys. Lett. 4(3), 105–106 (1978)].Google Scholar
  53. [53]
    R. Danielius, G. Dikchyus, V. Kabelka, A. Piskarskas, A. Stabinis, Y. Yasevichyute: Parametric excitation of light in the picosecond range. Kvant. Elektron. 4(11), 2379–2395 (1977) [In Russian, English trans.: Sov. J. Quantum Electron. 7(11), 1360–1368 (1977)].Google Scholar
  54. [54]
    A. Arutyunyan, G. Arzumanyan, R. Danielius, V. Kabelka, R. Sharkhatunyan, Y. Yasevichyute: Investigation of parametric superluminescence of LiIO3 crystals in the picosecond band. Lit. Fiz. Sbornik 18(2), 255–263 (1978) [In Russian, English trans.: Sov. Phys. — Collection 18(2), 62–67 (1978)].Google Scholar
  55. [55]
    L. Armstrong, S.E. Neister, R. Adhav: Measuring CFP dye laser damage thresholds on UV doubling crystals. Laser Focus 18(12), 49–53 (1982).Google Scholar
  56. [56]
    V.G. Dmitriev, V.N. Krasnyanskaya, M.F. Koldobskaya, I.S. Rez, E.A. Shalaev, E.M. Shvom: Frequency multiplication in nonlinear lithium iodate crystals. Kvant. Elektron. No. 2, 64–66 (1973) [In Russian, English trans.: Sov. J. Quantum Electron. 3(2), 126–127 (1973)].Google Scholar
  57. [57]
    M. Bass, H.H. Barrett: Avalanche breakdown and the probabilistic nature of laser-induced damage. IEEE J. Quant. Electr. QE-8(3), 338–343 (1972).ADSGoogle Scholar

References

  1. [1]
    B.H.T. Chai: Optical Crystals. In: CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, ed. by M.J. Weber (CRC Press, Boca Raton, 1995), pp. 3–65.Google Scholar
  2. [2]
    Physical-Chemical Properties of Semiconductors. Handbook (Nauka, Moscow, 1979) [In Russian].Google Scholar
  3. [3]
    A.A. Blistanov, V.S. Bondarenko, N.V. Perelomova, F.N. Strizhevskaya, V.V. Tchkalova, M.P. Shaskolskaya: Acoustic Crystals (Nauka, Moscow, 1982) [In Russian].Google Scholar
  4. [4]
    D.M. Bercha, Y.V. Voroshilov, V.Y. Slivka, I.D. Turyanitsa: Complex Chalcogenides and Chalcohalogenides, ed. by D.V. Chepur (Vishcha Shkola, Lvov, 1983) [In Russian].Google Scholar
  5. [5]
    K.F. Hulme, O. Jones, P.H. Davies, M.V. Hobden: Synthetic proustite (Ag3AsS3): a new crystal for optical mixing. Appl. Phys. Lett. 10(4), 133–135 (1967).ADSGoogle Scholar
  6. [6]
    M.I. Holovey, I.D. Olexeyuk, M.I. Gurzan, I.S. Rez, V.V. Panko, Y.V. Voroshilov, M.Y. Rigan, I.G. Ganeyev, A.V. Bagdanova: Preparation and some properties of synthetic proustite single crystals. Kristall und Technik 6(5), 631–637 (1971).Google Scholar
  7. [7]
    N. Ito: Sum-frequency mixing of CO2 and He-Ne lasers in proustite. Opt. Lett. 7(2), 63–65 (1982).ADSGoogle Scholar
  8. [8]
    E.N. Antonov, V.R. Mironenko, D.N. Nikogosyan, M.I. Golovey: Conversion of CO2 laser radiation to the visible range in a proustite crystal. Kvant. Elektron. 1(8), 1742–1746 (1974) [In Russian, English trans.: Sov. J. Quantum Electron. 4(8), 963–965 (1974)].Google Scholar
  9. [9]
    D.S. Hanna, A.J. Turner: Nonlinear absorption measurements in proustite (Ag3AsS3) and CdSe. Opt. Quant. Electron. 8(3), 213–217 (1976).Google Scholar
  10. [10]
    V.V. Berezovskii, Y.A. Bykovskii, S.N. Potanin, I.S. Rez: Two-photon absorption in proustite. Kvant. Elektron. No. 2, 74–75 (1973) [In Russian, English trans.: Sov. J. Quantum Electron. 3(2), 134–135 (1973)].Google Scholar
  11. [11]
    D.N. Nikogosyan, A.P. Sukhorukov, M.I. Golovey: Saturation of second harmonic generation of TEA CO2 laser radiation in a proustite crystal. Kvant. Elektron. 2(3), 609–612 (1975) [In Russian, English trans.: Sov. J. Quantum Electron. 5(3), 344–346 (1975)].Google Scholar
  12. [12]
    V.V. Berezovskii, Y.A. Bykovskii, M.I. Goncharov, I.S. Rez: Nonlinear polarization coefficients of proustite and tellurium. Kvant. Elektron. No. 2, 105–107 (1972) [In Russian, English trans.: Sov. J. Quantum Electron. 2(2), 180–182 (1972)].Google Scholar
