Advertisement

CO2, Grasses, and Human Evolution

  • Nicholaas J. van der Merwe
Part of the Ecological Studies book series (ECOLSTUD, volume 177)

Keywords

Sugar Cane Pearl Millet Accelerator Mass Spectrometry Tooth Enamel Accelerator Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, L.C., and P. Wheeler. 1995. The expensive tissue hypothesis. Current Anthropology 36:199–221.CrossRefGoogle Scholar
  2. Amblard, S. 1996. Agricultural evidence and its implications on the Dhars Tichitt and Oualata, southeastern Mauretania. In Aspects of African archaeology, ed. G. Pwiti and R. Soper, 421–27. Harare: University of Zimbabwe Publications.Google Scholar
  3. Artschwager, E., and E.W. Brandes. 1958. Sugar cane: Origin, classification characteristics, and description of representative clones. U.S. Department of Agriculture Handbook no. 122. Washington, D.C.: Government Printing Office.Google Scholar
  4. Asch, D.L., and N.E. Asch. 1985. Prehistoric plant cultivation in west-central Illinois. In Prehistoric food production in North America, ed. R.I. Ford, 149–203. Anthropological Papers no. 75, Museum of Anthropology. Ann Arbor: University of Michigan.Google Scholar
  5. Asfaw, B., T. White, O. Lovejoy, B. Latimer, S. Simpson, and G. Suwa. 1999. Australopithecus garhi: A new species of early hominid from Ethiopia. Science 284:629–35.CrossRefPubMedGoogle Scholar
  6. Backwell, L.R., and F. d’Errico. 2000. First evidence for termite foraging by Swartkrans early hominids. Proceedings of the National Academy of Sciences, USA 98:1358–63.Google Scholar
  7. Bar-Yosef, O., and A. Belfer-Cohen. 1991. From sedentary hunter-gatherers to territorial farmers in the Levant. In Between bands and states, ed. S.A. Gregg, 181–202. Occasional Paper, Center of Archaeological Investigations, no. 9. Carbondale: Southern Illinois University.Google Scholar
  8. Bar-Yosef, O., and R.H. Meadow. 1995. The origins of agriculture in the Near East. In Last hunters, first farmers: New perspectives on the prehistoric transition to agriculture, ed. T.D. Priceand A.B. Gebauer, 39–49. Santa Fe, N.M.: School of American Research.Google Scholar
  9. Bender, M.M., D.A. Bareis, and A.L. Stevenson. 1981. Further light on carbon isotopes and Hopewell agriculture. American Antiquity 46:346–53.Google Scholar
  10. Benz, B.F., and H.H. Iltis. 1990. Studies in archaeological maize I: The “wild” maize from San Marcos cave re-examined. American Antiquity 55:500–511.Google Scholar
  11. Blake, M., B. Chisholm, J.E. Clark, and K. Mudar. 1992a. Non-agricultural staples and agricultural supplements: Early formative subsistence in the Soconusco region, Mexico. In Transitions to agriculture in prehistory, ed. A.B. Gebauer and T.D. Price, 133–51. Madison, Wis.: Prehistory Press.Google Scholar
  12. Blake, M., B. Chisholm, J.E. Clark, B. Voorhies, and M.W. Love. 1992b. Prehistoric subsistence in the Soconusco region. Current Anthropology 33:83–94.CrossRefGoogle Scholar
  13. Bothma, J. du P. 2001. Die aardwolf-Proteles cristatus. S.A. Game and Hunt 7:6–7.Google Scholar
  14. Brain, C.K., ed. 1993. Swartkrans: A cave’s chronicle of early man. Pretoria: Transvaal Museum Monographs.Google Scholar
  15. Bray, W., L. Herrera, C. Schrimpff, and J.G. Monslave. 1987. The ancient agricultural landscape of Calima, Colombia. In Pre-Hispanic agricultural fields in the Andean region, vol. 2, ed. W.M. Denevan, K. Matthewson, and G. Knapp, 443–81. Oxford: BAR International Series 359.Google Scholar
  16. Broecker, W.S. 1987. The biggest chill. Natural History 96:74–82.Google Scholar
  17. Brown, R.H. 1999. Agronomic implications of C4 photosynthesis. In C4plant biology, ed. R.F. Sage and R.K. Monson, 473–508. London and New York: Academic Press.Google Scholar
  18. Brunet, M., F. Guy, D. Pilbeam, H. Mackaye, A. Likius, D. Ahountas, A. Beauvilain, C. Blondel., H. Bocherens, J. Boisserie, L. De Bonis, Y. Coppens, J. Dejax, C. Denys, P. Duringer, V. Eisenmann, G. Fanone, P. Fronty, D. Geraads, T. Lehmann, F. Lihoreau, A. Louchart, A. Mahamat, G. Merceron, G. Mouchelin, O. Otero, P. Campomanes, M. Ponce De Leon, J. Rage, M. Sapanet, M. Schuster, J. Sudre, P. Tassy, X. Valentin, P. Vignaud, L. Viriot, A. Zazzo, and C. Zollikofer. 2002. A new hominid from the upper Miocene of Chad, Central Africa. Nature 418:145–51.CrossRefPubMedGoogle Scholar
  19. Brunken, J., J.M.J. de Wet, and J.R. Harlan. 1977. The morphology and domestication of pearl millet. Economic Botany 31:163–74.Google Scholar
