Advertisement

Quantitative Measures of Network Complexity

  • Danail Bonchev
  • Gregory A. Buck

Keywords

Network Complexity Adjacency Matrix Complete Graph Undirected Graph Connectivity Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Shannon and W. Weaver, Mathematical Theory of Communications, University of Illinois Press, Urbana, IL (1949).Google Scholar
  2. 2.
    H. Kastler (ed.), Essays on the Use of Information Theory in Biology, University of Illinois Press, Urbana, IL (1953).Google Scholar
  3. 3.
    H. Linshitz, The Information Content of a Bacterial Cell, in Essays on the Use of Information Theory in Biology, H. Kastler (ed.), University of Illinois Press, Urbana, IL (1953).Google Scholar
  4. 4.
    N. Rashevsky, Bull. Math. Biophys. 17, 229–235 (1955).CrossRefMathSciNetGoogle Scholar
  5. 5.
    E. Trucco, Bull. Math. Biophys. 18, 129–135 (1956).CrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Mowshowitz, Bull. Math. Biophys. 30, 175–204 (1968).MATHPubMedCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. Minoli, Atti. Acad. Naz. Lincei Rend. 59, 651–661 (1976).MATHMathSciNetGoogle Scholar
  8. 8.
    A. N. Kolmogorov, Problem’i Peredachi Informatsii (Russ.) 1, 1–7 (1965).MathSciNetGoogle Scholar
  9. 9.
    D. Bonchev, Bulg. Chem. Commun. 28, 567–582 (1995).Google Scholar
  10. 10.
    D. Bonchev, D. Kamenski, and V. Kamenska, Bull. Math. Biol. 38, 119–133 (1976).Google Scholar
  11. 11.
    D. Bonchev, and N. Trinajstić, J. Chem. Phys. 67, 4517–4533 (1977).CrossRefADSGoogle Scholar
  12. 12.
    D. Bonchev and V. Kamenska, Croat. Chem. Acta 51, 19–27 (1978).Google Scholar
  13. 13.
    D. Bonchev, MATCH-Commun. Math. Comput. Chem. 7, 65–113 (1979).Google Scholar
  14. 14.
    D. Bonchev, O. Mekenyan, and N. TrinajstiÊ, J. Comput. Chem. 2, 127–148 (1981).CrossRefMathSciNetGoogle Scholar
  15. 15.
    D. Bonchev and N. Trinajstić, Intern. J. Quantum Chem. Symp. 16, 463–480 (1982).Google Scholar
  16. 16.
    D. Bonchev, InformationTheoretic Indices for Characterization of Chemical Structures. Research Studies Press, Chichester, UK (1983).Google Scholar
  17. 17.
    D. Bonchev, Shannon’s Information and Complexity in, Mathematical Chemistry Series: Complexity in Chemistry, Vol. 7, D. Bonchev and D. H. Rouvray (eds.), Taylor & Francis, London (2003) pp. 155–187.Google Scholar
  18. 18.
    S. H. Bertz, J. Am. Chem. Soc. 103, 3599–3601 (1981).CrossRefGoogle Scholar
  19. 19.
    S. H. Bertz, J. Chem. Soc. Chem. Commun. 209 (1981).Google Scholar
  20. 20.
    D. Bonchev, The Problems of Computing Molecular Complexity, in Computational Chemical Graph Theory, D. H. Rouvray (ed.), Nova Publications, New York (1990) pp. 34–67.Google Scholar
  21. 21.
    S. Nikolić, N. Trinajstić, M. Tolić, G. Rücker, and C. Rücker, On Molecular Complexity Indices, in Mathematical Chemistry Series: Complexity in Chemistry, Vol. 7, D. Bonchev and D. H. Rouvray (eds.), Taylor & Francis, London (2003) pp. 29–89.Google Scholar
  22. 22.
    S. H. Bertz, A. Mathematical Model of Molecular Complexity, in Chemical Applications of Topology and Graph Theory, R. B. King (ed.), Elsevier, Amsterdam (1983) pp. 206–221.Google Scholar
  23. 23.
    D. Bonchev and O. E. Polansky, On the Topological Complexity of Chemical Systems, in Graph Theory and Topology in Chemistry, R. B. King and D. H. Rouvray (eds.), Elsevier, Amsterdam (1987) pp.126–158.Google Scholar
  24. 24.
    D. Bonchev and W. A. Seitz, The Concept of Complexity in Chemistry. In: Concepts in Chemistry: A Contemporary Challenge, D. H. Rouvray (ed.),Wiley, New York (1997) pp. 353–381.Google Scholar
  25. 25.
    D. Bonchev, SAR QSAR Environ. Res. 7, 23–43 (1997).CrossRefGoogle Scholar
