EPR Spectroscopy of Function In Vivo

Origins, Achievements, And Future Possibilities
  • Harold M. Swartz
  • Nadeem Khan
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 23)

Abstract

EPR can be used to study free radicals in vivo, environmental and biophysical parameters in cells and tissues, and to report metabolism, physiology, and biochemistry. The authors have attempted to judge which of these types of measurements will be productive for studies in animals and in humans. It is envisioned that a large number of in vivo applications of EPR will grow in importance as well as in technical capability in the near future. The most likely clinical applications will be oximetry and radiation dosimetry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

17. References

  1. Ardenkjaer-Larsen, J. H., Laursen, I., Leunbach, I., Ehnholm, G., Wistrand, L. G., Petersson, J. S., and Golman, K. (1998) EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging, J. Magn. Reson. 133, 1–12.PubMedGoogle Scholar
  2. Bhujwalla, Z. M., McCoy, C. L., Glickson, J. D., Gillies, R. J., and Stubbs, M. (1998) Estimations of intra-and extracellular volume and pH by 31P magnetic resonance spectroscopy: effect of therapy on RIF-1 tumours, Br. J. Cancer 78, 606–611.PubMedGoogle Scholar
  3. Borbat, P. P., Costa-Filho, A. J., Earle, K. A., Moscicki, J. K., and Freed, J. H. (2001) Electron spin resonance in studies of membranes and proteins, Science 291, 266–269.CrossRefPubMedGoogle Scholar
  4. Brady, J. M., Aarestad, N. O., and Swartz, H. M. (1968) In vivo dosimetry by electron spin resonance spectroscopy, Health Physics 15, 43–47.PubMedGoogle Scholar
  5. Buettner, G. R., and Mason, R. P. (1990) Spin-trapping methods for detecting superoxide and hydroxyl free radicals in vitro and in vivo, Methods Enzymol, 186, 127–133.PubMedGoogle Scholar
  6. Cafiso, D. S. (1989) Electron paramagnetic resonance methods for measuring pH gradients, transmembrane potentials, and membrane dynamics, Methods Enzymol. 172, 331–345.PubMedGoogle Scholar
  7. Chen, K., and Swartz, H. M. (1989) The products of the reduction of doxyl stearates in cells are hydroxylamines as shown by oxidation by 15N-perdeuterated tempone, Biochim. Biophys. Acta, 992, 131–133.PubMedGoogle Scholar
  8. Collier, J., and Vallance, P. (1989) Second messenger role for NO widens to nervous and immune systems, Trends Pharmacol. Sci. 10, 427–431.CrossRefPubMedGoogle Scholar
  9. Dobruicki, J. W., Sutherland, R. M., and Swartz, H. M. (1991) Non-perturbing test for cytotoxicity in isolated cells and spheroids, using electron paramagnetic resonance, Magn. Reson. Med. 19, 42–55.Google Scholar
  10. Eckburg, J. J., Chato, J. C., Liu, K. J., Grinstaff, M. W., Swartz, H. M., Suslick, K. S., and Auteri, F. P. (1996) The measurement of temperature with electron paramagnetic resonance spectroscopy, J. Biomech. Eng. 118, 193–200.PubMedGoogle Scholar
  11. Fujii, H., and Berliner, L. J. (1999) In vivo EPR evidence for free radical adducts of nifedipine, Magn. Reson. Med. 42, 691–694.PubMedGoogle Scholar
  12. Fujii, H., Zhao, B., Koscielniak, J., and Berliner, L. J. (1994) In vivo EPR studies of the metabolic fate of nitrosobenzene in the mouse, Magn. Reson. Med. 31, 77–80.PubMedGoogle Scholar
  13. Fujii, S., and Yoshimura, T. (2000) Detection and imaging of endogenously produced nitric oxide with electron paramagnetic resonance spectroscopy Antioxid. Redox Signal, 2, 879–901.Google Scholar
  14. Gallez, B., Bacic, G., Goda, F., Jiang, J., O’Hara, J. A., Dunn, J. F., and Swartz, H. M. (1996a) Use of nitroxides for assessing perfusion, oxygenation, and viability of tissues: in vivo EPR and MRI studies, Magn. Reson. Med. 35, 97–106.PubMedGoogle Scholar