  20. Buikstra, J.E., W. Autry, E. Breitburg, L. Eisenberg, and N.J. van der Merwe. 1988. Diet and health in the Nashville Basin: H.human adaptation and maize agriculture in middle Tennessee. In Diet and subsistence: Current archaeological perspectives, ed. B.V. Kennedy and G.M. LeMoine, 243–59. Proceedings of the 19th Annual Chacmool Conference. Calgary, Alberta: University of Calgary.Google Scholar
  21. Burger, R.L., and N.J. van der Merwe. 1990. Maize and the origin of highland Chavin civilization: An isotopic perspective. American Anthropologist 92:85–95.CrossRefGoogle Scholar
  22. Bush, M.B., D.R. Piperno, and P.A. Colinvaux. 1989. A 6000 year history of Amazonian maize cultivation. Nature 340:303–305.CrossRefGoogle Scholar
  23. Cane, S. 1989. Australian aboriginal seed grinding and its archaeological record: A case study from the western desert. In Foraging and farming: The evolution of plant exploitation, ed. D.R. Harris and G.C. Hillman, 99–119. London: Unwin Hyman.Google Scholar
  24. Cerling, T.E. 1999. Paleorecords of C4 plants and ecosystems. In C4plant biology, ed. R.F. Sage and R.K. Monson, 445–72. London and New York: Academic Press.Google Scholar
  25. Cerling, T.E., J.M. Harris, S.H. Ambrose, M.G. Leakey, and N. Solounias. 1997a. Dietary and environmental reconstruction with stable isotope analyses of herbivore tooth enamel from the Miocene locality of Fort Ternan, Kenya. Journal of Human Evolution 33:635–50.CrossRefPubMedGoogle Scholar
  26. Cerling, T.E., J.M. Harris, B.J. MacFadden, M.G. Leakey, J. Quade, V. Eisenmann, and J.R. Ehleringer. 1997b. Global vegetation change through the Miocene and Pliocene. Nature 389:153–58.CrossRefGoogle Scholar
  27. Cerling, T.E., Y. Wang, and J. Quade. 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the Miocene. Nature 361:344–45.CrossRefGoogle Scholar
  28. Chang, K.C. 1980. Shang civilization. New Haven: Yale University Press.Google Scholar
  29. —. 1986. The archaeology of Ancient China, 4th ed. New Haven: Yale University Press.Google Scholar
  30. Clark, J.D., M.A.J. Williams and A.B. Smith. 1973. The geomorphology and archaeology of Adrar Bous, central Sahara: preliminary report. Quaternaria 18:245–97.Google Scholar
  31. Clarke, R.J. 1998. First ever discovery of a well-preserved skull and associated skeleton of Australopithecus, South African Journal of Science 94:463.Google Scholar
  32. Cleuziou, S., and L. Constantini. 1980. Premiers elements sur l’agriculture protohistorique de l’Arabie orientale. Paléorient 6:245–51.Google Scholar
  33. Close, A.E. 1992. Holocene occupation of the eastern Sahara. In New light on the Northeast African past, ed. F. Klees and R. Kuper, 155–83. Köln: Heinrich Barth Institut.Google Scholar
  34. Cohen, D.J. 1998. The origins of domesticated cereals and the Pleistocene-Holocene transition in East Asia. Review of Archaeology 19:22–29.Google Scholar
  35. Crawford, G.W. 1992a. Prehistoric plant domestication in East Asia. In The origins of agriculture, ed. C.W. Cowan and P.J. Watson, 7–38. Washington, D.C.: Smithsonian Institution Press.Google Scholar
  36. —. 1992b. The transition to agriculture in Japan. In Transitions to agriculture in prehistory, ed. A.B. Gebauer and T.D. Price, 117–32. Madison,Wis.: Prehistory Press.Google Scholar
  37. Crawford, G.W., D.G. Smith, and V. Bowyer. 1997. Dating the entry of corn (Zea mays) to the Lower Great Lakes region. American Antiquity 62:112–19.Google Scholar
  38. Dahlberg, J.A., and K. Wasylinkowa. 1996. Image and statistical analyses of early sorghum remains (8000 BP) from the Nabta Playa archaeological site in the western desert, southern Egypt. Vegetation History and Archaeobotany 5:293–99.CrossRefGoogle Scholar
  39. Daniels, J., and C. Daniels. 1993. Sugarcane in prehistory. Archaeologia Oceania 28:1–7.Google Scholar
  40. Davison, P. 1984. Lobedu material culture, vol. 94 no. 3. Cape Town: Annals of the South African Museum.Google Scholar
  41. De Heinzelin, J., J.D. Clark, T. White, W. Hart, P. Renne, G. WoldeGabriel, Y. Beyene, and E. Vrba. 1999. Environment and behavior of 2.5-million-year-old Bouri hominids. Science 284:625–29.CrossRefPubMedGoogle Scholar
  42. Dobley, J.F. 1990. Molecular evidence and the evolution of maize. Economic Botany 44:6–27.Google Scholar
  43. Doswell, C.R., R.L. Paliwal, and R.P. Cantrell. 1996. Maize in the Third World. Boulder: Westview Press.Google Scholar
  44. Earls, J. 1986. Evolución de administración ecológia Inca. In Andenes y Camellons en el Perú Andino: Historia, Presente y Futuro, ed. C. de la Torre and M. Burga, 23–57. Lima: Consejo Nacional de Ciencia y Technologia.Google Scholar
