Cretaceous CO2 Decline and the Radiation and Diversification of Angiosperms

  • Jennifer C. McElwain
  • K.J. Willis
  • R. Lupia

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, M.A., W.E. Dean, and L.M. Pratt. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335:714–17.CrossRefGoogle Scholar
  2. Arthur, M.A., W.E. Dean, and S.O. Schlanger. 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. Geophysical Monograph 32:504–29.Google Scholar
  3. Axelrod, D.L. 1952. A theory of angiosperm evolution. Evolution 4:26–90.Google Scholar
  4. Bailey, I.W. 1944. The development of vessels in angiosperms and its significance in morphological research. American Journal of Botany 31:421–28.Google Scholar
  5. Bailey, I.W. and W.W. Tupper. 1918. Size variation in tracheary cells: I. A comparison between the secondary xylems of vascular cryptograms, gymnosperms and angiosperms. Proceedings of the American Academy of Arts and Sciences 54: 149–204.Google Scholar
  6. Barrera, E., M. Savin, E. Thomas, and C.E. Jones. 1997. Evidence for themohaline-circulation reversals controlled by sea level change in the latest Cretaceous. Geology 25:715–18.CrossRefGoogle Scholar
  7. Barrett, P.M. 2000. Evolutionary consequences of dating the Yixian Formation. Trends in Ecology and Evolution 15:99–103CrossRefPubMedGoogle Scholar
  8. Barron, E.J. 1987. Cretaceous plate tectonics reconstructions. Paleogeography, Paleoclimatology, Paleoecology 59:3–29.Google Scholar
  9. Barron, E.J., and W.M. Washington. 1984. The role of geographic variables in explaining paleoclimates: Results from Cretaceous climate model sensitivity studies. Journal of Geophysical Research 89:1267–79.Google Scholar
  10. Bazzaz, F.A., M. Jasienski, S.C. Thomas, and P. Wayne. 1995. Microevolutionary responses in experimental populations of plants to CO2-enriched environments: Parallel results from 2 model systems. Proceedings of the National Academy of Sciences USA 92:8161–65.Google Scholar
  11. Becker, P., M.T. Tyree, and M. Tsuda. 1999. Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at whole-plant level. Tree Physiology 19:445–52.PubMedGoogle Scholar
  12. Beerling, D.J. 1994. Modeling palaeophotosynthesis: Late Cretaceous to present. Philosophical Transactions of the Royal Society, London B 346:421–32.Google Scholar
  13. Beerling, D.J., J.C. McElwain, and C.P. Osborne. 1998. Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. Journal of Experimental Botany 49: 1603–607.CrossRefGoogle Scholar
  14. Beerling, D.J., C.P. Osborne, and W.G. Chaloner. 2001. Evolution of leaf form in land plants linked to atmospheric CO2 decline in the late Paleozoic era. Nature 410: 352–54.CrossRefPubMedGoogle Scholar
  15. Beerling, D.J., and F.I. Woodward. 1997. Palaeo-ecophysiological perspectives on plant responses to global change. Trends in Ecology and Evolution 11:20–23.CrossRefGoogle Scholar
  16. Berner, R.A. 1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science 291:339–75.Google Scholar
  17. —. 1994. GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 294:56–91.Google Scholar
  18. —. 1997. The Rise of Plants and Their Effect on Weathering and Atmospheric CO2. Science 276:544–46.CrossRefGoogle Scholar
  19. Berner, R.A., and Z. Kothavala. 2001. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 301:182–204.Google Scholar
  20. Brenner, G.J. 1996. Evidence for the earliest stage of angiosperm pollen evolution: A paleoequatorial section from Israel. In Flowering plant origin, evolution and phylogeny, ed. D.W. Taylor and L.J. Hickey, 91–115. New York: Chapman and Hall.Google Scholar
  21. Brodribb, T.J., and T.S. Field. 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: Evidence from New Caledonian and Tasmanian rainforests. Plant, Cell, and Environment 23:1381–87.Google Scholar