  15. Gallez, B., Baudelet, C., and Debuyst, R. (2000) Free radicals in licorice-flavored sweets can be detected noninvasively using low frequency electron paramagnetic resonance after oral administration to mice, J. Nutr. 130, 1831–1833.PubMedGoogle Scholar
  16. Gallez, B., Mader, K., and Swartz, H. M. (1996b) Noninvasive measurement of the pH inside the gut by using pH-sensitive nitroxides. An in vivo EPR study, Magn. Reson. Med. 36, 694–697.PubMedGoogle Scholar
  17. Galster, H. (1991) pH Measurements: Fundamentals, Methods, Applications, Instrumentation, VCH, Weinhein.Google Scholar
  18. Glasgow, B. J., Gasymov, O. K., Abduragimov, A. R., Yusifov, T. N., Altenbach, C., and Hubbell, W. L. (1999) Side chain mobility and ligand interactions of the G strand of tear lipocalins by site-directed spin labeling, Biochemistry 38, 13707–13716.CrossRefPubMedGoogle Scholar
  19. Grinberg, O. Y., Smirnov, A. I., and Swartz, H. M. (2001) High spatial resolution multi-site EPR oximetry. The use of convolution-based fitting method, J. Magn. Reson. 152, 247–258.CrossRefPubMedGoogle Scholar
  20. Gualtieri, G., Colacicchi, S., Sgattoni, R., and Giannoni, M. (2001) The Chernobyl accident: EPR dosimetry on dental enamel of children, Appl. Radiat. Isot. 55, 71–79.CrossRefPubMedGoogle Scholar
  21. Halpern, H. J., Chandramouli, G. V., Barth, E. D., Yu, C., Peric, M., Grdina, D. J., and Teicher, B. A. (1999) Diminished aqueous microviscosity of tumors in murine models measured with in vivo radio frequency electron paramagnetic resonance, Cancer Res. 59, 5836–5841.PubMedGoogle Scholar
  22. Halpern, H. J., Yu, C., Barth, E., Peric, M., and Rosen, G. M. (1995) In situ detection, by spin trapping, of hydroxyl radical markers produced from ionizing radiation in the tumor of a living mouse, Proc. Natl. Acad. Sci. USA, 92, 796–800.PubMedGoogle Scholar
  23. He, G., Samouilov, A., Kuppusamy, P., and Zweier, J. L. (2001) In vivo EPR imaging of the distribution and metabolism of nitroxide radicals in human skin, J. Magn. Reson. 148, 155–164.CrossRefPubMedGoogle Scholar
  24. He, G., Samouilov, A., Kuppusamy, P., and Zweier, J. L. (2002) In vivo imaging of free radicals: applications from mouse to man, Mol Cell Biochem. 234–235, 359–367.PubMedGoogle Scholar
  25. Herrling, T. E., Groth, N. K., and Fuchs, J. (1996) Biochemical EPR imaging of skin, Appl. Magn. Reson. 11, 471–486.Google Scholar
  26. Hockel, M., Schlenger, K., Mitze, M., Schaffer, U., and Vaupel, P. (1996) Hypoxia and radiation response in human tumors, Semin. Radiat. Oncol. 6, 3–9.PubMedGoogle Scholar
  27. Jackson, S. K., Madhani, M., Thomas, M., Timmins, G. S., and James, P. E. (2001) Applications of in vivo electron paramagnetic resonance (EPR) spectroscopy: measurements of pO2 and NO in endotoxin shock, Toxicol. Lett. 120, 253–257.CrossRefPubMedGoogle Scholar
  28. James, P.E., Grinberg, O.Y., Goda, F., O’Hara, J.A. and Swartz, H.M. (1997) Gloxy: An oxygen-sensitive coal for accurate measurement of low oxygen tensions in biological systems, Magn. Reson. Med. 38, 48–58.PubMedGoogle Scholar
  29. James, P. E., Jackson, S. K., Grinberg, O., and Swartz, H. M. (1995) The effects of endotoxin on oxygen consumption of various cell types in vitro: An EPR oximetry study, Free Rad. Biol. Med. 18, 641–647.CrossRefPubMedGoogle Scholar
  30. James, P. E., Miyake, M., and Swartz, H. M. (1999) Simultaneous measurement of PO2 NO and from tissue by in vivo EPR, Nitric Oxide, 3, 292–301.CrossRefPubMedGoogle Scholar
  31. Jiang, J. J., Liu, K. J., Jordan, S. J., Swartz, H. M., and Mason, R. P. (1996) Detection of free radical metabolite formation using in vivo EPR spectroscopy: evidence of rat hemoglobin thiyl radical formation following administration of phenylhydrazine, Arch. Biochem. Biophys. 330, 266–270.CrossRefPubMedGoogle Scholar