  45. —. 1989. Planificación agrícola Andina: Bases para un Manejo Cibernético de Sistemas de Andenes. Lima: Centro de Investigación, and Ediciones (Corporación Financiera del Desarrollo).Google Scholar
  46. —. 1991. Ecología y Agronomia en los Andes. La Paz: Hisbol.Google Scholar
  47. Ehleringer, J.R., and O. Björkman. 1977. Quantum yields for CO2 uptake in C3 and C4 plants: Dependence on temperature, CO2 and O2 concentrations. Plant Physiology 59:86–90.Google Scholar
  48. Ehleringer, J.R., T.E. Cerling, and B.R. Helliker. 1997. C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–99.CrossRefGoogle Scholar
  49. Ehleringer, J.R., R.F. Sage, L.B. Flanagan, and R.W. Percy. 1991. Climate change and the evolution of C4 photosynthesis. Trends in Ecological Evolution 6:95–99.CrossRefGoogle Scholar
  50. Erickson, C.L. 1986. Waru-waru: una technología agrícola de altiplano prehispánico. In Andenes y Camellons en el Perú Andino: Historia, Presente y Futuro, ed. C. de la Torre and M. Burga, 59–84. Lima: CONCYTEC.Google Scholar
  51. Ford, R.I. 1985. Patterns of prehistoric food production in North America. In Prehistoric food production in North America, ed. R.I. Ford, 341–64. Anthropological Papers no. 75, Museum of Anthropology. Ann Arbor: University of Michigan.Google Scholar
  52. Forde, C.D. 1931. Hopi agriculture and land ownership. Journal of the Royal Anthropological Institute 61:357–405.Google Scholar
  53. Fritz, G.J. 1990. Multiple pathways to farming in precontact eastern North America. Journal of Prehistory 4:387–435.CrossRefGoogle Scholar
  54. Galinat, W.C. 1985a. The missing links between teosinte and maize: A review. Maydica 30:137–60.Google Scholar
  55. —. 1985b. Domestication and diffusion of maize. In Prehistoric food production in North America, ed. R.I. Ford, 245–78. Anthropological Papers no. 75, Museum of Anthropology. Ann Arbor: University of Michigan.Google Scholar
  56. Galloway, J.H. 1977. The Mediterranean sugar industry. Geographic Review 67:177–92.Google Scholar
  57. Gamble, C. 1994. Timewalkers: The prehistory of global colonization. Cambridge: Harvard University Press.Google Scholar
  58. Garlake, P.S. 1973. Great Zimbabwe. London: Thames and Hudson.Google Scholar
  59. Gerry, J.P. 1994. Diet and status among the classic Maya: An isotopic perspective. Doctoral dissertation, Harvard University. Ann Arbor: University Microfilms.Google Scholar
  60. Greenfield, S.M. 1977. Madeira and the beginnings of New World sugar cultivation and plantation slavery: A study in institution building. In Comparative perspectives on slavery in New World plantation societies, ed. V. Rubin and A. Tuden. Annals of the New York Academy of Sciences no. 292. New York: New York Academy of Sciences.Google Scholar
  61. —. 1979. Plantations, sugar cane and slavery. In Roots and branches: Current directions in slave studies, ed. M. Craton, 85–119. Toronto: Bergamon Press.Google Scholar
  62. Grine, F.E. 1981. Trophic level differences between “gracile” and “robust” australopithecines: A scanning electron microscope analysis of occlusal events. South African Journal of Science 77:203–30.Google Scholar
  63. —. 1987. The diet of South African Australopithecines based on a study of dental microwear. L’Anthropologie 91:467–82.Google Scholar
  64. Grine, F.E., and R.F. Kay. 1988. Early hominid diets from quantitative image analysis of dental microwear. Nature 333:765–68.CrossRefPubMedGoogle Scholar
  65. Grove, A.T. 1995. Africa’s climate in the Holocene. In Archaeology of Africa: Food, metals and towns, ed. T. Shaw, P. Sinclair, B. Andah, and A. Okpoko, 32–42. London: Routledge.Google Scholar
  66. Hall, M. 1987. The changing past: Farmers, kings, and traders in Southern Africa 200–1860. Cape Town: David Phillip.Google Scholar
  67. Harlan, J.R. 1992. Indigenous African agriculture. In The origins of agriculture: An international perspective, ed. W. Cowan and P.J. Watson, 59–70. Washington, D.C.: Smithsonian Institution Press.Google Scholar
  68. —. 1995. The tropical African cereals. In The archaeology of Africa: Food, metals, and towns, ed. T. Shaw, P. Sinclair, B. Andah, and A. Okpoko, 53–60. London and New York: Routledge.Google Scholar
  69. Harpending, H.C., M.A. Batzer, M. Gurven, L.B. Jorde, A.R. Rogers, and S.T. Sherry. 1998. Genetic traces of ancient demography. Proceedings of the National Academy of Sciences, USA 95:1961–67.Google Scholar