  22. Brodribb, T.J., and R.S. Hill. 1999. The importance of xylem constraints in the distribution of conifer species. New Phytologist 143:365–72.CrossRefGoogle Scholar
  23. Carlquist, S. 1996. Wood anatomy of primitive angiosperms: New perspectives and syntheses. In Flowering plant origin, evolution, and phylogeny, ed. D.W. Taylor and L.J. Hickey, 68–91. New York: Chapman and Hall.Google Scholar
  24. Carlquist, S., and E.L. Schneider. 2001. Vessels in ferns: Structural ecological and evolutionary significance. American Journal of Botany 88:1–13.PubMedGoogle Scholar
  25. —. 2002. The tracheid-vessel element transition in angiosperms involves multiple independent features: Cladistic consequences. American Journal of Botany 89:185–95.Google Scholar
  26. Chen, L.-Q., C.-S. Li, W.G. Chaloner, D.J. Beerling, Q.-G. Sun. 2001. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. American Journal of Botany 88:1309–15.PubMedGoogle Scholar
  27. Condie, K.C., and R.E. Sloan. 1998. Origin and evolution of the Earth. New Jersey: Prentice Hall.Google Scholar
  28. Cornet, B. 1986. The reproductive structures and leaf venation of a late Triassic angiosperm Sanmiguelia lewisii. Evolutionary Theory 7:231–309.Google Scholar
  29. Cornet, B. 1993. Dicot-like leaf and flowers from the late Triassic tropical Newark supergroup rift zone, U.S.A. Modern Geology 19:81–99.Google Scholar
  30. Cornet, B., and D. Habib. 1992. Angiosperm-like pollen from the ammonite dated Oxfordian (Upper Jurassic) of France. Review of Paleobotany and Palynology 71:268–94.Google Scholar
  31. Cowie, R.R. 1999. Gas exchange characteristics of an early cretaceous conifer, Pseudofrenelopsis varians (Cheirolepidiaceae), and its inferred paleoecology. Tex.: Southwest Texas State University. Master’s Thesis.Google Scholar
  32. Crane, P.R. 1985. Phylogentic alalysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden 72:716–93.Google Scholar
  33. Crane, P.R. and S. Lidgard. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246:675–78.Google Scholar
  34. —. 1990. Angiosperm radiation and patterns of Cretaceous palynological diversity. In Major evolutionary radiations, ed. P.D. Taylor and G.P. Larwood (Systematics Association Special) 42:377–407.Google Scholar
  35. Dean, W.E., M.A. Arthur, and G.E. Claypool. 1986. Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental signal? Marine Geology 70:119–57.CrossRefGoogle Scholar
  36. DeLucia, E.H., J.G. Hamilton, S.L. Naidu, R.B. Thomas, J.A. Andrews, A. Finzi, M. Lavine, R. Matamala, J.E. Mohan, G.R. Hendrey, and W.H. Schlesinger. 1999. Net primary productions of a forest ecosystem with experimental CO2 enrichment. Science 285:1177–79.CrossRefGoogle Scholar
  37. Dilcher, D.L. 1989. The occurrence of fruits with affinities to Ceratophylaceae in lower and mid Cretaceous sediments. American Journal of Botany 76:162.Google Scholar
  38. Doyle, J.A. and M.J. Donoghue. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Review 52:321–431.Google Scholar
  39. Doyle, J.A., and L.J. Hickey. 1976. Pollen and leaves from the mid Cretaceous Potomac Group and their bearing on early angiosperm evolution 139–206. In Origin and early evolution of Angiosperms, ed. C.B. Beck. New York: Columbia University Press.Google Scholar
  40. Doyle, J., S. Jardiné, and A. Doerenkamp. 1982. Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of northern Gondwana. Bulletin des Centres de Recherches Exploration-Proction Elf-Aquitaine 6:39–117.Google Scholar
  41. Ehleringer, J.R., T.E. Cerling, and B.R. Helliker. 1997. C-4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285–99.CrossRefGoogle Scholar