  13. [13]
    G.J. Ernst, W.J. Witteman: Second-harmonic generation in proustite with a CW CO2 laser. IEEE J. Quant. Electr. QE-8(3), 382–383 (1972).ADSGoogle Scholar
  14. [14]
    Y.M. Andreev, V.V. Badikov, V.G. Voevodin, L.G. Geiko, P.P. Geiko, M.V. Ivashchenko, A.I. Karapuzikov, I.V. Sherstov: Radiation resistance of nonlinear crystals at a wavelength of 9.55µm. Kvant. Elektron. 31(12), 1075–1078 (2001) [In Russian, English trans.: Quantum Electron. 31(12), 1075–1078 (2001)].ADSGoogle Scholar
  15. [15]
    L.O. Hocker, C.F. Dewey: Difference frequency generation in proustite from 11 to 23µm. Appl. Phys. 11(2), 137–140 (1976).ADSGoogle Scholar
  16. [16]
    N.P. Barnes, R.C. Eckardt, D.J. Gettemy, L.B. Edgett: Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals. IEEE J. Quant. Electr. QE-15(10), 1074–1076 (1979).ADSGoogle Scholar
  17. [17]
    D.S. Chemla, P.J. Kupeček, C.A. Schwartz: Redetermination of the nonlinear optical coefficients of proustite by comparison with pyrargyrite and gallium selenide. Opt. Commun. 7(3), 225–228 (1973).ADSGoogle Scholar
  18. [18]
    P.J. Kupeček, C.A. Schwartz, D.S. Chemla: Silver thiogallate (AgGaS2)—Part I: nonlinear optical properties. IEEE J. Quant. Electr. QE-10(7), 540–545 (1974).ADSGoogle Scholar
  19. [19]
    D. Cotter, D.C. Hanna, B. Luther-Davies, R.C. Smith: Backward-wave medium infrared down-conversion in proustite. Opt. Commun. 11(1), 54–56 (1974).ADSGoogle Scholar
  20. [20]
    M.V. Hobden: The dispersion of the refractive indices of proustite (Ag3AsS3). Optoelectron. 1(3), 159 (1969).Google Scholar
  21. [21]
    R.A. Andrews: IR image parametric up-conversion. IEEE J. Quant. Electr. QE-6(1), 68–80 (1970).ADSGoogle Scholar
  22. [22]
    G.W.C. Kaye, T.H. Laby: Tables of Physical and Chemical Constants (Longman Group Ltd., London, 1995).Google Scholar
  23. [23]
    I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Okamoto, K. Tatsuki, S. Kubota: Absolute measurement of second-order nonlinear-optical coefficients of β-BaB2O4 for visible to ultraviolet second-harmonic wavelengths. J. Opt. Soc. Am. B 16(4), 620–624 (1999).ADSGoogle Scholar
  24. [24]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  25. [25]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  26. [26]
    Y.A. Gorokhov, D.P. Krindach, D.N. Nikogosyan, A.P. Sukhorukov: Influence of thermal self-actions on second harmonic generation of continuous-wave radiation. Kvant. Elektron. 1(3), 679–683 (1974) [In Russian, English trans.: Sov. J. Quantum Electron. 4(3), 382–384 (1974)].Google Scholar
  27. [27]
    D.C. Hanna, B. Luther-Davies, H.N. Rutt, R.C. Smith: Reliable operation of a proustite parametric oscillator. Appl. Phys. Lett. 20(1), 34–36 (1972).ADSGoogle Scholar
  28. [28]
    T. Elsaesser, A. Seilmeier, W. Kaiser: Parametric generation of tunable picosecond pulses in proustite between 1.2 and 8µm. Opt. Commun. 44(4), 293–296 (1983).ADSGoogle Scholar
  29. [29]
    J. Falk, J.M. Yarborough: Detection of room-temperature blackbody radiation by parametric upconversion. Appl. Phys. Lett. 19(3), 68–70 (1971).ADSGoogle Scholar
  30. [30]
    D.N. Nikogosyan: The up-conversion efficiency of CO2 laser radiation in a proustite crystal pumped by ultrashort light pulses. Kvant. Elektron. 2(11), 2524–2525 (1975) [In Russian, English trans.: Sov.J.Quantum Electron. 5(11), 1378–1379 (1975)].Google Scholar
  31. [31]
    E.K. Pfitzer, H.D. Riccius, K.J. Siemsen: Fabry-Perot photographs of CO2 laser lines up-converted in proustite. Opt. Commun. 3(4), 277–278 (1971).ADSGoogle Scholar
  32. [32]
    H.D. Riccius, K.J. Siemsen: Up-conversion of CO laser lines by difference-frequency mixing in proustite (Ag3AsS3). Phys. Lett. A 45(5), 377–378 (1973).ADSGoogle Scholar
  33. [33]