  70. Harpending, H.C., S.T. Sherry, A.R. Rogers, and M. Stoneking. 1993. The genetic structure of ancient human populations. Current Anthropology 34:483–96.CrossRefGoogle Scholar
  71. Harris, D.R. 1998. The origins of agriculture in southwest Asia. Review of Archaeology 19:5–11.Google Scholar
  72. Hastorf, C.A. 1990a. The effect of the Inca state on Sausa agricultural production and crop consumption. American Antiquity 55:262–90.Google Scholar
  73. —. 1990b. One path to the heights: Negotiating political inequality in the Sausa of Peru. In The evolution of political systems, ed. S. Upman, 146–76. Cambridge: Cambridge University Press.Google Scholar
  74. —. 1993. Agriculture and the onset of political inequality before the Inca. Cambridge: Cambridge University Press.Google Scholar
  75. Hastorf, C.A., and S. Johannessen. 1993. Pre-Hispanic political change and the role of maize in the Central Andes of Peru. American Anthropologist 95:115–38.CrossRefGoogle Scholar
  76. Hathor, J. 1995. Parenchymatous tissues from the early Neolithic site E-75-6 at Nabta Playa, western desert, south Egypt. Acta Palaeobotanica 35:157–62.Google Scholar
  77. Hayden, B. 1990. Nimrods, piscators, pluckers, and planters: The emergence of food production. Journal of Anthropological Archeology 9:31–69.CrossRefGoogle Scholar
  78. —. 1995. Pathways to power: principles for creating socio-economic inequalities. In Foundations of social inequality, ed. T.D. Price and G.M. Feinman, 15–86. New York: Plenum Press.Google Scholar
  79. Hillman, G.C., S. Colledge, and D.R. Harris. 1989. Plant food economy during the epi-Paleolithic period at Tell Abu Hureyra, Syria: Dietary diversity, seasonality, and modes of exploitation. In Foraging and farming: The evolution of plant exploitation, ed. G.C. Hillman and D.R. Harris, 240–66. London: Unwin Hyman.Google Scholar
  80. Hillman, G., E. Madeyska, and J. Hathor. 1989. Wild plant foods and diet at Late Paleolithic Wadi Kubbaniya: The evidence from charred remains. In The prehistory of Wadi Kubbaniya, vol.2: Stratigraphy, paleoeconomy, and environment, ed. F. Wendorf, R. Schild, and A.E. Close, 162–242. Dallas: Southern Methodist University Press.Google Scholar
  81. Holl, A. 1985. Subsistence patterns of the Dhar Tichitt Neolithic, Mauretania. African Archaeological Review 3:131–62.Google Scholar
  82. —. 1986. Économie et Société Néolithique du Dhar Tichitt (Mauritánie). Paris: Editions Recherce sur les Civilisations.Google Scholar
  83. Huffman, T.N. 1996. Snakes and crocodiles: Power and symbolism in Ancient Zimbabwe. Johannesburg: University of the Witwatersrand Press.Google Scholar
  84. Iltis, H.H. 1983. From teosinte to maize: the catastrophic sexual transmutation. Science 222:886–94.Google Scholar
  85. Jacques-Félix, H. 1971. Appendix K, Grain impressions. In The Tichitt Tradition: A late prehistoric occupation of the Southwestern Sahara (P.J. Munson, doctoral dissertation). University of Illinois at Champaign-Urbana. Ann Arbor: University Microfilms.Google Scholar
  86. Johannessen, S. 1993a. Farmers of the late woodland. In Foraging and farming in the eastern woodlands, ed. C.M. Scarry, 57–77. Gainesville: University of Florida Press.Google Scholar
  87. —. 1993b. Food, dishes, and society in the Mississippi Valley. In Foraging and farming in the eastern woodlands, ed. C.M. Scarry, 182–205. Gainesville: University of Florida Press.Google Scholar
  88. Jorde, L.B., M.J. Bamshad, W.S. Watkins, R. Zenger, A.E. Fraley, P.A. Krakowiak, K.D. Carpenter, H. Soodyall, R. Jenkins, and A.R. Rogers. 1995. Origins and affinities of modern humans: A comparison of mitochondrial and nuclear genetic data. American Journal of Human Genetics 57:523–38.PubMedGoogle Scholar
  89. Jorde, L.B., A.R. Rogers, M. Bamshad, W.S. Watkins, P. Krakowiak, S. Sung, J. Kere, and H.C. Harpending. 1997. Microsatellite diversity and the demographic history of modern humans. Proceedings of the National Academy of Sciences, USA 94:3100–3103.Google Scholar
  90. Kirkby, A.V.T. 1973. The use of land and water resources in the past and present valley of Oaxaca. Memoirs of the Museum of Anthropology no. 5. Ann Arbor: University of Michigan.Google Scholar
  91. Kirchoff, P. 1943. Mesoamerica. Acta Americana 1:92–107.Google Scholar
  92. Knapp, G. 1991. Andean ecology: Adaptive dynamics in Ecuador. Dellplain Latin American Studies no. 27. Boulder: Westview Press.Google Scholar
  93. Krige, E.J., and J.D. Krige. 1943. Realm of a rain queen: A study of the pattern of Lovedu Society. London: Oxford University Press.Google Scholar