  42. Ehleringer, J.R., R.F. Sage, L.B. Flanagan, and R.W. Pearcy. 1991. Climate change and the evolution of C4 photosyntheisis. Trends in Ecology and Evolution 3:95–99.CrossRefGoogle Scholar
  43. Ekart, D.D., T.E. Cerling, I.P. Montanez, and N.J. Tabor. 1999. A 400 million year carbon isotope record of pedogenic carbonate; implications for paleoatomospheric carbon dioxide. American Journal of Science 299:805–27.Google Scholar
  44. Esau, K. 1964. Plant anatomy. NewYork: John Wiley.Google Scholar
  45. Falcon-Lang, H.J. 2000. A method to distinguish between woods produced by evergreen and deciduous coniferopsids on the basis of growth ring anatomy: A new palaeoecological tool. Palaeontology 43:785–93.CrossRefGoogle Scholar
  46. Field, T.S., T. Brodribb, T. Jaffré, and N.M. Holbrook. 2001. Acclimation of leaf anatomy, photosynthetic light use, and xylem hydraulics to light in Amborella trichopoda (Amborellaceae). International Journal of Plant Sciences 162:999–1008.CrossRefGoogle Scholar
  47. Field, T.S., and N.M. Holbrook. 2000. Xylem sap flow and stem hydraulics of the vesselless angiosperm Drimys granadensis (Winteraceae) in a Costa Rican elfin forest. Plant, Cell, and Environment 23:1067–72.Google Scholar
  48. Field, T.S., M.A. Zwieniecki, and N.M. Holbrook. 2000. Winteraceae evolution: An ecophysiological perspective. Annals of the Missouri Botanical Gardens 87:323–34.Google Scholar
  49. Frakes, L.A. 1999. Estimating the global thermal state from Cretaceous sea surface and continental temperature data. In Evolution of the Cretaceous ocean-climate system, ed. E. Barrera and C.C. Johnson (special paper 332:49–57). Boulder, Colorado: Geological Society of America.Google Scholar
  50. Friis, E.-M., P.R. Crane, and K.J. Pedersson. 1999. Early Angiosperm diversification: The diversity of pollen associated with angiosperm reproductive structures in early Cretaceous floras from Portugal. Annals of the Missouri Botanical Garden 86:259–97.Google Scholar
  51. Gale, J. 1972. Availability of carbon dioxide for photosynthesis as high altitudes: Theoretical considerations. Ecology 53:494–97.Google Scholar
  52. Gates, D.M. 1968. Transpiration and leaf temperature. Annual Review of Plant Physiology 19:211–38.CrossRefGoogle Scholar
  53. Gothan, W., and W. Remy. 1957. Steinkohlenpflanzen. Essen: Glükauf.Google Scholar
  54. Hay, W.W., R.M. DeConto, C.N. Wold, K.M. Wilson, S. Voigt, M. Schulz, A.R. Wold, W.-C. Dullo, A.B. Ronov, A.N. Balukhovsky, and E. Söding. 1999. Alternative global Cretaceous paleogeography. In Evolution of the Cretaceous Ocean-Climate system, ed. E. Barrera and C.C. Johnson (special paper 332:1–47). Boulder, Colorado: Geological Society of America.Google Scholar
  55. Herendeen, P.S., E.A. Wheeler, and P. Baas. 1999. Angiosperm wood evolution and the potential contribution of paleontological data. The Botanical Review 65:278–300.Google Scholar
  56. Herman, A.B., and R.A. Spicer. 1996. Paleobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380:330–33.CrossRefGoogle Scholar
  57. Hesselbo, S.P, D.R. Gröcke, H.C. Jenkyns, C.J. Bjerrum, P.L. Farrimond, H.S. Morgans-Bell, O. Green. 2000. Massive dissociation of gas hydrates during a Jurassic Oceanic anoxic event. Nature 406:392–95.CrossRefPubMedGoogle Scholar
  58. Huber, B.T., R.M. Leckie, R.D. Norris, T.J. Bralower, and E. CoBabe. 1999. Foraminiferal assemblage and stable isotopic change across the Cenomanian-Turonian boundary in the subtropical, North Atlantic. Journal of Foraminiferal Research 29:392–417.Google Scholar
  59. Hughes, N.F. 1994. The enigma of angiosperm origins. Cambridge: Cambridge University Press.Google Scholar