    A.J. Alcock, A.C. Walker: Fast linear detection system for TE CO2 lasers. Appl. Phys. Lett. 23(8), 467–468 (1973).ADSGoogle Scholar
  34. [34]
    J. Warner: Photomultiplier detection of 10.6µm radiation using optical up-conversion in proustite. Appl. Phys. Lett. 12(6), 222–224 (1968).ADSGoogle Scholar
  35. [35]
    N. Ito: Sum-frequency mixing of CO2 and He-Ne lasers in proustite. Opt. Lett. 7(2), 63–65 (1982).ADSGoogle Scholar
  36. [36]
    G.C. Bhar, D.C. Hanna, B. Luther-Davies, R.C. Smith: Tunable down-conversion from an optical parametric oscillator. Opt. Commun. 6(4), 323–326 (1972).ADSGoogle Scholar
  37. [37]
    A.F. Milton: Upconversion—a systems view. Appl. Opt. 11(10), 2311–2330 (1972).ADSGoogle Scholar
  38. [38]
    D.C. Hanna, B. Luther-Davies, H.N. Rutt, R.C. Smith, C.R. Stanley: Q-switched laser damage of infrared nonlinear materials. IEEE J. Quant. Electr. QE-8(3), 317–324 (1972).ADSGoogle Scholar

References

  1. [1]
    Physical-Chemical Properties of Semiconductors. Handbook (Nauka, Moscow, 1979) [In Russian].Google Scholar
  2. [2]
    V.V. Badikov, I.N. Matveev, V.L. Panyutin, S.M. Pshenichnikov, T.M. Repyakhova, O.V. Rychik, A.E. Rozenson, N.K. Trotsenko, N.D. Ustinov: Growth and optical properties of mercury thiogallate. Kvant. Elektron. 6(8), 1807–1810 (1979) [In Russian, English trans.: Sov. J. Quantum Electron. 9(8), 1068–1069 (1979)].Google Scholar
  3. [3]
    V. Badikov, K. Mitin, A. Seryogin, E. Ryabov, V. Laptev, A. Malinovsky: HgGa2S4 crystals for mid-infrared optical parametric oscillators pumped by Nd:YAG lasers. Proc. SPIE 4972, 131–138 (2003).Google Scholar
  4. [4]
    V. Petrov, F. Rotermund, V.V. Badikov, G.S. Shevyrdyaeva: Mixed nonlinear crystal CdxHg1−xGa2S4 used for optical parametric amplification. In: Conference on Lasers and Electrooptics CLEO/QELS 2003, Technical Digest (OSA, Washington DC, 2003), paper CMA5.Google Scholar
  5. [5]
    P.G. Schunemann, P.G. Pollak: Synthesis and growth of HgGa2S4 crystals. J. Cryst. Growth 174(1–4), 278–282 (1997).ADSGoogle Scholar
  6. [6]
    E. Takaoka, K. Kato: Second-harmonic generation in HgGa2S4. In: CLEO/Europe 1998, Technical Digest (OSA, Washington DC, 1998), p. 387, paper CFH7.Google Scholar
  7. [7]
    B.F. Levine, C.G. Bethea, H.M. Kasper, F.A. Thiel: Nonlinear optical susceptibilities of HgGa2S4. IEEE J. Quant. Electr. QE-12(6), 367–368 (1976).ADSGoogle Scholar
  8. [8]
    Y.M. Andreev, P.P. Geiko, V.V. Badikov, G.C. Bhar, S. Das, A.K. Chaudhury: Nonlinear optical properties of defect tetrahedral crystals HgGa2S4 & AgGaGeS4 and mixed chalcopyrite crystal Cd0.4Hg0.6Ga2S4. Nonl. Opt. 29(1), 19–27 (2002).Google Scholar
  9. [9]
    V.V. Badikov, I.N. Matveev, S.M. Pshenichnikov, O.V. Rychik, N.K. Trotsenko, N.D. Ustinov, S.I. Shcherbakov: Growth and nonlinear properties of HgGa2S4. Kvant. Elektron. 7(10), 2235–2237 (1980) [In Russian, English trans.: Sov. J. Quantum Electron. 10(10), 1300–1301 (1980)].Google Scholar
  10. [10]
    S.A. Andreev, N.P. Andreeva, V.V. Badikov, I.N. Matveev, S.M. Pschenichnikov: Frequency up-conversion in a mercury thiogallate crystal. Kvant. Elektron. 7(9), 2003–2006 (1980) [In Russian, English trans.: Sov. J. Quantum Electron. 10(9), 1157–1158 (1980)].Google Scholar
  11. [11]
    Y.M. Andreev, V.V. Badikov, V.G. Voevodin, L.G. Geiko, P.P. Geiko, M.V. Ivashchenko, A.I. Karapuzikov, I.V. Sherstov: Radiation resistance of nonlinear crystals at a wavelength of 9.55µm. Kvant. Elektron. 31(12), 1075–1078 (2001) [In Russian, English trans.: Quantum Electron. 31(12), 1075–1078 (2001)].ADSGoogle Scholar
  12. [12]
    G.G. Matvienko, Y.M. Andreev, V.V. Badikov, P.P. Geiko, S.G. Grechin, A.I. Karapuzikov: Wide band frequency converters for lidar systems. Proc. SPIE 4546, 119–126 (2002).ADSGoogle Scholar
  13. [13]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  14. [14]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  15. [15]