  94. Kroll, H. 1981. Thessalische Kulturpflanzen. Zeitschrift für Archäologie 15:97–103.Google Scholar
  95. —. 1983. Kastanas: Ausgrabungen in einem Siedlungshügel der Bronze-und Eisenzeit Makedoniens 1975–1979. Die Pflanzenfunde Prähistorische Archäologie in Südost-europa 2. Berlin: Spiess.Google Scholar
  96. Lathrap, D.W. 1970. The upper Amazon. London: Thames and Hudson.Google Scholar
  97. —. 1987. The introduction of maize in prehistoric eastern North America: The view from Amazonia and the Santa Elena peninsula. In Emergent horticultural economies of the eastern oodlands, ed. W.F. Keegan, 345–71. Occasional Paper no. 7, Center for Archaeological Investigations. Carbondale: Southern Illinois University.Google Scholar
  98. Leakey, M.G., F. Spoor, F.H. Brown, P.N. Gathogo, C. Kiarie, L.N. Leakey, and I. Mc-Dougall. 2001. New hominin genus from eastern Africa shows diverse middle Pliocene lineages. Nature 410:433–40.CrossRefPubMedGoogle Scholar
  99. Lee-Thorp, J.A., J.F. Thackeray, and N.J. van der Merwe. 2000. The hunters or the hunted revisited. Journal of Human Evolution 39:565–76.CrossRefPubMedGoogle Scholar
  100. Lee-Thorp, J.A, and N.J. van der Merwe. 1987. Carbon isotope analysis of fossil bone apatite. South African Journal of Science 83:712–15.Google Scholar
  101. —. 1993. Stable carbon isotope studies of Swartkrans fossils. In Swartkrans: A cave’s chronicle of early man (monograph no. 8), ed. C.K. Brain, 251–56. Pretoria: Transvaal Museum.Google Scholar
  102. Lippi, R.D., R.M. Bird, and D.M. Stemper. 1984. Maize recovered at La Ponga: An early Ecuadorian site. American Antiquity 49:118–24.Google Scholar
  103. Little, E.A., and M.J. Schoeninger. 1995. The late woodland diet on Nantucket Island and the problem of maize in coastal New England. American Antiquity 60:351–68.Google Scholar
  104. Long, A.B., B.F. Benz, D.J. Donahue, A.J.T. Tull, and L.J. Toolin. 1989. First direct AMS dates on early maize from Tehuacan, Mexico. Radiocarbon 31:1030–35.Google Scholar
  105. Lynott, M.J., T.W. Boutton, J.E. Price, and D.E. Nelson. 1986. Stable carbon isotopic evidence for maize agriculture in southeast Missouri and northeast Arkansas. American Antiquity 51:51–65.Google Scholar
  106. Maggs, T. and V. Ward. 1984. Early Iron Age sites in the Muden area of Natal. Annals of the Natal Museum 26:105–40.Google Scholar
  107. MacNeish, R.S. 1967. A summary of the subsistence. In The prehistory of the Tehuacan Valley, vol.1: Environment and subsistence, ed. D.S. Byers, 290–309. Austin: University of Texas Press.Google Scholar
  108. —. 1981. Tehuacan’s accomplishments. In Supplement to the handbook of South American Indians, vol. 1: Archaeology, ed. J.A. Sabloff and V.R. Bricker, 31–47. Austin: University of Texas Press.Google Scholar
  109. McIntosh, S.K., and R.J. McIntosh. 1996. Cities without citadels: Understanding urban origins along the middle Niger. In The archaeology of Africa: Food, metals, and towns, ed. T. Shaw, P. Sinclair, B. Andah, and A. Okpoko, 622–41. London and New York: Routledge.Google Scholar
  110. Meadow, R.H. 1998. Pre-and proto-historic agricultural and pastoral transformations in northwestern south Asia. Review of Archaeology 19:12–21.Google Scholar
  111. Minnis, P. 1992. Earliest plant cultivation in the desert borderlands of North America. In The origins of agriculture: An international perspective, ed. C.W. Cowan and P.J. Watson, 121–41. Washington, D.C.: Smithsonian Institution Press.Google Scholar
  112. Morgan, M.E., J.D. Kingston, and B.D. Marino. 1994. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature 367:162–65.CrossRefGoogle Scholar
  113. Mintz, S.W. 1959. The plantation as a sociocultural type. In Plantation systems of the New World, 42–50. Social Science Monographs 7. Washington, D.C.: Pan American Union.Google Scholar
  114. —. 1985. Sweetness and power: The place of sugar in modern history. New York: Elizabeth Sifton Books.Google Scholar
  115. Munson, P.J. 1971. The Tichitt tradition: A late Prehistoric occupation of the southwestern Sahara (doctoral dissertation, University of Illinois at Champaign-Urbana). Ann Arbor: University Microfilms.Google Scholar
  116. —. 1976. Archaeological data on the origins of cultivation in the southwestern Sahara and their implications for West Africa. In Origins of African plant domestication, ed. J.R. Harlan, J.M.J. de Wet, and A. Stemler, 187–209. The Hague and Paris: Mouton.Google Scholar
  117. —. 1989. About ‘Économie et Société Néolithic du Dhar Tichitt (Mauritanie)’. Sahara 2:106–108.Google Scholar