  32. Jiang, J., Liu, K. J., Shi, X., and Swartz, H. M. (1995) Detection of short-lived free radicals by low frequency ESR spin trapping in whole living animals: Evidence of sulfur trioxide anion free radical generation in vivo, Arch. Biochem. Biophys. 319, 570–573.CrossRefPubMedGoogle Scholar
  33. Joseph, J., Kalyanaraman, B., and Hyde, J.S. (1993) Trapping of nitric oxide by nitronyl nitroxides, an electron spin resonance investigation. Biochem. Biophys. Res. Commun. 192, 926–934.CrossRefPubMedGoogle Scholar
  34. Khramtsov, V. V., Marsh, D., Weiner, L., Grigoriev, I. A., and Volodarsky, L. B. (1982) Proton exchange in stable nitroxyl radicals. EPR study of the pH of aqueous solutions, Chem. Phys. Lett. 91, 69–72.CrossRefGoogle Scholar
  35. Khramtsov, V. V. and Volodarsky, L. B. (1998) Use of Imidazoline Nitroxides in Studies of Chemical Reactions. ESR Measurements of the Concentration and Reactivity of Protons, Thiols, and Nitric Oxide. Biol. Magn. Reson. 14, 109–180.Google Scholar
  36. Khramtsov, V. V., and Weiner, L. M. (1988) Proton exchange in stable nitroxyl radicals: pH-sensitive spin probes, Imidazoline Nitroxides, Vol. II, CRC Press, Boca Raton, FL, 37–80.Google Scholar
  37. Khramtsov, V. V., Yelinova, V. I., Glazachev, Yu. I., Reznikov, V. A., and Zimmer, G. (1997) Quantitative determination and reversible modification of thiols using imidazolidine biradical disulfide label, J. Biochem. Biophys. Methods 35, 115–128.CrossRefPubMedGoogle Scholar
  38. Knecht, K. T., and Mason, R. P. (1993) In vivo spin trapping of xenobiotic free radical metabolites, Arch. Biochem. Biophys. 303, 185–194.PubMedGoogle Scholar
  39. Kocherginsky, N., and Swartz, H. M. (1995) Nitroxide Spin Labels, Reactions in Biology and Chemistry, CRC Press, Boca Raton, FL.Google Scholar
  40. Komarov, A., Mattson, D., Jones, M. M., Singh, P. K., and Lai, C.S. (1993) In vivo spin trapping of nitric oxide in mice, Biochem. Biophys. Res. Commun. 195, 1191–1198.CrossRefPubMedGoogle Scholar
  41. Kotake, Y., Moore, D. R., Sang, H., and Reinke, L. A. (1999) Continuous monitoring of in vivo nitric oxide formation using EPR analysis in biliary flow, Nitric Oxide 3, 114–122.CrossRefPubMedGoogle Scholar
  42. Lai, C. S., and Komarov, A. M. (1994) Spin trapping of nitric oxide produced in vivo in septic-shock mice, FEBS Lett. 345, 120–124.CrossRefPubMedGoogle Scholar
  43. Liu, K. J., Mader, K., Shi, X., and Swartz, H. M. (1997) Reduction of carcinogenic chromium (VI) on the skin of living rats, Magn. Reson. Med. 38, 524–526.PubMedGoogle Scholar
  44. Liu, K. J., Miyake, M., Panz, T., and Swartz, H. M. (1999) Evaluation of DEPMPO as a spin trapping agent in biological systems, Free Rad. Biol. Med. 26, 714–721.CrossRefPubMedGoogle Scholar
  45. Liu, K. J., and Shi, X. (2001) In vivo reduction of chromium (VI) and its related free radical generation, Mol. Cell Biochem. 222, 41–47.PubMedGoogle Scholar
  46. Liu, K. J., Shi, X., Jiang, J., Goda, F., Dalai, N., and Swartz, H. M. (1996) Low frequency electron paramagnetic resonance investigation on metabolism of chromium (VI) by whole live mice, Ann. Clin. Lab. Science 26, 176–184.Google Scholar
  47. Mader, K. (1998) Pharmaceutical applications of in vivo EPR, Phys. Med. Biol. 43, 1931–1935.PubMedGoogle Scholar
  48. Mader, K., Bacic, G., Domb, A., Elmalak, O., Langer, R., and Swartz, H. M. (1997) Noninvasive in vivo monitoring of drug release and polymer erosion from biodegradable polymers by EPR spectroscopy and NMR imaging, J. Pharm. Sci. 86, 126–134.PubMedGoogle Scholar
  49. Mader, K., Bacic, G., and Swartz, H. M. (1995) In vivo detection of anthralin-derived free radicals in the skin of hairless mice by low-frequency electron paramagnetic resonance spectroscopy, J. Invest. Dermatol. 104, 514–517.CrossRefPubMedGoogle Scholar