    J.-J. Zondy, D. Touahri, O. Acef: Absolute value of the d 36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider. J. Opt. Soc. Am. B 14(10), 2481–2497 (1997).ADSGoogle Scholar
  16. [16]
    F. Rotermund, V. Petrov: Mercury thiogallate mid-infrared femtosecond optical parametric generator pumped at 1.25 µm by a Cr: forsterite regenerative amplifier. Opt. Lett. 25(10), 746–748 (2000).ADSGoogle Scholar
  17. [17]
    V.V. Badikov, A.K. Don, K.V. Mitin, A.M. Seregin, V.V. Sinaiskii, N.I. Shchebetova: A HgGa2S4 optical parametric oscillator. Kvant. Elektron. 33(9), 831–832 (2003) [In Russian, English trans.: Quantum Electron. 33(9), 831–832 (2003).ADSGoogle Scholar

References

  1. [1]
    Physical-Chemical Properties of Semiconductors. Handbook (Nauka, Moscow, 1979) [In Russian].Google Scholar
  2. [2]
    I.I. Kozhina, A.S. Borshchevskii: High-temperature x-ray investigations of AIIBIVC2V compounds. Vestnik LGU No. 22, 87–92 (1971) [In Russian].Google Scholar
  3. [3]
    P.G. Schunemann, T.M. Pollak: Ultralow gradient HGF-grown ZnGeP2 and CdGeAs2 and their optical properties. MRS Bulletin 23(7), 23–27 (1998).Google Scholar
  4. [4]
    R.G. Harrison, P.K. Gupta, M.R. Taghizadeh, A.K. Kar: Efficient multikilowatt mid infrared difference frequency generation in CdGeAs2. IEEE J. Quant. Electr. QE-18(8), 1239–1242 (1982).ADSGoogle Scholar
  5. [5]
    G.C. Bhar, R.C. Smith: Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits. Phys. Stat. Solidi A 13(1), 157–168 (1972).ADSGoogle Scholar
  6. [6]
    R.L. Byer, H. Kildal, R.S. Feigelson: CdGeAs2—a new nonlinear crystal phasematchable at 10.6µm. Appl. Phys. Lett. 19(7), 237–240 (1971).ADSGoogle Scholar
  7. [7]
    K.L. Vodopyanov, S.B. Mirov, V.G. Voevodin, P.G. Schunemann: Two-photon absorption in GaSe and CdGeAs2. Opt. Commun. 155(1–3), 47–50 (1998).ADSGoogle Scholar
  8. [8]
    D.S. Chemla, R.F. Begley, R.L. Byer: Experimental and theoretical studies of third harmonic generation in chalcopyrite CdGeAs2. IEEE J. Quant. Electr. QE-10(1), 71–81 (1974).ADSGoogle Scholar
  9. [9]
    H. Kildal, J.C. Mikkelsen: Efficient doubling and CW difference frequency mixing in the infrared using the chalcopyrite CdGeAs2. Opt. Commun. 10(4), 306–309 (1974).ADSGoogle Scholar
  10. [10]
    K.L. Vodopyanov, P.G. Schunemann: Efficient difference-frequency generation of 7–20µm radiation in CdGeAs2. Opt. Lett. 23(14), 1096–1098 (1998).ADSGoogle Scholar
  11. [11]
    P.G. Schunemann, S.D. Setzler, T.M. Pollak: Crystal growth of low-loss CdGeAs2. In: Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series, Vol. 50, ed. by C. Marshall (OSA, Washington DC, 2001), pp. 632–634.Google Scholar
  12. [12]
    P.G. Schunemann, K.L. Schepler, P.A. Budni: Nonlinear frequency conversion performance of AgGaSe2, ZnGeP2, and CdGeAs2. MRS Bulletin 23(7), 45–49 (1998).Google Scholar
  13. [13]
    A. Zakel, J.L. Blackshire, P.G. Schunemann, S.D. Setzler, J. Goldstein, S. Guha: Temperature and pulse-duration dependence of second-harmonic generation in CdGeAs2. Appl. Opt. 41(12), 2299–2303 (2002).ADSGoogle Scholar
  14. [14]
    N. Menyuk, G.W. Iseler, A. Mooradian: High-efficiency high-average-power second-harmonic generation with CdGeAs2. Appl. Phys. Lett. 29(7), 422–424 (1976).ADSGoogle Scholar
  15. [15]
    Y.M. Andreev, V.G. Voevodin, P.P. Geiko, A.I. Gribenyukov, A.P. Dyadkin, S.V. Pigulsky, A.I. Starodubtsev: Efficient generation of the second harmonic of NH3 laser radiation in CdGeAs2. Kvant. Elektron. 14(4), 784–786 (1987) [In Russian, English trans.: Sov. J. Quantum Electron. 17(4), 491–493 (1987)].Google Scholar
  16. [16]