  118. Murray, M., and M.J. Schoeninger. 1988. Diet status, and complex social structure in Iron Age central Europe: Some contributions of bone chemistry. In Tribe and polity in late prehistoric Europe, ed. D.B. Gibson and M.N. Geselowitz, 155–76. New York: Plenum Press.Google Scholar
  119. Muzzolini, A. 1995. The emergence of food-producing economy in the Sahara. In The archaeology of Africa: Food, metals, and towns, ed. T. Shaw, P. Sinclair, B. Andah, and A. Okpoko, 227–39. London and New York: Routledge.Google Scholar
  120. National Research Council. 1989. Lost Crops of the Incas: Little-known plants of the Andes with promise for worldwide cultivation. Washington, D.C.: National Academy Press.Google Scholar
  121. —. 1996. Lost crops of Africa, vol. 1: Grains. Washington, D.C.: National Academy Press.Google Scholar
  122. Netherly, P.J. 1978. Local level lords on the North Coast of Peru (doctoral dissertation, Cornell University). Ann Arbor: University Microfilms.Google Scholar
  123. Norman, M.J.T., C.J. Pearson, and P.G.E. Searle. 1995. Ecology of tropical food crops. Cambridge: Cambridge University Press.Google Scholar
  124. Norr, L. 1995. Interpreting dietary maize from bone stable isotopes in the American tropics: The state of the art. In Archaeology in the lowland American tropics, ed. P.W. Stahl, 198–223. Cambridge: Cambridge University Press.Google Scholar
  125. Pearsall, D.M. and D.R. Piperno. 1990. Antiquity of maize cultivation in Ecuador: Summary and re-evaluation of the evidence. American Antiquity 55:324–37.Google Scholar
  126. Pickford, M., and B. Senut. “Millennium ancestor,” a 6-million year old bipedal hominid from Kenya. South African Journal of Science 97:22.Google Scholar
  127. Piperno, D.R. 1990. Aboriginal culture and land usage in the Amazon basin, Ecuador. Journal of Archaeological Science 17:665–77.CrossRefGoogle Scholar
  128. Piperno, D.R., M.B. Bush, and P.A. Colinvaux. 1990. Paleoenvironments and human occupation in the late glacial Panama. Quaternary Research 33:108–16.CrossRefGoogle Scholar
  129. Piperno, D.R., K.H. Clary, R.G. Cooke, A.J. Ranere, and D. Weiland. 1985. Preceramic maize in central Panama: Phytolith and pollen evidence. American Anthropologist 87:871–78.CrossRefGoogle Scholar
  130. Price, T.D., and A.B. Gebauer, eds. 1995. Last hunters, first farmers: New perspectives on the prehistoric transition to agriculture. Santa Fe, N.M.: School of American Research.Google Scholar
  131. Raymond, J.S. 1988. Subsistence patterns during the early Formative in the Valdivia Valley, Ecuador. In Diet and subsistence: Current archaeological perspectives, ed. B.V. Kennedy and G.M. LeMoine, 159–64. Proceedings of the 19th Chacmool Conference. Calgary Alberta: University of Calgary.Google Scholar
  132. Reed, D.M. 1994. Ancient Maya diet at Copaán, Honduras, as determined through the analysis of stable carbon and nitrogen isotopes. In Paleonutrition: The diet and health of prehistoric Americans, ed. K.D. Sobolik, 210–21. Occasional Paper no. 22, Center for Archaeological Investigation. Carbondale: Southern Illinois University.Google Scholar
  133. Relethford, J.H. 2001. Genetics and the search for modern human origins. New York: Wiley-Liss.Google Scholar
  134. Ren, S. 1995. Several important achievements in Neolithic culture before 5000 B.C. Kaogu 1995(1):37–49.Google Scholar
  135. Riley, T.J. 1987. Ridged-field agriculture and the Mississippian agricultural pattern. In Emergent horticultural economies of the eastern woodlands, ed. W.W. Keegan, 295–304. Occasional Paper no. 7, Center for Archaeological Investigations. Carbondale: Southern Illinois University.Google Scholar
  136. Riley, T., G.R. Walz, C.J. Baereis, A.C. Fortier, and K.E. Parker. 1994. Accelerator mass spectrometry (AMS) dates confirm early Zea mays in the Mississippi River valley. American Antiquity 59:490–98.Google Scholar
  137. Robinson, J.T. 1954. Prehominid dentition and hominid evolution. Evolution 8:324–34.Google Scholar
  138. Rodwell, S. 1984. China’s earliest farmers: The evidence from Cishan. Bulletin of the Indo-Pacific Prehistory Association 5:55–63.Google Scholar
  139. Rogers, A.R., and L.B. Jorde. 1995. Genetic evidence on modern human origins. Human Biology 67:1–36.Google Scholar
  140. Roosevelt, A.C. 1980. Parmana: Prehistoric maize and manoic subsistence along the Amazon and Orinoco. New York: Academic Press.Google Scholar