  50. Mader, K., Gallez, B., Liu, K. J., and Swartz, H. M. (1996a) Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy, Biomaterials 17, 457–461.CrossRefPubMedGoogle Scholar
  51. Mader, K., Gallez, B., and Swartz, H. M. (1996b) In vivo EPR: An effective new tool for studying pathophysiology, physiology, and pharmacology, App. Rad. Isot. 47, 1663–1667.Google Scholar
  52. Marechal, X., Mordon, S., Devoisselle, J. M., Begu, S., Query, B., Neviere, R., Buys, B., Dhelin, G., Lesage, J. C, Mathieu, D., and Chopin, C. (1999) In vivo application of intestinal pH measurement using 2′,7′-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) fluorescence imaging, Photochem. Photobiol. 70, 813–819.PubMedGoogle Scholar
  53. Mignano, A. G., and Baldini, F. (1996) Biomedical sensors using optical fibres, Rep. Prog. Phys. 59, 1–28.Google Scholar
  54. Miyake, M., Liu, K. J., Walczak, T. M., and Swartz, H. M. (2000) In vivo EPR dosimetry of accidental exposures to radiation: experimental results indicating the feasibility of practical use in human subjects, Appl. Radiat. Isot. 52, 1031–1038.CrossRefPubMedGoogle Scholar
  55. Nagano, T. and Yoshimura, T. (2002) Bioimaging of Nitric Oxide. Chem. Rev. 102, 1235–1269CrossRefPubMedGoogle Scholar
  56. Nohl, H., Stolze, K., and Weiner, L. M. (1995) Noninvasive measurement of thiol levels in cells and isolated organs, Methods Enzymol. 251, 191–203.PubMedGoogle Scholar
  57. Ojugo, A. S., McSheehy, P. M., McIntyre, D. J., McCoy, C., Stubbs, M., Leach, M. O., Judson, I. R., and Griffiths, J. R. (1999) Measurement of the extracellular pH of solid tumors in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes, NMR Biomed. 12, 495–504.CrossRefPubMedGoogle Scholar
  58. Packer, L. (1995) Biothiols Methods Enzymol. (ed.) 251, 529.Google Scholar
  59. Palmer, R. M., Ferrige, A. G., and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327, 524–526.CrossRefPubMedGoogle Scholar
  60. Reddy, T. J., Iwama, T., Halpern, H. J., and Rawal, V. H. (2002) General synthesis of persistent trityl radicals for EPR imaging of biological systems, J. Org. Chem. 67, 4635–4639.PubMedGoogle Scholar
  61. Russell, D. A., Pottier, R. H., and Valenzeno, D. P. (1994) Continuous noninvasive measurement of in vivo pH in conscious mice, Photochem. Photobiol. 59, 309–313.PubMedGoogle Scholar
  62. Sentjurc, M., Swartz, H. M., and Kocherginsky, N. (1995) Metabolism, toxicity, and distribution of spin traps, in Nitroxide Spin Labels, Reactions in Biology and Chemistry, CRC Press, Boca Raton, FL 199–206.Google Scholar
  63. Skvortsov, V. G., Ivannikov, A. I., Stepanenko, V. F., Tsyb, A. F., Khamidova, L. G., Kondrashov, A. E., and Tikunov, D. D. (2000) Application of EPR retrospective dosimetry for large-scale accidental situation, Appl. Radiat. Isot. 52, 1275–1282.CrossRefPubMedGoogle Scholar
  64. Smirnov, A. I., Norby, S. W., Clarkson, R. B., Walczak, T., and Swartz, H. M. (1993) Simultaneous multi-site EPR spectroscopy in vivo, Magn. Reson. Med. 30, 213–220.PubMedGoogle Scholar
  65. Stachowicz, W., Burlinska, G., Michalik, J., Dziedzic-Goclawska, A., and Ostrowski, K. (1993) Applications of EPR spectroscopy to radiation treated materials in medicine, dosimetry, and agriculture, Appl. Radiat. Isot. 44, 423–427.CrossRefPubMedGoogle Scholar
  66. Suzuki-Nishimura, T., and Swartz, H. M. (1998) Characterization of redox activity in resting and activated mast cells by reduction and reoxidation of lipophilic nitroxides, Gen. Pharmacol. 31, 617–623.PubMedGoogle Scholar
  67. Swartz, H. M. (1989) Metabolically responsive contrast agents, in Advances in Magnetic Resonance Imaging, Feig, E., (Ed.), Ablex Publishing Company, Norwood, N.J., 49–71.Google Scholar