    V.E. Zuev, M.V. Kabanov, Y.M. Andreev, V.G. Voevodin, P.P. Geiko, A.I. Gribenyukov, V.V. Zuev: Applications of efficient parametric IR-laser frequency converters. Izv. Akad. Nauk SSSR, Ser. Fiz. 52(6), 1142–1148 (1988) [In Russian, English trans.: Bull. Acad. Sci. USSR, Phys. Ser. 52(6), 87–92 (1988)].ADSGoogle Scholar
  17. [17]
    Y.M. Andreev, V.V. Badikov, V.G. Voevodin, L.G. Geiko, P.P. Geiko, M.V. Ivashchenko, A.I. Karapuzikov, I.V. Sherstov: Radiation resistance of nonlinear crystals at a wavelength of 9.55µm. Kvant. Elektron. 31(12), 1075–1078 (2001) [In Russian, English trans.: Quantum Electron. 31(12), 1075–1078 (2001)].ADSGoogle Scholar
  18. [18]
    N.P. Barnes, R.C. Eckardt, D.J. Gettemy, L.B. Edgett: Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals. IEEE J. Quant. Electr. QE-15(10), 1074–1076 (1979).ADSGoogle Scholar
  19. [19]
    G.D. Boyd, E. Buehler, F.G. Storz, J.H. Wernick: Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors. IEEE J. Quant. Electr. QE-8(4), 419–426 (1972).ADSGoogle Scholar
  20. [20]
    E. Tanaka, K. Kato: Second-harmonic and sum-frequency generation in CdGeAs2. In: MRS Symposium Proceedings, Vol. 384, Infrared Applications of Semiconductors II, ed by D.L. McDaniel, Jr., M.O. Manasreh, R.H. Miles, S. Sivananthan (Materials Research Society, Warrendale, PA, 1998), pp. 475–479.Google Scholar
  21. [21]
    K.L. Vodopyanov, G.M.H. Knippels, A.F.G. van der Meer, J.P. Maffetone, I. Zweiback: Optical parametric generation in CGA crystal. Opt. Commun. 202(1–3), 205–208 (2002).ADSGoogle Scholar
  22. [22]
    G.C. Bhar: Refractive index interpolation in phase-matching. Appl. Opt. 15(2), 305–307 (1976).ADSGoogle Scholar
  23. [23]
    R.C. Eckardt, H. Masuda, Y.X. Fan, R.L. Byer: Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation. IEEE J. Quant. Electr. 26(5), 922–933 (1990).ADSGoogle Scholar
  24. [24]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  25. [25]
    A. Harasaki, K. Kato: New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2. Jpn. J. Appl. Phys. 36(2), 700–703 (1997).ADSGoogle Scholar
  26. [26]
    H. Kildal, G.W. Iseler: Laser-induced surface damage of infrared nonlinear materials. Appl. Opt. 15(12), 3062–3065 (1976).ADSGoogle Scholar

References

  1. [1]
    M. Gottlieb, T.J. Isaacs, J.D. Feichtner, G.W. Roland: Acousto-optic properties of some chalcogenide crystals. J. Appl. Phys. 45(12), 5145–5151 (1974).ADSGoogle Scholar
  2. [2]
    J.D. Feichtner, G.W. Roland: Optical properties of a new nonlinear optical material: Tl3AsSe3. Appl. Opt. 11(5), 993–998 (1972).ADSGoogle Scholar
  3. [3]
    M.D. Ewbank, P.R. Newman, N.L. Mota, S.M. Lee, W.L. Wolfe, A.G. DeBell, W.A. Harrison: The temperature dependence of optical and mechanical properties of Tl3AsSe3. J. Appl. Phys. 51(7), 3848–3852 (1980).ADSGoogle Scholar
  4. [4]
    D.R. Suhre, L.H. Taylor: Six-watt mid-infrared laser using harmonic generation with Tl3AsSe3. Appl. Phys. B 63(3), 225–228 (1996).ADSGoogle Scholar
  5. [5]
    N.P. Barnes, R.C. Eckardt, D.J. Gettemy, L.B. Edgett: Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals. IEEE J. Quant. Electr. QE-15(10), 1074–1076 (1979).ADSGoogle Scholar
  6. [6]
    I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Okamoto, K. Tatsuki, S. Kubota: Absolute measurement of second-order nonlinear-optical coefficients of β-BaB2O4 for visible to ultraviolet second-harmonic wavelengths. J. Opt. Soc. Am. B 16(4), 620–624 (1999).ADSGoogle Scholar
  7. [7]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  8. [8]
    D.S. Chemla, P.J. Kupeček, C.A. Schwartz: Redetermination of the nonlinear optical coefficients of proustite by comparison with pyrargyrite and gallium selenide. Opt. Commun. 7(3), 225–228 (1973).ADSGoogle Scholar
  9. [9]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  10. [10]
