Modeling of the Response of ptO2 in Rat Brain to Changes in Physiological Parameters

  • Oleg Y. Grinberg
  • Huagang Hou
  • Marcie A. Roche
  • Jennifer Merlis
  • Stalina A. Grinberg
  • Nadeem Khan
  • Harold M. Swartz
  • Jeff F. Dunn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 566)

Abstract

It is known that oxygen tension in tissue (ptO2) will change in response to an alteration of physiological parameters including: pCO2 in arterial blood, blood flow, capillary density, oxygen carrying capacity, and p50 of hemoglobin. We have used modeling to compute the change of ptO2 in response to changes of each physiological parameter and related these changes to experimental data.

The oxygen distribution in a Krogh cylinder was computed assuming a linear decrease of hemoglobin saturation from the arterial to the venous end of the capillary. Parameters of the model were used to compute the baseline cerebral ptO2 expressed as the mean value of the ptO2 over the whole cylinder. These parameters were adjusted to derive ptO2 values close to those measured at the relevant experimental conditions. Then each desired parameter was varied to calculate the change in ptO2 related to this parameter.

Effects of different factors on cerebral ptO2 were modeled and compared with experimental values obtained with various experimental interventions including: changing CBF, modifying p50 with the allosteric modifier RSR13, modification of capillary density, and hemoglobin content. An acceptable agreement of the computed and the experimental changes of the cerebral ptO2 was obtained for these experimental conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. I. Nwaigwe, M. A. Roche, O. Grinberg, and J. F. Dunn, Effect of hyperventilation on brain tissue oxygenation and cerebrovenous pO2 in rats, Br. Res. 868, 150–156 (2000).CrossRefGoogle Scholar
  2. 2.
    H. Lei, O. Grinberg, C. I. Nwaigwe, H. G. Hou, H. Williams, H. M. Swartz, and J. F. Dunn, The effects of ketamine-xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry, Br. Res. 913(2), 174–179 (2001).CrossRefGoogle Scholar
  3. 3.
    J. F. Dunn, O. Grinberg, M. Roche, C. I. Nwaigwe, H. G. Hou, and H. M. Swartz, Non-invasive assessment of cerebral oxygenation during acclimation to hypobaric hypoxia, J. Cereb. Blood Flow Metab. 20, 1632–1635 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    O. Y. Grinberg, M. Miyake, H. Hou, R. P. Steffen, and H. M. Swartz, The dose-dependent effect of RSR13, a synthetic allosteric modifier of hemoglobin, on physiological parameters and brain tissue oxygenation in rats, Adv. Exp. Med. Biol. 530, 287–296 (2003).PubMedGoogle Scholar
  5. 5.
    A. Krogh, The number and distribution of capillaries in muscle with calculations of the oxygen pressure head necessary for supplying the tissue, J. Physiol. (London) 52, 409 (1919).PubMedGoogle Scholar
  6. 6.
    A. Krogh, The Anatomy and Physiology of Capillaries, Yale University Press, New Haven (1922).Google Scholar
  7. 7.
    S. S. Kety, Determination of tissue oxygen tension, Fed. Proc. 16, 666–670 (1957).PubMedGoogle Scholar
  8. 8.
    C-F Cartheuser, Standard and pH-affected hemoglobin-O2 binding curves of Sprague-Dawley rats under normal and shifted P50 conditions, Comp. Biochem. Physiol. 106A(4), 775–782 (1993).CrossRefGoogle Scholar
  9. 9.
    I. Toma-Dasu, A. Waites, A. Dasu, and J. Denekamp, Theoretical simulation of oxygen tension measurement in tissue using a microelectrode: I. The response function of the electrode, Physiol. Meas. 22, 713–725 (2001).PubMedCrossRefGoogle Scholar
  10. 10.