  141. Roosevelt, A.C., R.A. Housley, M. Imazio de Silveira, S. Maranca, and R. Johnson. 1991. Eighth millennium pottery from a prehistoric shell midden in the Brazilian Amazon. Science 254:1621–24.Google Scholar
  142. Rose, J.C., M.K. Marks, and L.L. Tieszen. 1991. Bioarchaeology and subsistence in the central and lower portions of the Mississippi Valley. In What mean these bones?, ed. M.L. Powell, P.S. Bridges, and A.M. Mires, 7–21. Tuscaloosa: University of Alabama Press.Google Scholar
  143. Sage, R.F. 1995. Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Global Change Biology 1:93–106.Google Scholar
  144. Sanders, W.T., J.R. Parsons, and R.S. Santley. 1979. The Basin of Mexico: Ecological processes in the evolution of civilization. New York: Academic Press.Google Scholar
  145. Sauer, J.D. 1993. Historical geography of crop plants. Boca Raton, Ann Arbor, London, and Tokyo: CRC Press.Google Scholar
  146. Scarry, C.M. 1993. Agricultural risk and the beginning of the Moundville chiefdom. In Foraging and farming in the eastern woodlands, ed. C.M. Scarry, 157–81. Gainesville: University of Florida Press.Google Scholar
  147. Schoeninger, M.J. 1995. Stable isotope studies in human evolution. Evolutionary Anthropology 4:83–98.CrossRefGoogle Scholar
  148. Schoeninger, M.J., H.T. Bunn, S.S. Murray, T. Pickering, and J. Moore. 2001. Meateating by the fourth African ape. In Meat-eating and human evolution, ed. C.B. Stanford and H.T. Bunn, 179–95. New York: Oxford University Press.Google Scholar
  149. Schoeninger, M.J. and J. Moore. 1992. Bone stable isotope studies in archaeology. Journal of World Prehistory 6:247–96.CrossRefGoogle Scholar
  150. Shaw, T., P. Sinclair, B. Andah, and A. Okpoko, eds. 1995. The archaeology of Africa: Foods, metals, and towns. London and New York: Routledge.Google Scholar
  151. Smith, B.D. 1995. The emergence of agriculture. Scientific American Library. New York: W.H. Freeman.Google Scholar
  152. Smithers, R.H.N. 1983. The mammals of the Southern African ubregion, 347–51. Pretoria: University of Pretoria Press.Google Scholar
  153. Sponheimer, M., and J.A. Lee-Thorp. 1999. Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science 283:368–70.CrossRefPubMedGoogle Scholar
  154. Stemler, A. 1990. A scanning electron microscopic analysis of plant impressions from the sites of Kadero, El Zakiab, Um Direiwa, and El Kadada. Archéologie du Nil Moyen 4:87–105.Google Scholar
  155. Stuiver, M., P.J. Reimer, and R. Reimer. 2000. CALIB Radiocarbon Calibration, HTML version 4.2. Website http://depts.washington.edu/qil/calib/index.html.Google Scholar
  156. Thorne, A.G., and M.H. Wolpoff. 1992. The multiregional evolution of humans. Scientific American 266:76–83.PubMedGoogle Scholar
  157. Tuross, N., M.L. Fogel, L. Newsom, and G.H. Doran. 1994. Subsistence in the Florida Archaic: The stable-isotope and archaeobotanical evidence from the Windover site. American Antiquity 59:288–303.Google Scholar
  158. Tykot, R.H., N.J. van der Merwe, and N. Hammond. 1996. Stable isotope analysis of bone collagen, bone apatite, and tooth enamel in the reconstruction of human diet: A case study from Cuello, Belize. In Archaeological chemistry: Organic, inorganic, and biochemical analysis, ed. M.V. Orna, 355–65. Washington, D.C.: American Chemical Society.Google Scholar
  159. Underhill, A.P. 1997. Current issues in Chinese Neolithic archaeology. Journal of World Prehistory 11:103–61.Google Scholar
  160. van der Merwe, N.J., J.A. Lee-Thorp, and J.S. Raymond. 1993. Light stable isotopes and the subsistence of Formative cultures at Valdivia, Ecuador. In Prehistoric human bone at the molecular level, ed. J.B. Lambert and G. Grupe, 63–98. Berlin: Springer-Verlag.Google Scholar
  161. van der Merwe, N.J., J.F. Thackeray, J.A. Lee-Thorp, and J. Luyt. 2003a. The isotopic ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. Journal of Human Evolution 44:581–97.CrossRefPubMedGoogle Scholar
  162. van der Merwe, N.J., and H. Tschauner. 1999. C4 plants and the development of human societies. In C4plant biology, ed. R.F. Sage and R.K. Monson, 509–50. London and New York: Academic Press.Google Scholar
  163. van der Merwe, N.J., R.H. Tykot, N. Hammond, and K. Oakberg. 2000. Diet and animal husbandry of the Preclassic Maya at Cuello, Belize: Isotopic and zooarchaeological evidence. In Biogeochemical approaches to Paleodietary analysis, ed. S.H. Ambrose and M.A. Katzenberg, 23–38. New York: Kluwer Academic/ Plenum Publishers.Google Scholar
  164. van der Merwe, N.J., and J.C. Vogel. 1978. 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276:815–16.PubMedGoogle Scholar