    J.H. McFee, G.D. Boyd, P.H. Schmidt: Redetermination of the nonlinear optical coefficients of Te and GaAs by comparison with Ag3SbS3. Appl. Phys. Lett. 17(2), 57–59 (1970).ADSGoogle Scholar
  11. [11]
    R.C.Y. Auyeung, D.M. Zielke, B.J. Feldman: Multiple harmonic conversion of pulsed CO2 laser radiation in Tl3AsSe3. Appl. Phys. B 48(4), 293–297 (1989).ADSGoogle Scholar
  12. [12]
    D.R. Suhre: Efficient second-harmonic generation in Tl3AsSe3 using pulsed CO2 laser radiation. Appl. Phys. B 52(6), 367–370 (1991).ADSGoogle Scholar
  13. [13]
    H. Kildal, G.W. Iseler: Laser-induced surface damage of infrared nonlinear materials. Appl. Opt. 15(12), 3062–3065 (1976).ADSGoogle Scholar

References

  1. [1]
    Physical-Chemical Properties of Semiconductors. Handbook (Nauka, Moscow, 1979) [In Russian].Google Scholar
  2. [2]
    Physical Quantities. Handbook, ed. by I.S. Grigoriev, E.Z. Meilikhov (Energoatomizdat, Moscow, 1991) [In Russian].Google Scholar
  3. [3]
    B.H.T. Chai: Optical Crystals. In: CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, ed. by M.J. Weber (CRC Press, Boca Raton, 1995), pp. 3–65.Google Scholar
  4. [4]
    E.M. Voronkova, B.N. Grechushnikov, G.I. Distler, I.P. Petrov: Optical Materials for Infrared Technique (Nauka, Moscow, 1965) [In Russian].Google Scholar
  5. [5]
    A.A. Blistanov, V.S. Bondarenko, N.V. Perelomova, F.N. Strizhevskaya, V.V. Tchkalova, M.P. Shaskolskaya: Acoustic Crystals (Nauka, Moscow, 1982) [In Russian].Google Scholar
  6. [6]
    Handbook of Optical Constants of Solids II, ed. by E.D. Palik (Academic Press, Boston, 1991).Google Scholar
  7. [7]
    M.J. Weber: Optical Crystals. In: CRC Handbook of Laser Science and Technology, Vol. IV, Optical Materials: Part 2, ed. by M.J. Weber (CRC Press, Boca Raton, 1987), pp. 5–14.Google Scholar
  8. [8]
    J.D. Beasley: Thermal conductivities of some novel nonlinear optical materials. Appl. Opt. 33(6), 1000–1003 (1994).ADSGoogle Scholar
  9. [9]
    B. Jensen, A. Torabi: Refractive index of hexagonal II–VI compounds CdSe, CdS, and CdSexS1–x. J. Opt. Soc. Am. B 3(6), 857–863 (1986).ADSGoogle Scholar
  10. [10]
    K.J. Bachmann: The Materials Science of Microelectronics (VCH Publishers, New York, 1995).Google Scholar
  11. [11]
    E.W. van Stryland, M.A. Woodall, H. Vanherzeele, M.J. Soileau: Energy band-gap dependence of two-photon absorption. Opt. Lett. 10(10), 490–492 (1985).ADSGoogle Scholar
  12. [12]
    S.S. Mitra, L.M. Narducci, R.A. Shatas, Y.F. Tsay, A. Vaidyanathan: Nonlinear absorption in direct-gap semiconductors. Appl. Opt. 14(12), 3038–3042 (1975).ADSGoogle Scholar
  13. [13]
    A. Miller, G.S. Ash: Two-photon absorption and short pulse stimulated recombination in AgGaSe2. Opt. Commun. 33(3), 297–300 (1980).ADSGoogle Scholar
  14. [14]
    M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. van Stryland: Dispersion of bound electron nonlinear refraction in solids. IEEE J. Quant. Electr. 27(6), 1296–1309 (1991).ADSGoogle Scholar
  15. [15]
    E.W. van Stryland, L.L. Chase: Two-Photon Absorption. Inorganic Materials. In: CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, ed. by M.J. Weber (CRC Press, Boca Raton, 1995), pp. 299–328.Google Scholar
  16. [16]
    C. Kittel: Introduction to Solid State Physics, Seventh Edition (John Wiley & Sons, New York, 1996).Google Scholar
  17. [17]
    M. Schäffner, X. Bao, A. Penzkofer: Principal optical constants measurement of uniaxial crystal CdSe in the wavelength region between 380 and 950 nm. Appl. Opt. 31(22), 4546–4552 (1992).ADSGoogle Scholar
  18. [18]
    A.A. Davydov, L.A. Kulevskii, A.M. Prokhorov, A.D. Saveliev, V.V. Smirnov: Parametric generation with CdSe crystal pumped by CaF2:Dy2+. Pisma Zh. Eksp. Teor. Fiz. 15(12), 725–727 (1972) [In Russian, English trans.: JETP Lett. 15(12), 513–514 (1972)].Google Scholar
  19. [19]
