Advertisement

On Structural Optimisation and Configurational Mechanics

  • Franz-Joseph Barthold
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 11)

Abstract

Kinematics in structural optimisation and configurational mechanics coincide as long as sufficiently smooth design variations of the material bodies are considered. Thus, variational techniques from design sensitivity analysis can be used to derive the well-known Eshelby tensor. The impact on numerical techniques including computer aided design (cad) and the finite element method (fern) is outlined.

Keywords

Structural optimisation configurational mechanics Eshelby tensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, J. (1993). An exposition of the material derivative approach for structural shape sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, 105:41–62.zbMATHMathSciNetCrossRefGoogle Scholar
  2. Barthold, F.-J. (2002). Zur Kontinuumsmechanik inverser Geometrieprobleme. Habilitationsschrift, Braunschweiger Schriften zur Mechanik 44-2002, TU Braunschweig.Google Scholar
  3. Barthold, F.-J. and Stein, E. (1996). A continuum mechanical based formulation of the variational sensitivity analysis in structural optimization. Part I: analysis. Structural Optimization, 11(1/2):29–42.CrossRefGoogle Scholar
  4. Bertram, A. (1989). Axiomatische Einfiihrung in die Kontinuumsmechanik. Bl-Wissenschaftsverlag, Mannheim.Google Scholar
  5. Epstein, M. and Maugin, G. (2000). Thermomechanics of volumetric growth in uniform bodies. Int. J. Plasticity, 16:1–28.CrossRefGoogle Scholar
  6. Gurtin, M. (2000). Configurational Forces as Basic Concepts of Continuum Physics. Springer-Verlag, New York.Google Scholar
  7. Kamat, M., editor (1993). Structural Optimization: Status and Promise. Number 150 in Progress in Astronautics and Aeronautics. AIAA, Washington, DC.Google Scholar
  8. Kienzler, R. and Hermann, G. (2000). Mechanics in Material Space. Springer-Verlag, Berlin.Google Scholar
  9. Kienzler, R. and Maugin, G., editors (2001). Configurational Mechanics of Materials, Wien, New York. Springer-Verlag.Google Scholar
  10. Krawietz, A. (1986). Materialtheorie. Mathematische Beschreibung des phänomenologischen thermomechanischen Verhaltens. Springer-Verlag, Berlin.Google Scholar
  11. Noll, W. (1972). A new mathematical theory of simple materials. Archives of Rational Mechanics, 48(1):l–50.MathSciNetGoogle Scholar
  12. Tortorelli, D. and Wang, Z. (1993). A systematic approach to shape sensitivity analysis. International Journal of Solids & Structures, 30(9):1181–1212.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Franz-Joseph Barthold
    • 1
  1. 1.Numerical Methods and Information Processing, University of DortmundGermany

Personalised recommendations