  26. 26.
    S. H. Bertz and T. J. Sommer, Chem. Commun. 2409–2410 (1997).Google Scholar
  27. 27.
    S. H. Bertz and W. F. Wright, Graph Theory Notes New York Acad. Sci. 35, 32–48 (1998).MathSciNetGoogle Scholar
  28. 28.
    D. Bonchev, Overall Connectivity and Molecular Complexity. in Topological Indices and Related Descriptors, J. Devillers and A. T. Balaban (eds.), Gordon and Breach, Reading, UK (1999) pp. 361–401.Google Scholar
  29. 29.
    D. Bonchev, J. Chem. Inf. Comput. Sci. 40, 934–941 (2000).PubMedCrossRefGoogle Scholar
  30. 30.
    G. Rücker and C. Rücker, J. Chem. Inf. Comput. Sci. 40, 99–106 (2000).PubMedCrossRefGoogle Scholar
  31. 31.
    G. Rücker and C. Rücker, J. Chem. Inf. Comput. Sci. 41, 1457–1462 (2001).PubMedCrossRefGoogle Scholar
  32. 32.
    D. Bonchev, O. N. Temkin and D. Kamenski, React. Kinet. Catal. Lett. 15, 119–124 (1980).CrossRefGoogle Scholar
  33. 33.
    D. Bonchev, D. Kamensky, and O. N. Temkin, J. Math. Chem. 1, 345–388 (1987).CrossRefMathSciNetGoogle Scholar
  34. 34.
    K. Gordeeva, D. Bonchev, D. Kamenski, and O. N. Temkin, J. Chem. Inf. Comput. Sci. 34, 244–247 (1994).CrossRefGoogle Scholar
  35. 35.
    O. N. Temkin, A. V. Zeigarnik, and D. Bonchev, Chemical Reaction Networks. A Graph Theoretical Approach. CRC Press, Boca Raton, FL (1996).Google Scholar
  36. 36.
    F. Harary, Graph Theory, Addison-Wesley, Reading, MA (1969).Google Scholar
  37. 37.
    F. Harary, R. Z. Norman, and D. Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs, Wiley, New York (1965).MATHGoogle Scholar
  38. 38.
    N. Trinajstić, Chemical Graph Theory, 2nd ed., CRC Press, Boca Raton, FL (1992).Google Scholar
  39. 39.
    H. L. Morgan, J. Chem. Docum. 5, 107–113 (1965).CrossRefGoogle Scholar
  40. 40.
    D. Bonchev, A. T. Balaban and O. Mekenyan, J. Chem. Inf. Comput. Sci. 20, 106–113 (1980).CrossRefGoogle Scholar
  41. 41.
    D. Bonchev, Theochem 185, 155–168 (1989).CrossRefGoogle Scholar
  42. 42.
    D. Bonchev, O. Mekenyan and AT Balaban, J. Chem. Inf. Comput. Sci. 29, 91–97 (1989).CrossRefGoogle Scholar
  43. 43.
    M. E. J. Neuman, S. H. Strogatz, and D. J. Watts, Random Graphs With Arbitrary Degree Distribution and Their Applications, Santa Fe Institute (2000) Working Paper 00-07-042.Google Scholar
  44. 44.
    M. Gell-Mann, The Quark and the Jaguar, Freeman, New York (1994) p.31.MATHGoogle Scholar
  45. 45.
    D. Bonchev, SAR QSAR Envir. Sci. 14, 199–214 (2003).CrossRefGoogle Scholar
  46. 46.
    D. Bonchev, Complexity of Protein-Protein Interaction Networks, Complexes and Pathways, in Handbook of Proteomics Methods, M. Conn (ed.), Humana, New York (2003) pp. 451–462.CrossRefGoogle Scholar
  47. 47.
    D. Bonchev, Chem. and Biodiversity, 1, 312–332 (2004).CrossRefGoogle Scholar
  48. 48.
    D. Bonchev and D. H. Rouvray (eds.), Mathematical Chemistry Series: Complexity in Chemistry, Vol. 7, Taylor & Francis, London (2003).Google Scholar
  49. 49.
    S. Nicolić, I. M. Tolić, N. Trinajstić, and I. Baučić, Croat. Chem. Acta 73, 909–921 (2000).Google Scholar
  50. 50.
    M. Randić and D. Plavšsić, Croat. Chem. Acta 75, 107–116 (2002).Google Scholar
  51. 51.
    J. R. Platt, J. Phys. Chem. 56, 328–336 (1952).CrossRefGoogle Scholar
  52. 52.
    D. Bonchev, Croat. Chem. Acta 77, 167–173 (2004).Google Scholar
  53. 53.
    M. Gordon and G. R. Scantleburry, Trans. Faraday Soc. 60, 604–621 (1964).CrossRefGoogle Scholar
  54. 54.
    S. H. Bertz and W. C. Herndon, The Similarity of Graphs and Molecules, in Artificial Intelligence Applications to Chemistry, T. H. Pierce and B. A. Hohne (eds.), ACS, Washington, DC (1986), pp.169–175.CrossRefGoogle Scholar