  60. Hussain, M., M.E. Kubiske, and K.F. Connor. 2001. Germination of CO2-enriched Pinus taeda L. seeds and subsequent seedling growth responses to CO2 enrichment. Journal of Functional Ecology 15:344–50.CrossRefGoogle Scholar
  61. Huston, M.A., et al. 2000. No consistent effect of plant diversity on productivity. Science 289:1255.PubMedGoogle Scholar
  62. IPCC 2001. Climate change 2001: The scientific basis. Contributions of working group 1 to the third assessment report of the intergovernmental panel on climate change, ed. J.T. Houghton et al. Cambridge: Cambridge University Press.Google Scholar
  63. Jacobs, B.F., J.D. Kingston, and L.L. Jacobs. 1999. The origin of grass dominated ecosystems. Annals of the Missouri Botanical Garden 86: 590–644.Google Scholar
  64. Jahren, A.H., N.C. Arens, G. Sarmiento, J. Guerrero, and R. Amundson. 2001. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology 29: 159–62.CrossRefGoogle Scholar
  65. Jenkyns, H.C. 1980. Cretaceous anoxic events; from continents to oceans. Journal of the Geological Society of London 137: 171–88.Google Scholar
  66. Kaiho, K., and T. Hasegawa. 1994. End-Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 111: 29–43.Google Scholar
  67. Kauffman, E.G., and M.B. Hart. 1995. Cretaceous Bioevents. In Global events and event stratigraphy in the Phanerozoic, ed. O.H. Walliser. Berlin: Springer-Verlag.Google Scholar
  68. Knoll, A.H., and W.C. James. 1987. Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time. Geology 15: 1099–1102.CrossRefGoogle Scholar
  69. Kuypers, M.M.M., R.D. Pancost, and J.S. Sinninghe-Damste. 1999. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature 399: 342–45.CrossRefGoogle Scholar
  70. Larcher, W. 1995. Physiological plant ecology. 3d ed. Berlin: Springer-Verlag.Google Scholar
  71. Larson, R.L. 1991. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology 19: 547–50.CrossRefGoogle Scholar
  72. —. Geological consequences of superplumes. Geology 19: 963–66.CrossRefGoogle Scholar
  73. Leigh, E.G., and G.J. Vermeij. 2002. Does natural selection organize ecosystems for the maintenance of high productivity and diversity? Philosophical Transactions of the Royal Society London B 357: 709–18.CrossRefGoogle Scholar
  74. Li, H., E.L. Taylor, and T.N. Taylor. 1996. Permian vessel elements. Science 271: 188–89.Google Scholar
  75. Li, H., and D.W. Taylor. 1999. Vessel-bearing stems of Vsovinea tianii Gen. et Sp. Nov. (Gigantopteridales) from the upper Permian of Guizhou Province, China. American Journal of Botany 86: 1563–75.PubMedGoogle Scholar
  76. Lidgard, S., and P.R. Crane. 1988. Quantitative analyses of the early angiosperm radiation Nature 331: 344–46Google Scholar
  77. —. 1990. Angiosperm diversification and Cretaceous florisitc trends: a comparison of palynofloras and leaf macrofloras. Paleobiology 16: 77–93.Google Scholar
  78. Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J.P. Grime, A.D. Hector, U. Hooper, M.A. Huston, D. Raffaelli, B. Schmid, D. Tilman, and D.A. Wardle. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294: 804–808.CrossRefPubMedGoogle Scholar
  79. Lupia, R., S. Lidgard, and P.R. Crane. 1999. Comparing palynological abundance and diversity: Implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25: 305–40.Google Scholar
  80. —. 2000. Angiosperm diversification and Cretaceous environmental change. In Biotic response to global change: The last 145 million years, ed. S.J. Culver and P.F. Rawson, 223–43. Cambridge: Cambridge University Press.Google Scholar
  81. McElwain, J.C. 1998. Do fossil plants signal palaeo-atmospheric CO2 concentration in the geological past? Philosophical Transactions of the Royal Society B 353: 83–96.CrossRefGoogle Scholar
