Advertisement

Microarray Image Analysis and Gene Expression Ratio Statistics

  • Yidong Chen
  • Edward R. Dougherty
  • Michael L. Bittner
  • Paul Meltzer
  • Jeffery Trent

4. Conclusions

Various image analysis issues have been addressed: target segmentation, background detection, target detection, and intensity measurement. Since microarray technology is still under development and image quality varies considerably, a robust and precise image analysis algorithm that reduces background interference and extracts precise signal intensity and expression ratios for each gene is critical to the success of further statistical analysis. The overall methodology discussed in this chapter has been developed and enhanced through five years of experience working with cDNA microarray images. It continues to be expanded and revised as new issues arise.

Keywords

Target Detection Expression Ratio Ratio Statistics Green Channel cDNA Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., and Yakhini, Z. (2000). “Tissue Classification with Gene Expression Profiles.” J Comput Biol 7:559–583.PubMedCrossRefGoogle Scholar
  2. Bittner, M., Chen, Y., and Dougherty, E. R. (Eds.) (2001). Microarrays: Optical Technologies and Informatics, Proceedings of SPIE 4266:1–12.Google Scholar
  3. Bittner, M., Meltzer, P., Khan, J., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Dougherty, E., Wang, E., Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Gillanders, E., Leja, A., Dietrich, K., Beaudry, C., Berrens, M., Alberts, D., Sondak, V., Hayward, N., and Trent, J. (2000). “Molecular Classification of Cutaneous Malignant Melanoma by Gene Expression Profiling.” Nature 406:536–540.PubMedCrossRefGoogle Scholar
  4. Bowtell, D. (1999). “Options Available — from Start to Finish — for Obtaining Expression Data by Microarray.” Nat Genet 21:25–32.PubMedCrossRefGoogle Scholar
  5. Chen, Y., Dougherty, E. R., and Bittner, M. (1997). “Ratio-based Decisions and the Quantitative Analysis of cDNA Microarray Images.” Biomedical Optics 2:364–374.CrossRefGoogle Scholar
  6. Chen, Y., Kamat, V., Dougherty, E. R., Bittner, M. L., Meitzer, P. S., and Trent, J. M. “Ratio Statistics of Gene Expression Levels and Applications to Microarray Data Analysis.” (submitted to Bioinformatics).Google Scholar
  7. DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997). “Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale.” Science 278:680–686.PubMedCrossRefGoogle Scholar
  8. DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su, Y. A., and Trent, J. M. (1996). “Use of a cDNA Microarray to Analyze Gene Expression Patterns in Human Cancer.” Nat Genet 14:457–460.PubMedCrossRefGoogle Scholar
  9. Duggan, D. J., Bittner, M. L., Chen, Y., Meltzer, P. S., and Trent, J. M. (1999). “Expression Profiling Using cDNA Microarrays.” Nat Genet 21:10–14.PubMedCrossRefGoogle Scholar
  10. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). “Cluster Analysis and Display of Genome-wide Expression Patterns.” Proc Natl Acad Sci USA 95:14863–14868.PubMedCrossRefGoogle Scholar
  11. Feldman, D. and Fox, M. (1991). Probability, the Mathematics of Uncertainty. New York: Marcel Dekker.Google Scholar
  12. Gibbons, J. D. and Chakraborti, S. (1996). Nonparametric Statistical Inference, 3rd ed. New York: Marcel Dekker.Google Scholar
  13. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999). “Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring.” Science 286:531–537.PubMedCrossRefGoogle Scholar
  14. Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M., Raffeld, Yakhini, Z., Ben-Dor, A., Dougherty, E., Kononen, J., Bubendorf, L., Fehrle, W., Pittaluga, S., Gruvverger, S., Loman, N., Johannsson, O., Olsson, H., Wifond, B., Sauter, G., Kallioniemi, O. P., Borg, A., and Trent, J. (2001). “Gene Expression Profiles Distinguish Hereditary Breast Cancers.” N Engl J Med 34:539–548.CrossRefGoogle Scholar
  15. Khan, J., Simon, R., Bittner, M., Chen, Y., Leighton, S. B., Pohida, T., Smith, P. D., Jiang, Y., Gooden, G. C., Trent, J. M., and Meltzer, P. S. (1998). “Gene Expression Profiling of Alveolar Rhabdomyosarcoma with cDNA Microarrays.” Cancer Res 58:5009–5013.PubMedGoogle Scholar
  16. Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C., and Meltzer, P. S. (2001). “Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks.” Nat Med 7:673–679.PubMedCrossRefGoogle Scholar
  17. Kim, J. H., Kim, H. Y., and Lee, Y. S. (2001). “A Novel Method Using Edge Detection for Signal Extraction from cDNA Microarray Image Analysis.” Exp Mol Med 33:83–88.PubMedGoogle Scholar
  18. Korhonen, P. J. and Narula, S. C. (1989). “The Probability Distribution of the Ratio of the Absolute Values of Two Normal Variables.” J Statistical Computation and Simulation 33:173–182.CrossRefGoogle Scholar
  19. Newton, M. A., Kendziorshi, C. M., Richmond, C. S., Blattner, F. R., Tsui, K. W. (2001). “On Differential Variability of Expression Ratios: Improving Statistical Inference about Gene Expression Changes from Microarray Data.” J Comput Biol 8:37–52.PubMedCrossRefGoogle Scholar
  20. Otsu, N. (1979). “A Threshold Selection Method from Gray-level Histogram.” IEEE Trans Syst Man Cyber SMC-9:62–66.Google Scholar
  21. Schadt, E. E., Li, C., Su, C., and Wong, W. H. (2000). “Analyzing High-density Ologonucleotide Gene Expression Array Data.” J Cell Biochem 80:192–202.PubMedCrossRefGoogle Scholar
  22. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995). “Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray.” Science 270:467–470.PubMedCrossRefGoogle Scholar
  23. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O., and Davis, R.W. (1996). “Parallel Human Genome Analysis: Microarray-based Expression Monitoring of 1000 Genes.” Proc Natl Acad Sci USA 93:10614–10619.PubMedCrossRefGoogle Scholar
  24. Schneeberger, H. and Fleischer, K. (1993). “The Distribution of the Ratio of Two Variables.” J Statistical Computation and Simulation 47:227–240.CrossRefGoogle Scholar
  25. Shanmugalingam, S. (1982). “On the Analysis of the Ratio of Two Correlated Normal Variables.” The Statistician 31:251–258.CrossRefGoogle Scholar
  26. Sokal, R. R. and Rohlf, F. J. (1995). Biometry: The Principles and Practice of Statistics in Biological Research, 3rd Ed. W. H. Freeman and Co.Google Scholar
  27. Wang, X., Ghosh, S., and Guo, S.W. (2001). “Quantitative Quality Control in Microarray Image Processing and Data Acquisition.” Nucleic Acids Res 29:E75.PubMedCrossRefGoogle Scholar
  28. Wang, X. F. and Herman, B. (Eds.) (1996). Fluorescence Imaging Spectroscopy and Microscopy. New York: John Wiley & Sons.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yidong Chen
    • 1
  • Edward R. Dougherty
    • 2
  • Michael L. Bittner
    • 1
  • Paul Meltzer
    • 1
  • Jeffery Trent
    • 1
  1. 1.Cancer Genetics Branch, National Human Genome Research InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Department of Electrical EngineeringTexas A & M UniversityCollege StationUSA

Personalised recommendations