  68. Swartz, H. M. (1990) Principles of the metabolism of nitroxides and their implications for spin trapping, Free Rad. Res. Comms. 9, 399–405.Google Scholar
  69. Swartz, H.M. (2002a) The measurement of oxygen in vivo using EPR techniques, in Bialogical Magnetic Resonance-Volume 20: In vivo EPR (ESR): Theory and Applications. Berliner, L. J. (Ed.), Plenum Publishing Co., NY.Google Scholar
  70. Swartz, H. M. (2002b) Potential medical (clinical!!!) applications of EPR: overview and perspectives, in Biological Magnetic Resonance-Volume 20: In vivo EPR (ESR): Theory and Applications. Berliner, L.J. (Ed.), Plenum Publishing Co. NY.Google Scholar
  71. Swartz, H.M., and Berliner L. J. (1998) In vivo EPR, in Foundations of Modern EPR, World Scientific Publishing, Singapore/New Jersey/London. Eaton, S., Eaton, G., and Salikhov, K. (Eds), 361–378.Google Scholar
  72. Swartz, H.M., and Berliner, L. (2002) Introduction and in vivo EPR, in Biological Magnetic Resonance-Volume 20: In vivo EPR (ESR): Theory and Applications. Berliner, L.J. (Ed.), Plenum Publishing Co., NY.Google Scholar
  73. Swartz, H. M., Chen, K., Pals, M., Sentjurc, M., and Morse, P. D. 2nd, (1986) Hypoxiasensitive NMR contrast agents, Magn. Reson. Med. 3, 169–174.PubMedGoogle Scholar
  74. Swartz, H. M., and Clarkson, R. B. (1998) The measurement of oxygen in vivo using EPR techniques, Phys. Med. Biol. 43, 1957–1975.CrossRefPubMedGoogle Scholar
  75. Swartz, H. M., and Halpern, H. (1998) EPR studies of living animals and related model systems (In vivo EPR), in Spin Labeling: The Next Millenium, L.J. Berliner (Ed.), Plenum Publishing, New York, NY, 367–404.Google Scholar
  76. Swartz, H. M., Sentjurc, M., and Kocherginsky, N. (1995) Metabolism and distribution of nitroxides in tissues and organs, in Nitroxide Spin Labels, Reactions in Biology and Chemistry, CRC Press, Boca Raton, FL 149–152.Google Scholar
  77. Swartz, H. M., and Timmins, G. S., (2001) The metabolism of nitroxides in cells and tissues used to study functional biological systems in vitro and in vivo, in Free Radicals in Toxicology, Rhodes, C.J., Ed.Google Scholar
  78. Swartz, H.M., and Walczak, T. (1996) An overview of considerations and approaches for developing in vivo EPR for clinical applications, Res. Chem. Intermed. 22, 511–523.Google Scholar
  79. Swartz, H. M., and Walczak, T. (1998) Developing in vivo EPR oximetry for clinical use, Adv. Exp. Med. Biol 45, 243–252.Google Scholar
  80. Timmins, G. S., Liu, K. J., Bechara, E. J., Kotake, Y., and Swartz, H. M. (1999) Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO4, Free Rad. Biol. Med. 27, 329–333.CrossRefPubMedGoogle Scholar
  81. Vanin, A. F. (1999) Iron diethyldithiocarbamate as spin trap for nitric oxide detection. Methods Enzymol. 301, 269–279.PubMedGoogle Scholar
  82. Venkataraman, S., Martin, S. M., and Buettner, G. R. (2002) Electron Paramagnetic Resonance for Quantitation of Nitric Oxide in Aqueous Solutions. Nitric Oxide, Part D, Methods in Enzymology 359, 3–18.PubMedGoogle Scholar
  83. Weiner, L. M. (1995) Quantitative determination of thiol groups in low and high molecular weight compounds by electron paramagnetic resonance, Methods Enzymol. 251, 87–105.PubMedGoogle Scholar
  84. Weiner, L. M., Hu, H., and Swartz, H. M. (1991) Development of EPR method for measurement of cellular sulfhydryl groups, FEBS 290, 243–246.CrossRefGoogle Scholar
  85. Zweier, J. L., Fertmann, J., and Wei, G. (2001) Nitric oxide and peroxynitrite in postischemic myocardium, Antioxid. Redox Signal 3, 11–22.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Harold M. Swartz
    • 1
  • Nadeem Khan
    • 1
  1. 1.Department of Diagnostic RadiologyDartmouth Medical SchoolHanoverUSA

Personalised recommendations