    K.L. Vodopyanov: Megawatt peak power 8–13µm CdSe optical parametric generator pumped at 2.8µm. Opt. Commun. 150(1–6), 210–212 (1998).ADSGoogle Scholar
  20. [20]
    M. Bass, E.W. van Stryland, A.F. Stewart: Laser calorimetric measurement of two-photon absorption. Appl. Phys. Lett. 34(2), 142–144 (1979).ADSGoogle Scholar
  21. [21]
    A.F. Stewart, M. Bass: Intensity-dependent absorption in semiconductors. Appl. Phys. Lett. 37(11), 1040–1043 (1980).ADSGoogle Scholar
  22. [22]
    D.S. Hanna, A.J. Turner: Nonlinear absorption measurements in proustite (Ag3AsS3) and CdSe. Opt. Quant. Electron. 8(3), 213–217 (1976).Google Scholar
  23. [23]
    J.H. Bechtel, W.L. Smith: Two-photon absorption in semiconductors with picosecond light pulses. Phys. Rev. B 13(8), 3515–3522 (1976).ADSGoogle Scholar
  24. [24]
    A. Ferrario, M. Garbi: Efficient up-conversion in CdSe. Opt. Commun. 17(2), 158–159 (1976).ADSGoogle Scholar
  25. [25]
    J.A. Weiss, L.S. Goldberg: Singly resonant CdSe parametric oscillator pumped by an HF laser. Appl. Phys. Lett. 24(8), 389–391 (1974).ADSGoogle Scholar
  26. [26]
    R.G. Wenzel, G.P. Arnold: Parametric oscillator: HF oscillator-amplifier pumped CdSe parametric oscillator tunable from 14.1µm to 16.4µm. Appl. Opt. 15(5), 1322–1326 (1976).ADSGoogle Scholar
  27. [27]
    R.L. Herbst, R.L. Byer: Efficient parametric mixing in CdSe. Appl. Phys. Lett. 19(12), 527–530 (1971).ADSGoogle Scholar
  28. [28]
    A.Z. Grasyuk, I.G. Zubarev, A.N. Menzer: Anisotropy of two-photon absorption upon optical excitation of CdSe semiconductor lasers. Fiz. Tverd. Tela 10(2), 543–549 (1968) [In Russian, English trans.: Sov. Phys. — Solid State 10(2), 427–431 (1968)].Google Scholar
  29. [29]
    F. Brükner, V.S. Dneprovskii, V.U. Khattatov: Two-photon absorption in cadmium selenide. Kvant. Elektron. 1(6), 1360–1364 (1974) [In Russian, English trans.: Sov. J. Quantum Electron. 4(6), 749–751 (1974)].Google Scholar
  30. [30]
    E.W. van Stryland, H. Vanherzeele, M.A. Woodall, M.J. Soileau, A.L. Smirl, S. Guha, T.F. Boggess: Two photon absorption, nonlinear refraction, and optical limiting in semiconductors. Opt. Eng. 24(4), 613–623 (1985).Google Scholar
  31. [31]
    W.L. Smith: Two-Photon Absorption in Condensed Media. In: CRC Handbook of Laser Science and Technology, Vol. III, Optical Materials: Part 1, ed. by M.J. Weber (CRC Press, Boca Raton, 1986), pp. 229–258.Google Scholar
  32. [32]
    V.S. Dneprovskii, S.M. Ok: Role of absorption by nonequillibrium carriers in determination of two-photon absorption of CdSe and GaAs crystals. Kvant. Elektron. 3(3), 559–562 (1976) [In Russian, English trans.: Sov. J. Quantum Electron. 6(3), 298–300 (1976)].Google Scholar
  33. [33]
    J.M. Ralston, R.K. Chang: Nd:laser induced absorption in semiconductors and aqueous PrCl3 and NdCl3. Opto-electron. 1(4), 182–188 (1969).Google Scholar
  34. [34]
    I.B. Zotova, Y.J. Ding: Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals. Appl. Opt. 40(36), 6654–6658 (2001).ADSGoogle Scholar
  35. [35]
    G.-M. Schucan, R.G. Ispasoiu, A.M. Fox, J.F. Ryan: Ultrafast two-photon nonlinearities in CdSe near 1.5µm studied by interferometric autocorrelation. IEEE J. Quant. Electr. 34(8), 1374–1379 (1998).ADSGoogle Scholar
  36. [36]
    W.L. Bond: Measurement of the refractive indices of several crystals. J. Appl. Phys. 36(5), 1674–1677 (1965).ADSGoogle Scholar
  37. [37]
    M.P. Lisitsa, L.F. Gudymenko, V.N. Malinko, S.F. Terekhova: Dispersion of the refractive indices and birefringence of CdSxSe1–x single crystals. Phys. Stat. Solidi 31(1), 389–399 (1969).ADSGoogle Scholar
  38. [38]
    G.C. Bhar: Refractive index interpolation in phase-matching. Appl. Opt. 15(2), 305–307 (1976).ADSGoogle Scholar
  39. [39]
    G.C. Bhar, D.C. Hanna, B. Luther-Davies, R.C. Smith: Tunable down-conversion from an optical parametric oscillator. Opt. Commun. 6(4), 323–326 (1972).ADSGoogle Scholar