  55. 55.
    G. Rücker and C. Rücker, MATCH—Commun. Math. Comput. Chem. 41, 145–149 (2000).MATHGoogle Scholar
  56. 56.
    D. Bonchev and N. Trinajstić, SAR QSAR Environ. Res. 12, 213–235 (2001).PubMedCrossRefGoogle Scholar
  57. 57.
    D. Bonchev, J. Mol. Graphics Model. 20, 55–65 (2001).CrossRefGoogle Scholar
  58. 58.
    H. Wiener, J. Am. Chem. Soc. 69, 17–20 (1947).CrossRefGoogle Scholar
  59. 59.
    H. Wiener, J. Phys. Chem. 52, 1082–1089 (1948).CrossRefGoogle Scholar
  60. 60.
    D. Bonchev, J. Chem. Inf. Comput. Sci. 41, 582–592 (2001).PubMedCrossRefGoogle Scholar
  61. 61.
    I. Gutman, B. Rušsćić, N. Trinajstić, and C.W. Wilcox, Jr, J. Chem. Phys. 62, 3399–3405 (1975).CrossRefADSGoogle Scholar
  62. 62.
    S. Nicolić, G. Kovacevic, A. Milicevic, and N. Trinajstić, Croat. Chem. Acta 76, 113–124 (2003).Google Scholar
  63. 63.
    D. J. Watts and S. H. Strogatz, Nature 393, 440–442 (1998).PubMedCrossRefADSGoogle Scholar
  64. 64.
    A. L. Barabási, Linked. The NewScience of Networks. Perseus, Cambridge, MA, (2002).Google Scholar
  65. 65.
    A. L. Barabási and R. Albert, Science 286, 509–512 (1999).PubMedCrossRefMathSciNetGoogle Scholar
  66. 66.
    S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079–1187 (2002).CrossRefADSGoogle Scholar
  67. 67.
    http://www.santafe.edu/sfi/publications/working-papers.html.Google Scholar
  68. 68.
    T. Ito, T. Chiba, R. Ozava, M. Yoshida, M. Hattori, and Y. Sasaki, Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).PubMedCrossRefADSGoogle Scholar
  69. 69.
    G. Weng, U. S. Bhala, and R. Yyengar, Science 284, 92–96 (1999).PubMedCrossRefADSGoogle Scholar
  70. 70.
    A. Wagner, Mol. Biol. Evol. 18, 1283–1292 (2001).PubMedGoogle Scholar
  71. 71.
    L. Giot, et al., Science 302, 1727–1736 (2003).PubMedCrossRefADSGoogle Scholar
  72. 72.
    A. C. Gavin, et al., Nature 415,141–147 (2002).PubMedCrossRefADSGoogle Scholar
  73. 73.
    T. I. Lee, et al., Science, 298, 799–804 (2002).PubMedCrossRefADSGoogle Scholar
  74. 74.
    N. Friedman, Science, 303, 799–805 (2004).PubMedCrossRefADSGoogle Scholar
  75. 75.
    A. H. Y. Tong, et al., Science, 303, 606–813 (2004).CrossRefGoogle Scholar
  76. 76.
    H. Jeong, B. Tombor, Z. Albert, and A. L. Barabási, Nature 407, 651–654 (2000).PubMedCrossRefADSGoogle Scholar
  77. 77.
    A. Wagner and D. A. Fell, Proc. Roy. Soc. London B 268, 1803–1810 (2001).CrossRefGoogle Scholar
  78. 78.
    H. Ma and A. P. Zengl, Bioinformatics 19, 270–277 (2003).PubMedCrossRefGoogle Scholar
  79. 79.
    C. Koch and G. Laurent, Science 284, 96–98 (1999).PubMedCrossRefADSGoogle Scholar
  80. 80.
    S. Karabunarliev and D. Bonchev, Grafman software package, unpublished.Google Scholar
  81. 81.
    S. N. Dorogovtzev, J. F. F. Mendes, and A. N. Samukhin, Giant Strongly Connected Component of Directed Graphs, arXiv I cond-mat/0103629 v1 Mar 2001.Google Scholar
  82. 82.
    S. H. Yook, H. Jeong and A. L. Barabási, Proc. Natl. Acad. Sci. 99, 13382–13386, (2002).PubMedCrossRefADSGoogle Scholar
  83. 83.
    J. A. Dunne, R. J. Williams and N. D. Martinez, Networks Topology and Biodiversity Loss in Food Webs: Robustness Increases With Connectance, Santa Fe Institute Working Paper 02-03-013 (2002).Google Scholar
  84. 84.
    R. Albert, H. Jeong, and A. L. Barabáasi, Nature 406, 378–382 (2000).PubMedCrossRefADSGoogle Scholar
  85. 85.
    S. Maslov and K. Sneppen, Science 296, 309–313 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Danail Bonchev
    • 1
  • Gregory A. Buck
    • 1
  1. 1.Center for the Study of Biological ComplexityVirginia Commonwealth UniversityRichmond

Personalised recommendations