  82. McElwain, J.C., D.J. Beerling, and F.I. Woodward. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285: 1386–90.PubMedGoogle Scholar
  83. McElwain, J.C., and W.G. Chaloner. 1996. The fossil cuticle as a skeletal record of environmental change. Palaios 11: 376–88.Google Scholar
  84. McLeod, A.R., and S.P. Long. 1999. Free-air carbon dioxide enrichment (FACE) in global change research: A review. Advances in Ecological Research 28: 1–56.Google Scholar
  85. Meyers, S., B. Sageman, and L. Hinnov. 2001. Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek limestone member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research 71: 627–43.Google Scholar
  86. Moulton, K.L., J. West, and R.A. Berner. 2000. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. American Journal of Science 300: 539–70.Google Scholar
  87. Nagalingum, N.S., A.N. Drinnan, R. Lupia, and S. McLoughlin. 2002. Fern spore diversity and abundances in Australia during the Cretaceous. Review of Paleobotany and Palynology 2431: 1–24.Google Scholar
  88. Niklas, K.J., B.H. Tiffney, and A.H. Knoll. 1983. Patterns in vascular land plant diversification. Nature 303: 614–16.CrossRefGoogle Scholar
  89. Oren, R. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2 enriched atmosphere. Nature 411: 469–72.PubMedGoogle Scholar
  90. Parrish, J.T., and R.A. Spicer. 1988. Late Cretaceous terrestrial vegetation: A near polar temperature curve. Geology 16: 22–25.CrossRefGoogle Scholar
  91. Quideau, S.A., O.A. Chadwick, R.C. Graham, and H.B. Wood. 1996. Base cation biogeochemistry and weathering under oak and pine: A controlled long-term experiment. Biogeochemistry 35: 377–98.Google Scholar
  92. Rees, P. McA., A.M. Ziegler, and P.J. Valdes. 2000. Jurassic phytogeography and climates: New data and model comparisons. In Warm climates in Earth history, ed. B.T. Huber, K.G. Macleod, and S.L. Wing. Cambridge: Cambridge University Press.Google Scholar
  93. Reich, P.B., M.B. Walters, and D.S. Ellsworth. 1997. From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences 94: 13730–34.CrossRefGoogle Scholar
  94. Robinson, J.M. 1994. Speculations on carbon dioxide starvation, late Tertiary evolution of stomatal regulation and floristic modernization. Plant Cell and Environment 17:1–10.Google Scholar
  95. Robinson, S.A., J.E. Andrews, S.P. Hesselbo, J.D. Radley, P.F. Dennis, I.C. Harding, P. Allen. 2002. Atmospheric pCO2 and depositional environment from stable-isotope geochemistry of calcrete nodules (Barremian, Lower Cretaceous, Wealden Beds, England). Journal of the Geological Society London 159: 215–24.Google Scholar
  96. Schlanger, S.O., and H.C. Jenkyns. 1976. Creatceous oceanic anoxic events: Causes and consequences. Geol. Mijnbouw 55: 179–84.Google Scholar
  97. Scotese, C.R. 1991. Jurassic and Cretaceous plate tectonic reconstructions. Paleogeography, Paleoclimatology, Paleoecology 87: 493–501.Google Scholar
  98. Sheridan, R.E. 1997. Pulsation tectonics as a control on the dispersal and assembly of supercontinents. Journal of Geodynamics 23: 173–96.CrossRefGoogle Scholar
  99. Street-Perrott, F.A., Y. Huang, R.A. Perrott, G. Eglington, P. Barker, L.B. Khelifa, D.D. Harkness, and D.O. Olago. 1997. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278: 1422–26.CrossRefPubMedGoogle Scholar
  100. Sun, Ge, D.L. Dilcher, S. Zheng, and Z. Zhou. 1998. In search of the first flower: A Jurassic angiosperm, Archaefructus, from Northeast China. Science 282: 1692–95.CrossRefPubMedGoogle Scholar
  101. Sun, G., Q. Ji, D.L. Dilcher, S. Zheng, K.C. Nixon, and X. Wang. 2002. Archaefructaceae, a New Basal Angiosperm Family. Science 296: 899–904.CrossRefPubMedGoogle Scholar