    J. F. Dunn, M. A. Roche, R. Springett, M. Abajian, J. Merlis, C. P. Daghlian, S. Y. Lu, and M. Makki, Monitoring angiogenesis in brain using steady-state quantification of dR2 with MION infusion, Magn. Reson. Med. 51(1), 55–61 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Bar, The vascular system of the cerebral cortex, Adv. Anat. Embryol. Cell Biol. 59(I–VI), 1–62 (1980).Google Scholar
  12. 12.
    Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat, Microvascular Res. 8(1), 1–13 (1974).CrossRefGoogle Scholar
  13. 13.
    D. A. Tata, and B. J. Anderson, A new method for the investigation of capillary structure, J. Neurosci. Methods 113(2), 199–206 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    C. E. Stenis, and C. J. D. Fell, Diffusivity of oxygen in water, Can. J. Chem. Engineer 49(6), 885 (1971).Google Scholar
  15. 15.
    A. Dutta, and A. S. Popel, A theoretical analysis of intracellular oxygen diffusion, J. Theoret. Biol. 176(4), 433–445 (1995).CrossRefGoogle Scholar
  16. 16.
    A. S. Popel, Theory of oxygen-transport to tissue, Crit. Rev. Biomed. Engineer. 17(3), 257–321 (1989).Google Scholar
  17. 17.
    Y. Magata, T. Temma, T. Iida, M. Ogawa, T. Mukai, T. Morimoto, J. Konishi, and H. Saji, Development of injectable O-15 Oxygen and estimation of rat OEF, J. Cereb. Blood Flow Metabol. 23(6), 671–676 (2003).CrossRefGoogle Scholar
  18. 18.
    K. Norberg, B. Scatton, and J. Korf, Amphetamine-induced increase in rat cerebral blood flow — apparent lack of catecholamine involvement, Br. Res. 149(1), 165–174 (1978).CrossRefGoogle Scholar
  19. 19.
    V. L. Baughman, W. E. Hoffman, D. J. Miletich, and R. F. Albrecht, Cerebrovascular and cerebral metabolic effects of N2O in unrestrained rats, Anesthesiol. 73, 269–272 (1990).CrossRefGoogle Scholar
  20. 20.
    W. J. Thoman, D. Gravenstein, van der Aa, and S. Lampotang, Autoregulation in a simulator-based educational model of intracranial physiology, J. Clin. Monitor. Comput. 15(7–8), 481–491 (1999).Google Scholar
  21. 21.
    Z. H. Zhu, Y. Zhang, R. X. Tian, H. Lei, N. Y. Zhang, X. L. Zhang, H. Merkle, K. Ugurbil, and W. Chen, Development of O-17 NMR approach for fast imaging of cerebral metabolic rate of oxygen in rat brain at high field, Proc. Nat. Acad. Sci. USA 99(20), 13194–13199 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Hou, O. Y. Grinberg, S. Taie, S. Leichtweis, M. Miyake, S. Grinberg, H. Xie, M. Csete, and H. Swartz, Electron paramagnetic resonance assessment of brain tissue oxygen tension in anesthetized rats, Anesth. Analg. 96(5),1467–1472 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    M. P. Kunert, J. F. Liard, and D. J. Abraham, RSR-13, an allosteric effector of hemoglobin, increases systemic and iliac vascular resistance in rats, Am. J. Physiol. 271, H602–613 (1996).PubMedGoogle Scholar
  24. 24.
    B. D. Kavanagh, T. W. Secomb, R. Hsu, P-S Lin, J. Venitz, and M. W. Dewhirst, A theoretical model for the effects of reduced hemoglobin-oxygen affinity on tumor oxygenation, Int. J. Radiat. Oncol. Biol. Phys. 53, 172–179 (2002).PubMedCrossRefGoogle Scholar
  25. 25.
    J. C. LaManna, Rat brain adaptation to chronic hypobaric hypoxia, Adv. Exp. Med. Biol. 317, 107–114 (1992).PubMedGoogle Scholar
  26. 26.
    J. B. Jensen, B. Sperling, J. W. Severinghaus, and N. A. Lassen, Augmented hypoxic cerebral vasodilation in men during 5 days at 3,810 m altitude, J. Appl. Phys. 80(4), 1214–1218 (1996).Google Scholar
  27. 27.
    J. E. Brian Jr., Carbon dioxide and cerebral circulation, Anesthesiol. 88, 1365–1386 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Oleg Y. Grinberg
  • Huagang Hou
  • Marcie A. Roche
  • Jennifer Merlis
  • Stalina A. Grinberg
  • Nadeem Khan
  • Harold M. Swartz
  • Jeff F. Dunn

There are no affiliations available

Personalised recommendations