  165. van der Merwe, N.J., R.F. Williamson, S. Pfeiffer, S.C. Thomas, and K.O. Allegretto. 2003b. The Moatfield ossuary: Isotopic dietary analysis of an Iroquoian community, using dental tissue. Journal of Anthropological Archaeology, in press.Google Scholar
  166. Vigilant, L., M. Stoneking, H. Harpending, K. Hawkes, and A.C. Wilson. 1991. African populations and the evolution of human DNA. Science 253:1503–1507.PubMedGoogle Scholar
  167. Wagner, G.E. 1994. Corn in eastern woodlands late prehistory. In Corn and culture, ed. S. Johannessen and C.A. Hastorf, 335–46. University of Minnesota Publications in Anthropology 5. Boulder: Westview Press.Google Scholar
  168. Warner, J.N. 1962. Sugar cane: An indigenous Papuan cultigen. Ethnology 1:405–11.Google Scholar
  169. Wasylikowa, K., J.R. Harlan, J. Evans, F. Wendorf, R. Schild, A.E. Close, H. Królik, and R.A. Housley. 1993. Examination of botanical remains from early Neolithic houses at Nabta Playa, western desert, Egypt, with special reference to sorghum grains. In The archaeology of Africa: Food, metals, and towns, ed. T. Shaw, P. Sinclair, B. Andah, and A. Okpoko, 163–226. London and New York: Routledge.Google Scholar
  170. Wasylikowa, K., R. Schild, F. Wendorf, H. Królik, L. Fubiak-Martens, and J.R. Harlan. 1995. Archaeobotany of the early Neolithic site E-75-6 at Nabta Playa, western desert, south Egypt. Acta Palaeobotanica 35:135–55.Google Scholar
  171. Watson, A.M. 1974. The Arab agricultural revolution and its diffusion, 700–1100. Journal of Economic History 34:8–35.Google Scholar
  172. Watson, P.J. 1995. Explaining the transition to agriculture. In Last hunters, first farmers, ed. T.D. Price and A.B. Gebauer, 21–37. Santa Fe, N.M.: School of American Research.Google Scholar
  173. Weber, S.A. 1991. Plants and Harappan subsistence. New Delhi: Oxford and IBH.Google Scholar
  174. Wendorf, F., A.E. Close, R. Schild, K. Wasylinkowa, R.A. Housley, J.R. Harlan, and H. Królik. 1992. Saharan exploitation of plants 8,000 years b.p. Nature 359:721–24.CrossRefGoogle Scholar
  175. Wetterstrom, W. 1998. The origins of agriculture in Africa, with particular reference to sorghum and pearl millet. Review of Archaeology 19:30–46.Google Scholar
  176. White, T.D, B. Asfaw, D. DeGusta, H. Gilbert, G.D. Richards, G. Suwas, and F.C. Howell. 2003. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423:747–52.CrossRefPubMedGoogle Scholar
  177. White, C.D., P.F. Healy, and H.P. Schwarcz. 1993. Intensive agriculture, social status, and Maya diet at Pacbitun, Belize. Journal of Anthropological Research 49:347–75.Google Scholar
  178. White, C.D., and H.P. Schwarcz. 1989. Ancient Maya diet as inferred from isotopic and elemental analysis of human bone. Journal of Archaeological Science 16:451–74.Google Scholar
  179. White, T.D., G. Suwa, and B. Asfaw. 1994. Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 371:306–12.CrossRefPubMedGoogle Scholar
  180. White, T.D., G. Suwa, S. Simpson, and B. Asfaw. 2000. Jaws and teeth of A. afarensis from Maka, Middle Awash, Ethiopia. American Journal of Physical Anthropology 111:45–68.CrossRefPubMedGoogle Scholar
  181. Williamson, R.F., and S. Pfeiffer, eds. 2003. Bones of the ancestors: Archaeology and osteobiography of the moatfield ossuary, in press. Canadian Museum of Civilization, Mercury Series.Google Scholar
  182. Wills, W.H. 1988. Early prehistoric agriculture in the American Southwest. Santa Fe, N.M.: School of American Research.Google Scholar
  183. Wilson, A.L., and R. Cann. 1992. The recent African genesis of humans. Scientific American 266:68–73.Google Scholar
  184. Woods, W.I. 1987. Maize agriculture and the late prehistoric: a characterization of settlement location strategies. In Emergent horticultural economies of the eastern woodlands, ed. W.W. Keegan, 275–294. Occasional Paper no. 7, Center for Archaeological Investigations. Carbondale: Southern Illinois University.Google Scholar
  185. Wright, L.E. 1994. The sarifice of the Earth? Diet, health, and inequalities in the Pasión Maya Lowlands (doctoral dissertation University of Chicago). Ann Arbor: University Microfilms.Google Scholar
  186. Wymer, D.A. 1994. The social context of early maize in the mid-Ohio Valley. In Corn and culture, ed. S. Johannessen and C.A. Hastorf, 411–26. University of Minnesota Publications in Anthropology 5. Boulder: Westview Press.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Nicholaas J. van der Merwe

There are no affiliations available

Personalised recommendations