  102. Tajika, E. 1998. Climate change during the last 150 million years: Reconstruction from a carbon cycle model. Earth and Planetary Science Letters 160: 695–707.CrossRefGoogle Scholar
  103. —. 1999. Carbon cycle and climate change during the Cretaceous inferred from a biogeochemical carbon cycle model. The Island Arc 8: 293–303.CrossRefGoogle Scholar
  104. Terashima, I., T. Masuzawa, H. Ohba, and Y. Yokoi. 1995. Is photosynthesis suppressed at higher elevations due to low CO2 pressure? Ecology 76: 2663–68.Google Scholar
  105. Teslenko, Y.V. 1967. Some aspects of evolution of terrestrial plants. Geologia i Geofizica (Novosibirsk) 11: 58–64.Google Scholar
  106. Trivett, M.L., and K.B. Pigg. 1996. A survey of reticulate venation among fossil and living plants. In Flowering plant origin, evolution, and phylogeny, ed. W.D. Taylor and L.J. Hickey, 8–12. New York: Chapman and Hall.Google Scholar
  107. Tyree, M.T., and F.W. Ewers. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345–60.Google Scholar
  108. Tyree, M.T., and J.S. Sperry. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiological and Molecular Biology 40: 19–38.CrossRefGoogle Scholar
  109. Upchurch, G.R., Jr., B.L. Otto-Bliesner, and C.R. Scotese. 1999. Terrestrial vegetation and its effect on climate during the latest Cretaceous. In Evolution of the Cretaceous ocean-climate system, ed. E. Barrera and C.C. Johnson, 406–26. Boulder, Colorado: Geological Society of America.Google Scholar
  110. Upchurch, G.R., Jr., and J.A. Wolfe. 1993. Cretaceous vegetation of the Western Interior and adjacent regions of North America. Geological Association of Canada Special Publications 39: 243–81.Google Scholar
  111. Vygodskaya, N.N., I. Milyukova, A. Varlagin, F. Tatarinov, A. Sogachev, K.I. Kobak, R. Desyatkin, G. Bauer, D.Y. Hollinger, F.M. Kelliher, E.D. Schulze. 1997. Leaf conductance and CO2 assimilation of Larix gmelinii growing in an eastern Siberian boreal forest. Tree Physiology 17: 607–15.PubMedGoogle Scholar
  112. Volk, T. 1989. Rise of angiosperms as a factor in long-term climatic cooling. Geology 17: 107–10.CrossRefGoogle Scholar
  113. von Caemmerer, S., and J.R. Evans. 1991. Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plants. Australian Journal of Plant Physiology 18: 287–306.Google Scholar
  114. Watson, J. 1988. The Cheirolepidaceae. In Origin and Evolution of Gymnosperms, ed. C.B. Beck. New York: Columbia University Press.Google Scholar
  115. Wheeler, E.A., and P. Baas. 1991. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. International Association of Wood Anatomists Bulletin 12: 275–332.Google Scholar
  116. Willis, K.J., and J.C. McElwain. 2002. The evolution of plants. Oxford: Oxford University Press.Google Scholar
  117. Wolfe, J.A., and G.R. Upchurch, Jr. 1987. North American non marine climates and vegetation during the late Cretaceous. Paleogeography, Paleoclimatology, Paleoecology 61: 33–77.Google Scholar
  118. Ziegler, A.M., 1998. Warm Polar Currents. EOS Trans., AGU 78, Spring Meeting Suppl.Google Scholar
  119. Ziegler, A.M., C.R. Scotese, S.F. Barrett. 1982. Mesozoic and Cenozoic paleogeographic maps. In Tidal friction and the Earths rotation II, Ed. P. Brosche, J. Sundermann. Berlin: Springer-Verlag.Google Scholar
  120. Zimmermann, M.H. 1983. Xylem structure and the ascent of sap. Berlin: Springer-Verlag.Google Scholar
  121. Zimmermann, M.H., and A.A. Jeje. 1981. Vessel-length distribution in stems of some American woody plants. Canadian Journal of Botany 59: 18.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Jennifer C. McElwain
  • K.J. Willis
  • R. Lupia

There are no affiliations available

Personalised recommendations