  40. [40]
    G.C. Bhar, G.C. Ghosh: Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2. IEEE J. Quant. Electr. QE-16(8), 838–843 (1980).ADSGoogle Scholar
  41. [41]
    I.P. Kaminow: Tables of Linear Electrooptic Coefficients. In: CRC Handbook of Laser Science and Technology, Vol. III, Optical Materials: Part 2, ed. by M.J. Weber (CRC Press, Boca Raton, 1986), pp. 253–278.Google Scholar
  42. [42]
    J.E. Midwinter, J. Warner: The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit. J. Appl. Phys. 16(11), 1135–1142 (1965).ADSGoogle Scholar
  43. [43]
    M.M. Choy, R.L. Byer: Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals. Phys. Rev. B 14(4), 1693–1706 (1976).ADSGoogle Scholar
  44. [44]
    W.J. Alford, A.V. Smith: Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling. J. Opt. Soc. Am. B 18(4), 524–533 (2001).ADSGoogle Scholar
  45. [45]
    D.A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions. IEEE J. Quant. Electr. 28(10), 2057–2074 (1992).ADSGoogle Scholar
  46. [46]
    D. Andreou: 16µm tunable source using parametric processes in non-linear crystals. Opt. Commun. 23(1), 37–43 (1977).ADSGoogle Scholar
  47. [47]
    A.A. Davydov, L.A. Kulevskii, A.M. Prokhorov, A.D. Saveliev, V.V. Smirnov, A.V. Shirkov: A tunable infrared parametric oscillator in a CdSe crystal. Opt. Commun. 9(3), 234–236 (1973).ADSGoogle Scholar
  48. [48]
    R.L. Herbst, R.L. Byer: Singly resonant CdSe infrared parametric oscillator. Appl. Phys. Lett. 21(5), 189–191 (1972).ADSGoogle Scholar
  49. [49]
    M. Birnbaum, T.L. Stocker: Reflectivity enhancement of semiconductors by Q-switched ruby lasers. J. Appl. Phys. 39(13), 6032–6036 (1968).ADSGoogle Scholar
  50. [50]
    M. Bertolotti, F. de Pasquale, P. Marietti, D. Sette, G. Vitali: Laser damage on semiconductor surfaces. J. Appl. Phys. 38(10), 4088–4090 (1967).ADSGoogle Scholar
  51. [51]
    M.A. Watson, M.V. O’Connor, D.P. Shepherd, D.C. Hanna: Synchronously pumped CdSe optical parametric oscillator in the 9–10µm region. Opt. Lett. 28(20), 1957–1959 (2003).ADSGoogle Scholar
  52. [52]
    J.M. Fukumoto: Three-stage optical parametric oscillator conversion from 1µm to the 8–12µm region. In: Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series, Vol. 68, ed. by M.E. Fermann, L.R. Marshall (OSA, Washington DC, 2002), pp. 558–562.Google Scholar
  53. [53]
    T.H. Allik, S. Chandra, D.M. Rines, P.G. Schunemann, J.A. Hutchinson, R. Utano: Tunable 7–12-µm optical parametric oscillator using a Cr,Er:YSGG laser to pump CdSe and ZnGeP2 crystals. Opt. Lett. 22(9), 597–599 (1997).ADSGoogle Scholar
  54. [54]
    Y.M. Andreev, V.V. Badikov, V.G. Voevodin, L.G. Geiko, P.P. Geiko, M.V. Ivashchenko, A.I. Karapuzikov, I.V. Sherstov: Radiation resistance of nonlinear crystals at a wavelength of 9.55µm. Kvant. Elektron. 31(12), 1075–1078 (2001) [In Russian, English trans.: Quantum Electron. 31(12), 1075–1078 (2001)].ADSGoogle Scholar
  55. [55]
    D.C. Hanna, B. Luther-Davies, H.N. Rutt, R.C. Smith, C.R. Stanley: Q-switched laser damage of infrared nonlinear materials. IEEE J. Quant. Electr. QE-8(3), 317–324 (1972).ADSGoogle Scholar

To Chapter 8. Rare-used and archive crystals

  1. [22]
    V. Petrov, V. Badikov, V. Panyutin, G. Shevyrdyaeva, S. Sheina, F. Rotermund: Mid-IR optical parametric amplification with femtosecond pumping near 800 nm using CdxHg1-xGa2S4. Opt. Commun. 235(1–3), 219–226 (2004).ADSGoogle Scholar
  2. [23]
    A.A. Mani, Z.D. Schultz, A.A. Gewirth, J.O. White, Y. Caudano, C. Humbert, L. Dreesen, P.A. Thiry, A. Peremans: Picosecond laser for performance of efficient nonlinear spectroscopy from 10 to 21 µm. Opt. Lett. 29(3), 274–276 (2004).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations